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Abstract— The Scatter Search (SS) is a deterministic strategy 

that has been applied successfully to some combinatorial and 

continuous optimization problems. Cuckoo Search (CS) is 

heuristic search algorithm which is inspired by the reproduction 

strategy of cuckoos. This paper presents enhanced scatter search 

algorithm using CS algorithm. The improvement provides 

Scatter Search with random exploration for search space of 

problem and more of diversity and intensification for promising 

solutions. The original and improved Scatter Search has been 

tested on Traveling Salesman Problem. A computational 

experiment with benchmark instances is reported. The results 

demonstrate that the improved Scatter Search algorithms 

produce better performance than original Scatter Search 

algorithm. The improvement in the value of average fitness is 

23.2% comparing with original SS. The developed algorithm has 

been compared with other algorithms for the same problem, and 

the result was competitive with some algorithm and insufficient 

with another. 

Keywords-component; Metaheuristic; Scatter Search; Cuckoo 

Search; Combinatorial Problems; Traveling Salesman Problem 

I. INTRODUCTION 

There are several heuristic and metaheuristic algorithms 
have been used to solve a wide range of NP-hard problems. A 
large number of real-life optimization problems in science, 
engineering, economics, and business are complex and difficult 
to solve. They can't be solved in an exact manner within a 
reasonable amount of time [1].  Real-life optimization 
problems have two main characteristics, which make them 
difficult: they are usually large, and they are not pure, i.e.; they 
involve a heterogeneous set of side constraints [2]. 
Metaheuristic techniques are the basic alternative solution for 
this class of problems. Recently, many researchers have 
focused their attention on a metaheuristics. A metaheuristic is a 
set of algorithmic concepts that can be used to define heuristic 
methods applicable to a wide set of different problems. The use 
of metaheuristics has significantly increased the ability of 
finding solutions practically relevant combinatorial 
optimization problems in a reasonable time [3]. Prominent 
examples of metaheuristics are Evolutionary Algorithms, 
Simulated Annealing, Tabu Search, Scatter Search, Variable 
Neighborhood Search, Memetic Algorithms, Ant Colony 
Optimization, Cuckoo Search,  and others. Which successfully 
solved problems include scheduling, timetabling, network 
design, transportation and distribution problems, vehicle 
routing, the traveling salesman problem and others [4]. 

II. BACKGROUND 

There is several literature surveys applied to improve or 
hybridization of Scatter Search algorithm. Ali M. et al [5] 
presented improved SS using Bees Algorithm. The 

improvement provides SS with random exploration for search 
space of problem and more of intensification for promising 
solutions. The experimental results prove that the improved SS 
algorithm is better than original SS algorithm in reaching to 
nearest optimal solutions. Juan José et al [6] presented 
development for multiple object visual trackers based on the 
Scatter Search Particle Filter (SSPF) algorithm. It has been 
effectively applied to real-time hands and face tracking. Jose 
A. et al [7] presented the SSKm algorithm proposed 
methodology for global optimization of computationally 
expensive problems. Saber et al [8] presented hybrid genetic 
Scatter Search algorithm that replaced two steps in Scatter 
Search (combination and improvement) with two steps in 
genetic (crossover and mutation). This algorithm leads to 
increase the efficiency and exploration of the solution process. 
T. Sari et al [9] evaluate Scatter Search and genetic algorithm. 
Resource constrained project scheduling problem which is an 
NP-hard problem is solved with two algorithms. They 
conclude that genetic algorithm outperformed Scatter Search. 
Tao Zhang et al [10] presented development of new Scatter 
Search approach for the stochastic travel- time vehicle routing 
problem with simultaneous pick-ups and deliveries by 
incorporating a new chance-constrained programming method. 
A generic genetic algorithm approach is also developed and 
used as a reference for performance comparison. The 
evaluation shows the performance characteristics and 
computational results of the SS solutions are superior to the 
GA solutions. Oscar Ibáñez et al [11] parented a new skull-face 
overlay method based on the Scatter Search algorithm. This 
approach achieves faster and more robust solutions. The 
performance compared to the current best performing approach 
in the field of automatic skull-face overlay. The presented 
approach has shown an accurate and robust performance when 
solving the latter six face-skull overlay problem instances. 
Ying Xu and  Rong Qu [12] presented a hybrid Scatter Search 
meta-heuristic to solve delay-constrained multicast routing 
problems, this approach intensify the search using tabu and 
variable neighborhood search then is efficient in solving the 
problem in comparison with other algorithms which is descent 
the search. Jue Wang et al [13] proposed novel approach to 
feature selection based on rough set using Scatter Search to 
improve cash flow and credit collections. The conditional 
entropy is regarded as the heuristic to search the optimal 
solutions. The experimental result has a superior performance 
in saving the computational costs and improving classification 
accuracy compared with the base classification methods. 

Regarding the previous works discussed above, This paper 
presents new improvement to the Scatter Search algorithm 
using CS which is one of the several swarm intelligence 
methods that was proposed to solve Combinatorial 
Optimization problems.  
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Scatter Search Algorithm 

Input: Population of the problem.  

Output: The best of solutions 

Initialize the population Pop using a 

Diversification Generation Method. 

Apply the Improvement Method to the 

population. 

Reference Set Update Method (Good solutions 

for RefSet1 and Diversity solutions for 

RefSet2). 

While (itr < MaxItr) do 

While (Reference set is changed) do 

    Subset Generation Method 

While (subset-counter < > 0) do 

Solution Combination Method. 

Improvement Method. 

Reference Set Update Method; 

End while 

End while 

End while 

Return the best of solutions 

The contribution is that the improved Scatter Search with 
CS reaching to the nearest optimal solutions than original 
Scatter Search. 

The Scatter Search algorithm is proven successful in 
travelling salesman problem [14]. The Traveling Salesman 
Problem (TSP) is a classical NP-hard combinatorial problem. 
Let given a graph G = (N, E), where N = {1, ..., n} is the set of 
nodes and E = {1, ..., m} is the set of edges of G, which 
represent the costs. The cij, associated with each edge linking 
vertices, i and j. The problem consists in finding the minimal 
total length Hamiltonian cycle of G. The length is calculated by 
the summation of the costs of the edges in a cycle. If for all 
pairs of nodes {i,j}, the cost's cij and cji are equal, then the 
problem is said to be symmetric, otherwise it is said to be 
asymmetric. It represents an important test ground for many 
evolution algorithms [1]. 

The rest of the paper is organized as follows. Scatter Search 
Technique is described in Section 3. Section 5 presents brief 
description for CS Algorithm. The first enhanced SS is 
proposed in Section 6. Section 7 includes the second enhanced 
SS. In section 8. The experimental results are presented. 
Finally, some concluding remarks are presented in Section 9. 

III. SCATTER SEARCH TECHNIQUE 

Scatter Search (SS) algorithm is one of the population-
based Metaheuristics. It works on a population of solutions, 
which are stored as a set of solutions called the Reference Set. 
The solutions to this set are combined in order to obtain new 
ones, trying to generate each time better solutions. According 
to quality and diversity criteria, Fig. 1 illustrates the basic SS 
algorithm [1, 15]. 

The design of a SS algorithm is generally based on the 
following five steps [15, 16]: 

 A Diversification Generation Method to generate a 

population (Pop) of diverse trial solutions within 

the search space.   

 An Improvement Method to transform a trial 

solution into one or more enhanced trial solutions. 

 A Reference Set Update Method to build and 

maintain a Reference Set. The objective is to ensure 

diversity while keeping high-quality solutions. For 

instance, one can select RefSet1 solutions with the 

best objective function and then adding RefSet2 

solutions with the optimal diversity solutions 

(RefSet = RefSet1 + RefSet2). 

 A Subset Generation Method to operate on the 

reference set, to produce several subsets of its 

solutions as a basis for creating combined solutions.   

 A Solution Combination Method to transform a 
given subset of solutions produced by the Subset 
Generation Method into one or more combined 
solution vectors. 

After generating the new solutions which are generated 
from Solution Combination Method, these solutions will be 
improved by Improvement Method, and this solution will 

become a member of the reference set if one of the following 
rules is satisfied [15]: 

Fig. 1. Basic Scatter Search Algorithm 

1) The new solution has a better objective 

function value than the solution with the worst objective 

value in RefSet1. 

2) The new solution has a better diversity value 

than the solution with the worst diversity value in 

RefSet2.   
The search is continued while RefSet is changed. If no 

change in RefSet, the algorithm will check if the number of 
iteration (itr) reach  the max iteration (MaxItr) that detected by 
the user, then the algorithm will display the good solution(s) 
reached, else, the new population will be generated, and 
RefSet1 will be added to the start of this population. 

IV. CUCKOO SEARCH ALGORITHM 

CS is a heuristic search algorithm which has been proposed 
recently by Yang and Deb [17]. The algorithm is inspired by 
the reproduction strategy of cuckoos. At the most basic level, 
cuckoos lay their eggs in the nests of other host birds, which 
may be of different species. The host bird may discover that 
the eggs are not its own and either destroy the egg or abandon 
the nest all together. This has resulted in the evolution of 
cuckoo eggs which mimic the eggs of local host birds. To 
apply this as an optimization tool, Yang and Deb used three 
ideal rules [17, 18]: 

1) Each cuckoo lays one egg, which represents a set of 

solution co-ordinates, at a time and dumps it in a 

random nest; 

2) A fraction of the nests containing the best 

eggs, or solutions, will carry over to the next 

generation; 
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Cuckoo Search via Levy Flight Algorithm 

Input: Population of the problem; 

Output: The best of solutions; 

     Objective function f(x), x = (x1, x2, ...xd)
T
 

     Generate initial population of n host nests xi 

        (i = 1, 2, ..., n) 

     While (t <Max Generation) or (stop criterion) 

Get a cuckoo randomly by Levy flight 

Evaluate its quality/fitness Fi 

Choose a nest among n(say,j)randomly 

If (Fi > Fj) replace j by the new solution; 

A fraction(pa) of worse nests are 

abandoned and new ones are built; 

Keep the best solutions (or nests with 

quality solutions); 

Rank the solutions and find the current 

best; 

Pass the current best solutions to the next 

generation; 

     End While 

3) The number of nests is fixed and there is a 

probability that a host can discover an alien egg. If this 

happens, the host can either discard the egg or the nest 

and this result in building a new nest in a new location. 

Based on these three rules, the basic steps of the 

Cuckoo Search (CS) can be summarized as the pseudo 

code shown as in Fig. 2. 

 
              

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Basic Cuckoo Search Algorithm 

When generating new solution x
(t+1)

 for, say cuckoo i, a  

Levy flight is performed 

x
(t+1)

i = x(t)i + α  Levy(β) …….  (1) 

where α > 0 is the step size which should be related to the 
scales of the problem of interests. In most cases, we can use α 

= 1. The product  means entry-wise walk while 
multiplications. Levy flights essentially provide a random walk 
while their random steps are drawn from a Levy Distribution 
for large steps 

Levy   u = t
-1- β  (0 < β ≤ 2) ……… (2) 

this has an infinite variance with an infinite mean. Here the 
consecutive jumps/steps of a cuckoo essentially form a random 
walk process which obeys a power-law step-length distribution 
with a heavy tail. In addition, a fraction pa of the worst nests 
can be abandoned so that new nests can be built at new 
locations by random walks and mixing. The mixing of the 
eggs/solutions can be performed by random permutation 
according to the similarity/difference to the host eggs. 

V. THE PROPOSED SCATTER CUCKOO SEARCH 

The improvement to SS algorithm was accomplished by 
using nature inspired swarm intelligent algorithm, which is 
Cuckoo Search. Cuckoo search algorithm has proven its ability 
in solving some combinatorial problems and finding the 
nearest global optimum solution in reasonable time and good 
performance. Because the SS algorithm is composed of several 
steps, there will be several places to improve the SS algorithm. 
However, by the applied experiments, Subset Generation 
Method, Improvement Method and Reference Set Update 
Method are the most effective steps in improving the SS 
algorithm.   

When we try to improve the SS algorithm, the time is the 
big problem that is found in the Improvement Method. Where 
the Improvement Method is applying on all populations rather 
than to each new solution produced from Combination 
Method, so this will take a large amount of time, this will affect 
the SS algorithm as one of the metaheuristic algorithms that the 
main goal of it in solving the problems is to find the optimal 
solution in reasonable time.   

However, when trying to improve the SS algorithm in 
Reference Set Update Method in SS algorithm, the results were 
good and in reasonable time. The steps of CS will take its 
solutions from steps in SS, which is Reference Set Update 
Method and explore more of solutions and retrieve the best 
solutions reached to complete SS steps. See Fig. 3, which is 
show the improved SS algorithm using CS. 

In Reference Set Update Method, RefSet1 of b1 of the best 
solutions and RefSet2 of b2 of diversity of solutions will be 
chosen. RefSet1 will enter to the new steps that added from CS 
to SS. The new steps provide a more diversity to the RefSet1 
which is benefit from the neighborhood search in the cuckoo 
search steps. Also the updated RefSet will contain more 
enhanced solutions than the old because the substitution 
operator forms the cuckoo solutions. 
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Improved Scatter Cuckoo Search Algorithm 

Input: Population of the problem.  

Output: The best of solutions 

Initialize the population Pop using Diversification 

Generation Method. 

Apply the Improvement Method to the population. 

Reference Set Update Method (Good solutions for 

RefSet1 and Diversity solutions for RefSet2). 

While (itr < MaxItr) do 

     While (Reference set is changed) do 

Get a cuckoo randomly by Levy flight (from 

RefSet) 

Evaluate its quality/fitness Fi 

Choose a nest among n (say j) randomly 

If (Fi > Fj) replace j by the new solution; 

A fraction(pa) of worse nests are abandoned 

and new ones are built; 

Keep the best solutions (or nests with quality 

solutions to substitute the RefSet); 

Subset Generation Method 

While (subset-counter < > 0) do 

       Solution Combination Method. 

       Improvement Method. 

       Reference Set Update Method; 

End while 

End while 

End while 

Output:  The best of solutions 

Fig. 3. Improved Scatter Search Algorithm Using Cuckoo Search 

VI. EXPERIMENTAL RESULTS 

TSP is one of the main combinatorial problems that used as 
test ground for most search techniques. We apply original SS 
and enhanced SS algorithms to symmetric TSP as a tool to 
measure the performance of the proposed enhanced SS. 

SS and its improvement algorithms were implemented in 
Microsoft Visual C# 2005 Express Edition and run on a 
computer whose processor is Intel Core2 Duo T657064 2.0 
GHz, with 2 GB main memory, 200 GB hard disk. The 
algorithms were applied to symmetric instances of the 
benchmark TSPLIB [20] with sizes ranging over from 26 to 
1379. The stop criteria are chosen as follows: 

1. If no change in Reference Set. 

2. To reach a maximum number of iterations = 20. 

The following parameters are chosen: 

 Initial population P =100, 

 The size of | RefSet1| =b1=10, the size of | RefSet2| 

=b2=10 and the size of reference set | RefSet| = | 

RefSet1|+| RefSet2|=20. 

 The fraction (pa) of CS is 0.25. 

 
A first experiment compared SS with it improvements. 

Twenty five independent runs of each algorithm were 
performed. The results are shown in Table I. 

TABLE I.  COMPARISON OF SS AND PROPOSED SS-CS FOR AVERAGE 

OPTIMALITY 

Instances 
Averages 

Of SS 

Average of 

Proposed 

SS-CS 

Fri26 1600 1205 

Dantzig42 1990 1597 

Att48 100995 83544 

Eil51 1133 907 

Eil101 2616 2133 

KroA100 127667 109542 

KroB100 124799 104989 

KroC100 126565 106912 

KroD100 123197 101391 

KroE100 129005 109802 

KroB200 269085 240008 

Lin105 91707 72879 

Lin318 513090 401003 

Pr76 432145 289019 

Pr124 537678 359097 

Pr299 646297 505992 

Pr439 1692199 1041839 

Pr1002 6050966 4700199 

Nrw1379 1344099 1001899 

Berlin52 20811 14768 

Bier127 520107 371892 

A280 29046 18901 
 

To see clearly the difference between SS and its 
improvement see Fig. 4. 

 

Fig. 4. Difference between SS and proposed SS-CS 

Computational experiments illustrate the differences 
between SS algorithm, and the improved SS algorithm. The 
Nearest Optimal Solution (NOPT) for improved SS has been 
indicated in Table II with bold font.  The difference is 
increased whenever the size of instance is increased.  

Averages of fitness f(x) required to reach the nearest 
optimal solutions that output from original SS, and its 
improvement have been computed. In all instances, the 2 
Improved SS obtained better results than original SS with little 
difference in time, averages of elapsed time and difference of 
the ratio between the averages of time required to reach 

optimal solution in improved SS and SS is 0.33 second. 

The ratio of difference was computed as follows (Averages 
of Elapsed Time (sec) for improved SS - Averages of Elapsed 
Time (sec) for SS). 
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TABLE II.  COMPARISON OF SS AND PROPOSED SS-CS FOR NOPT 

Instances 
NOPT in 

SS 

NOPT in 

Proposed 

SS-CS 

Fri26 1379 1207 

Dantzig42 1810 1195 

Att48 86890 81899 

Eil51 1003 858 

Eil101 2423 1189 

KroA100 113253 101702 

KroB100 111239 101099 

KroC100 113539 102081 

KroD100 113245 102004 

KroE100 120552 97099 

KroB200 251029 230165 

Lin105 82838 73997 

Lin318 494126 441786 

Pr76 401947 332900 

Pr124 500592 402909 

Pr299 618178 503128 

Pr439 1611932 1470674 

Pr1002 5889830 5070901 

Nrw1379 1301255 1149099 

Berlin52 17931 14811 

Bier127 501161 417903 

A280 27789 21089 

 

Table III shows the averages of elapsed time for SS and 
Improved SS algorithms for the instances in Table I. 

TABLE III.  AVERAGE OF ELAPSED TIME FOR SS AND PROPOSED SS-CS 

Instances 
Average of 

elapsed time 

for SS (Sec) 

Average 

elapsed time 

for  Proposed 

SS-CS (Sec) 

Fri26 0.48 0.51 

Dantzig42 0.63 0.70 

Att48 0.74 0.80 

Eil51 0.61 0.69 

Eil101 1.11 1.20 

KroA100 1.07 1.27 

KroB100 1.08 1.21 

KroC100 1.07 1.29 

KroD100 1.09 1.31 

KroE100 1.08 1.39 

KroB200 2.29 2.47 

Lin105 1.19 1.41 

Lin318 3.91 4.21 

Pr76 0.88 1.72 

Pr124 1.31 1.51 

Pr299 3.64 4.29 

Pr439 5.51 5.91 

Pr1002 15.87 16.91 

Nrw1379 23.56 24.12 

Berlin52 0.64 0.78 

Bier127 1.55 1.75 

A280 3.38 4.49 

 

The results of improved SS will be the best because the 
added steps from CS in different steps of SS provided a good 
diversity & intensification for the new and ratio of getting 
NOPT solutions will be increased. The ratio of getting NOPT 
solution will be increased respectively with increasing the size 
of RefSet1. 

In the second computational experiment we use the same 
parameters in first computational experiments except for the 
|RefSet1| =b1=20 where |RefSet|=|RefSet1|+|RefSet2|=30. 

We compute the averages of fitness and elapsed time with 
ten runs for the same instances in Table I. The results of the 
second experiments are illustrated in Table IV. When we 
increase the value of RefSet1 to 20, we found the results for SS 
and improved SS are better than the results in Table I. 

TABLE IV.  COMPARISON OF SS AND PROPOSED SS-CS FOR AVERAGE 

OPTIMALITY WITH REFSET1=20 

 

Instances 
Averages 

Of fitness 

for SS 

Average of 

fitness 

Proposed 

SS-CS 

Fri26 1461 1012 

Dantzig42 1751 1129 

Att48 92156 73987 

Eil51 1005 973 

Eil101 2312 1797 

KroA100 118654 97341 

KroB100 115987 99762 

KroC100 114982 98967 

KroD100 111707 97521 

KroE100 117233 97939 

KroB200 251087 113998 

Lin105 84590 71017 

Lin318 475691 347531 

Pr76 379328 258023 

Pr124 500807 401812 

Pr299 601011 491763 

Pr439 1562181 1170739 

Pr1002 5761184 4348761 

Nrw1379 1104810 914361 

Berlin52 17981 12451 

Bier127 478521 317659 

A280 27234 19963 

 

To see clearly the difference between SS and its 
improvement  with RefSet1=20 see Fig. 5. 

 

Fig. 4. Difference between SS and proposed SS-CS with RefSet1=20 

In spite of the results are better with RefSet1=20, there is a 
still difference in time. This difference is caused by the new 
size of RefSet1which increase the exploration and 
intensification for new solutions. Table V shows the NOPT 
results of SS, SS-CS with RefSet1=20.  Table VI shows the 
elapsed time for SS and improved SS with RefSet1=20. The 

increased time where RefSet1=20 is 1.2 second for SS-CS.  
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TABLE V.  COMPARISON OF SS AND THE PROPOSED SS-CS FOR NOPT 

WITH REFSET1=20 

Instances 
NOPT in 

SS 

NOPT in 

Proposed 

SS-CS 

Fri26 1364 1108 

Dantzig42 1689 1195 

Att48 84041 79865 

Eil51 909 801 

Eil101 2091 1009 

KroA100 112772 98124 

KroB100 114654 98221 

KroC100 113124 98722 

KroD100 110012 96912 

KroE100 114789 93582 

KroB200 231314 211133 

Lin105 82139 70997 

Lin318 467549 400755 

Pr76 373254 300991 

Pr124 498982 400001 

Pr299 608723 490074 

Pr439 1631578 1410633 

Pr1002 5902741 5000190 

Nrw1379 1298711 1079812 

Berlin52 17172 12018 

Bier127 480941 400901 

A280 26576 19754 

In the second experiments, for instances with large size 
such as Lin318, Pr299, Pr439, Pr1002 and A280 we noticed 
that the average of elapsed time with improved SS is larger 
than original SS with approximately 1 second only . This case 
can lead us to the fact that improved SS  with large instances 
can reach to the best NOPT solution with a very reasonable 
time than original SS. 

In general, comparing the time with the NOPT solutions 
isn't important for those who are looking for NOPT solutions, 
and they aren't cared about the time.  

TABLE VI.  AVERAGE OF ELAPSED TIME FOR SS AND PROPOSED SS-CS 

WITH REFSET1=20 

instances 
Average of 

elapsed time 

for SS (Sec) 

Average elapsed 

time for Proposed  

SS-CS (Sec) 

Fri26 1.27 1.40 

Dantzig42 1.67 1.92 

Att48 1.96 2.20 

Eil51 1.61 1.85 

Eil101 2.93 3.32 

KroA100 2.83 3.49 

KroB100 2.86 3.31 

KroC100 2.83 3.55 

KroD100 2.89 3.60 

KroE100 2.86 3.82 

KroB200 6.06 6.79 

Lin105 3.15 3.88 

Lin318 10.36 11.15 

Pr76 2.33 4.72 

Pr124 3.47 4.15 

Pr299 9.65 10.89 

Pr439 14.60 15.85 

Pr1002 42.05 43.34 

Nrw1379 62.43 66.33 

Berlin52 1.70 2.14 

Bier127 4.11 4.82 

A280 8.96 10.05 

In third experiment we compare the NOPTs of improved 
SS in Table VII and VIII with results obtained by other 
algorithms. We compute the average deviation for the output 
solutions SD = 100(NOPT – opt) / opt, where NOPT is the 
Nearest Optimal Solution output from Improved SS and the opt 
is the optimal solution taken from TSPLIB [20].  

TABLE VII.  RESULTS OF IMPROVED SS ARE BETTER THAN SOME 

ALGORITHMS 

Instances 

Optimal 

in 

TSPLIB 

in [20] 

SD for 

NOPT for  

Proposed 

SS-CS 

SD for 

optimal 

solutions 

in[19] 

SD for 

optimal 

solutions 

in[21] 

Fri26 937 28.81 - 34.47 

Dantzig42 699 70.95 - 119.45 

Att48 10628 670.59 - 573.96 

Eil51 426 101.40 - 125.35 

Eil101 629 89.03 - 259.61 

KroA100 21282 377.87 808.51 378.78 

KroB100 22141 356.61 - 347.35 

KroC100 20749 391.98 854.24 389.84 

KroD100 21294 379.02 - 350.37 

KroE100 22068 339.99 - 345.15 

KroB200 29437 681.89 828.21 662.59 

Lin105 14379 414.61 835.15 393.62 

Lin318 41345 968.53 880.41 962.99 

Pr76 108159 207.78 744.56 216.44 

Pr124 59030 582.54 801.44 599.80 

Pr299 48191 944.02 894.60 991.79 

Pr439 107217 1271.68 882.16 1209.28 

Pr1002 259045 1857.53 927.95 1910.50 

Nrw1379 56638 1928.84 891.17 2105.92 

Berlin52 7542 96.38 - 127.45 

Bier127 118282 253.31 724.70 259.06 

A280 2579 717.72 872.48 900.34 
 

TABLE VIII.  RESULTS OF IMPROVED SS ARE FAR FROM RESULTS OF SOME 

OTHER ALGORITHMS 

Instances 

SD for 

NOPT for  

Proposed 

SS-CS 

SD for 

optimal 

solutions 

in[22] 

SD for 

optimal 

solutions 

in[23] 

Fri26 28.81 0 0 

Dantzig42 70.95 0 0 

Att48 670.59 0 0 

Eil51 101.40 0 0 

Eil101 89.03 0.107 0 

KroA100 377.87 0 0 

KroB100 356.61 0.036 0 

KroC100 391.98 0 0 

KroD100 379.02 0.019 0 

KroE100 339.99 0.001 0 

KroB200 681.89 0.509 0 

Lin105 414.61 0 0 

Lin318 968.53 0.769 0.29 

Pr76 207.78 0 0 

Pr124 582.54 0 0 

Pr299 944.02 0.066 0.01 

Pr439 1271.68 0.572 0.18 

Pr1002 1857.53 - - 

Nrw1379 1928.84 - - 

Berlin52 96.38 0 0 

Bier127 253.31 0.064 0 

A280 717.72 0.305 0 

Table VII shows how the results of improved SS-CS are 
better than some results such as in [19] and [21]. Also Table 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 2, No. 2, 2013 

 

67 | P a g e  

www.ijarai.thesai.org 

VIII shows how the improved SS-CS results are far from other 
results of other algorithms such as [22] and [23]. 

VII. CONCLUSIONS 

This paper presented improved SS algorithms. The 
improvement provides SS with random exploration for search 
space of problem and more of diversity and intensification for 
promising solutions based on the Cuckoo search algorithm. 
From experimental results, the average of fitness value for 
improved SS algorithms are  better than original SS algorithm, 
the improvement in the value of average fitness is 23.2% 
comparing with original SS. From experimental results, the 
2improved SS algorithms are  better than original SS algorithm 
in reaching to nearest optimal solutions.  

The elapsed time for the improved SS is larger than the 
elapsed time for original SS in a reasonable value. The 
difference in elapsed time to reach Nearest Optimal Solution 
isn't a problem for those whose look for optimal solutions, and 
they aren't cared about the time. In general, the ratio of 
difference isn't very large. Also, the optimal solution of the 
improved SS is better than some algorithms but is far away 
from some others.  

For future work, the improved SS algorithm for TSP give 
an enhanced results comparing with the original SS but not 
good results comparing with most dependent algorithms, so it 
is reasonable to improve the SS & other improved SS with a 
mix techniques based on more than one improved steps to 
obtain the good results. 
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