
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

61 | P a g e

www.ijarai.thesai.org

Improved Scatter Search Using Cuckoo Search

Ahmed T. Sadiq Al-Obaidi

Computer Science Department University of Technology Baghdad, Iraq

Abstract— The Scatter Search (SS) is a deterministic strategy

that has been applied successfully to some combinatorial and

continuous optimization problems. Cuckoo Search (CS) is

heuristic search algorithm which is inspired by the reproduction

strategy of cuckoos. This paper presents enhanced scatter search

algorithm using CS algorithm. The improvement provides

Scatter Search with random exploration for search space of

problem and more of diversity and intensification for promising

solutions. The original and improved Scatter Search has been

tested on Traveling Salesman Problem. A computational

experiment with benchmark instances is reported. The results

demonstrate that the improved Scatter Search algorithms

produce better performance than original Scatter Search

algorithm. The improvement in the value of average fitness is

23.2% comparing with original SS. The developed algorithm has

been compared with other algorithms for the same problem, and

the result was competitive with some algorithm and insufficient

with another.

Keywords-component; Metaheuristic; Scatter Search; Cuckoo

Search; Combinatorial Problems; Traveling Salesman Problem

I. INTRODUCTION

There are several heuristic and metaheuristic algorithms
have been used to solve a wide range of NP-hard problems. A
large number of real-life optimization problems in science,
engineering, economics, and business are complex and difficult
to solve. They can't be solved in an exact manner within a
reasonable amount of time [1]. Real-life optimization
problems have two main characteristics, which make them
difficult: they are usually large, and they are not pure, i.e.; they
involve a heterogeneous set of side constraints [2].
Metaheuristic techniques are the basic alternative solution for
this class of problems. Recently, many researchers have
focused their attention on a metaheuristics. A metaheuristic is a
set of algorithmic concepts that can be used to define heuristic
methods applicable to a wide set of different problems. The use
of metaheuristics has significantly increased the ability of
finding solutions practically relevant combinatorial
optimization problems in a reasonable time [3]. Prominent
examples of metaheuristics are Evolutionary Algorithms,
Simulated Annealing, Tabu Search, Scatter Search, Variable
Neighborhood Search, Memetic Algorithms, Ant Colony
Optimization, Cuckoo Search, and others. Which successfully
solved problems include scheduling, timetabling, network
design, transportation and distribution problems, vehicle
routing, the traveling salesman problem and others [4].

II. BACKGROUND

There is several literature surveys applied to improve or
hybridization of Scatter Search algorithm. Ali M. et al [5]
presented improved SS using Bees Algorithm. The

improvement provides SS with random exploration for search
space of problem and more of intensification for promising
solutions. The experimental results prove that the improved SS
algorithm is better than original SS algorithm in reaching to
nearest optimal solutions. Juan José et al [6] presented
development for multiple object visual trackers based on the
Scatter Search Particle Filter (SSPF) algorithm. It has been
effectively applied to real-time hands and face tracking. Jose
A. et al [7] presented the SSKm algorithm proposed
methodology for global optimization of computationally
expensive problems. Saber et al [8] presented hybrid genetic
Scatter Search algorithm that replaced two steps in Scatter
Search (combination and improvement) with two steps in
genetic (crossover and mutation). This algorithm leads to
increase the efficiency and exploration of the solution process.
T. Sari et al [9] evaluate Scatter Search and genetic algorithm.
Resource constrained project scheduling problem which is an
NP-hard problem is solved with two algorithms. They
conclude that genetic algorithm outperformed Scatter Search.
Tao Zhang et al [10] presented development of new Scatter
Search approach for the stochastic travel- time vehicle routing
problem with simultaneous pick-ups and deliveries by
incorporating a new chance-constrained programming method.
A generic genetic algorithm approach is also developed and
used as a reference for performance comparison. The
evaluation shows the performance characteristics and
computational results of the SS solutions are superior to the
GA solutions. Oscar Ibáñez et al [11] parented a new skull-face
overlay method based on the Scatter Search algorithm. This
approach achieves faster and more robust solutions. The
performance compared to the current best performing approach
in the field of automatic skull-face overlay. The presented
approach has shown an accurate and robust performance when
solving the latter six face-skull overlay problem instances.
Ying Xu and Rong Qu [12] presented a hybrid Scatter Search
meta-heuristic to solve delay-constrained multicast routing
problems, this approach intensify the search using tabu and
variable neighborhood search then is efficient in solving the
problem in comparison with other algorithms which is descent
the search. Jue Wang et al [13] proposed novel approach to
feature selection based on rough set using Scatter Search to
improve cash flow and credit collections. The conditional
entropy is regarded as the heuristic to search the optimal
solutions. The experimental result has a superior performance
in saving the computational costs and improving classification
accuracy compared with the base classification methods.

Regarding the previous works discussed above, This paper
presents new improvement to the Scatter Search algorithm
using CS which is one of the several swarm intelligence
methods that was proposed to solve Combinatorial
Optimization problems.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

62 | P a g e

www.ijarai.thesai.org

Scatter Search Algorithm

Input: Population of the problem.

Output: The best of solutions

Initialize the population Pop using a

Diversification Generation Method.

Apply the Improvement Method to the

population.

Reference Set Update Method (Good solutions

for RefSet1 and Diversity solutions for

RefSet2).

While (itr < MaxItr) do

While (Reference set is changed) do

 Subset Generation Method

While (subset-counter < > 0) do

Solution Combination Method.

Improvement Method.

Reference Set Update Method;

End while

End while

End while

Return the best of solutions

The contribution is that the improved Scatter Search with
CS reaching to the nearest optimal solutions than original
Scatter Search.

The Scatter Search algorithm is proven successful in
travelling salesman problem [14]. The Traveling Salesman
Problem (TSP) is a classical NP-hard combinatorial problem.
Let given a graph G = (N, E), where N = {1, ..., n} is the set of
nodes and E = {1, ..., m} is the set of edges of G, which
represent the costs. The cij, associated with each edge linking
vertices, i and j. The problem consists in finding the minimal
total length Hamiltonian cycle of G. The length is calculated by
the summation of the costs of the edges in a cycle. If for all
pairs of nodes {i,j}, the cost's cij and cji are equal, then the
problem is said to be symmetric, otherwise it is said to be
asymmetric. It represents an important test ground for many
evolution algorithms [1].

The rest of the paper is organized as follows. Scatter Search
Technique is described in Section 3. Section 5 presents brief
description for CS Algorithm. The first enhanced SS is
proposed in Section 6. Section 7 includes the second enhanced
SS. In section 8. The experimental results are presented.
Finally, some concluding remarks are presented in Section 9.

III. SCATTER SEARCH TECHNIQUE

Scatter Search (SS) algorithm is one of the population-
based Metaheuristics. It works on a population of solutions,
which are stored as a set of solutions called the Reference Set.
The solutions to this set are combined in order to obtain new
ones, trying to generate each time better solutions. According
to quality and diversity criteria, Fig. 1 illustrates the basic SS
algorithm [1, 15].

The design of a SS algorithm is generally based on the
following five steps [15, 16]:

 A Diversification Generation Method to generate a

population (Pop) of diverse trial solutions within

the search space.

 An Improvement Method to transform a trial

solution into one or more enhanced trial solutions.

 A Reference Set Update Method to build and

maintain a Reference Set. The objective is to ensure

diversity while keeping high-quality solutions. For

instance, one can select RefSet1 solutions with the

best objective function and then adding RefSet2

solutions with the optimal diversity solutions

(RefSet = RefSet1 + RefSet2).

 A Subset Generation Method to operate on the

reference set, to produce several subsets of its

solutions as a basis for creating combined solutions.

 A Solution Combination Method to transform a
given subset of solutions produced by the Subset
Generation Method into one or more combined
solution vectors.

After generating the new solutions which are generated
from Solution Combination Method, these solutions will be
improved by Improvement Method, and this solution will

become a member of the reference set if one of the following
rules is satisfied [15]:

Fig. 1. Basic Scatter Search Algorithm

1) The new solution has a better objective

function value than the solution with the worst objective

value in RefSet1.

2) The new solution has a better diversity value

than the solution with the worst diversity value in

RefSet2.
The search is continued while RefSet is changed. If no

change in RefSet, the algorithm will check if the number of
iteration (itr) reach the max iteration (MaxItr) that detected by
the user, then the algorithm will display the good solution(s)
reached, else, the new population will be generated, and
RefSet1 will be added to the start of this population.

IV. CUCKOO SEARCH ALGORITHM

CS is a heuristic search algorithm which has been proposed
recently by Yang and Deb [17]. The algorithm is inspired by
the reproduction strategy of cuckoos. At the most basic level,
cuckoos lay their eggs in the nests of other host birds, which
may be of different species. The host bird may discover that
the eggs are not its own and either destroy the egg or abandon
the nest all together. This has resulted in the evolution of
cuckoo eggs which mimic the eggs of local host birds. To
apply this as an optimization tool, Yang and Deb used three
ideal rules [17, 18]:

1) Each cuckoo lays one egg, which represents a set of

solution co-ordinates, at a time and dumps it in a

random nest;

2) A fraction of the nests containing the best

eggs, or solutions, will carry over to the next

generation;

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

63 | P a g e

www.ijarai.thesai.org

Cuckoo Search via Levy Flight Algorithm

Input: Population of the problem;

Output: The best of solutions;

 Objective function f(x), x = (x1, x2, ...xd)
T

 Generate initial population of n host nests xi

 (i = 1, 2, ..., n)

 While (t <Max Generation) or (stop criterion)

Get a cuckoo randomly by Levy flight

Evaluate its quality/fitness Fi

Choose a nest among n(say,j)randomly

If (Fi > Fj) replace j by the new solution;

A fraction(pa) of worse nests are

abandoned and new ones are built;

Keep the best solutions (or nests with

quality solutions);

Rank the solutions and find the current

best;

Pass the current best solutions to the next

generation;

 End While

3) The number of nests is fixed and there is a

probability that a host can discover an alien egg. If this

happens, the host can either discard the egg or the nest

and this result in building a new nest in a new location.

Based on these three rules, the basic steps of the

Cuckoo Search (CS) can be summarized as the pseudo

code shown as in Fig. 2.

Fig. 2. Basic Cuckoo Search Algorithm

When generating new solution x
(t+1)

 for, say cuckoo i, a

Levy flight is performed

x
(t+1)

i = x(t)i + α  Levy(β) ……. (1)

where α > 0 is the step size which should be related to the
scales of the problem of interests. In most cases, we can use α

= 1. The product  means entry-wise walk while
multiplications. Levy flights essentially provide a random walk
while their random steps are drawn from a Levy Distribution
for large steps

Levy  u = t
-1- β (0 < β ≤ 2) ……… (2)

this has an infinite variance with an infinite mean. Here the
consecutive jumps/steps of a cuckoo essentially form a random
walk process which obeys a power-law step-length distribution
with a heavy tail. In addition, a fraction pa of the worst nests
can be abandoned so that new nests can be built at new
locations by random walks and mixing. The mixing of the
eggs/solutions can be performed by random permutation
according to the similarity/difference to the host eggs.

V. THE PROPOSED SCATTER CUCKOO SEARCH

The improvement to SS algorithm was accomplished by
using nature inspired swarm intelligent algorithm, which is
Cuckoo Search. Cuckoo search algorithm has proven its ability
in solving some combinatorial problems and finding the
nearest global optimum solution in reasonable time and good
performance. Because the SS algorithm is composed of several
steps, there will be several places to improve the SS algorithm.
However, by the applied experiments, Subset Generation
Method, Improvement Method and Reference Set Update
Method are the most effective steps in improving the SS
algorithm.

When we try to improve the SS algorithm, the time is the
big problem that is found in the Improvement Method. Where
the Improvement Method is applying on all populations rather
than to each new solution produced from Combination
Method, so this will take a large amount of time, this will affect
the SS algorithm as one of the metaheuristic algorithms that the
main goal of it in solving the problems is to find the optimal
solution in reasonable time.

However, when trying to improve the SS algorithm in
Reference Set Update Method in SS algorithm, the results were
good and in reasonable time. The steps of CS will take its
solutions from steps in SS, which is Reference Set Update
Method and explore more of solutions and retrieve the best
solutions reached to complete SS steps. See Fig. 3, which is
show the improved SS algorithm using CS.

In Reference Set Update Method, RefSet1 of b1 of the best
solutions and RefSet2 of b2 of diversity of solutions will be
chosen. RefSet1 will enter to the new steps that added from CS
to SS. The new steps provide a more diversity to the RefSet1
which is benefit from the neighborhood search in the cuckoo
search steps. Also the updated RefSet will contain more
enhanced solutions than the old because the substitution
operator forms the cuckoo solutions.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

64 | P a g e

www.ijarai.thesai.org

Improved Scatter Cuckoo Search Algorithm

Input: Population of the problem.

Output: The best of solutions

Initialize the population Pop using Diversification

Generation Method.

Apply the Improvement Method to the population.

Reference Set Update Method (Good solutions for

RefSet1 and Diversity solutions for RefSet2).

While (itr < MaxItr) do

 While (Reference set is changed) do

Get a cuckoo randomly by Levy flight (from

RefSet)

Evaluate its quality/fitness Fi

Choose a nest among n (say j) randomly

If (Fi > Fj) replace j by the new solution;

A fraction(pa) of worse nests are abandoned

and new ones are built;

Keep the best solutions (or nests with quality

solutions to substitute the RefSet);

Subset Generation Method

While (subset-counter < > 0) do

 Solution Combination Method.

 Improvement Method.

 Reference Set Update Method;

End while

End while

End while

Output: The best of solutions

Fig. 3. Improved Scatter Search Algorithm Using Cuckoo Search

VI. EXPERIMENTAL RESULTS

TSP is one of the main combinatorial problems that used as
test ground for most search techniques. We apply original SS
and enhanced SS algorithms to symmetric TSP as a tool to
measure the performance of the proposed enhanced SS.

SS and its improvement algorithms were implemented in
Microsoft Visual C# 2005 Express Edition and run on a
computer whose processor is Intel Core2 Duo T657064 2.0
GHz, with 2 GB main memory, 200 GB hard disk. The
algorithms were applied to symmetric instances of the
benchmark TSPLIB [20] with sizes ranging over from 26 to
1379. The stop criteria are chosen as follows:

1. If no change in Reference Set.

2. To reach a maximum number of iterations = 20.

The following parameters are chosen:

 Initial population P =100,

 The size of | RefSet1| =b1=10, the size of | RefSet2|

=b2=10 and the size of reference set | RefSet| = |

RefSet1|+| RefSet2|=20.

 The fraction (pa) of CS is 0.25.

A first experiment compared SS with it improvements.

Twenty five independent runs of each algorithm were
performed. The results are shown in Table I.

TABLE I. COMPARISON OF SS AND PROPOSED SS-CS FOR AVERAGE

OPTIMALITY

Instances
Averages

Of SS

Average of

Proposed

SS-CS

Fri26 1600 1205

Dantzig42 1990 1597

Att48 100995 83544

Eil51 1133 907

Eil101 2616 2133

KroA100 127667 109542

KroB100 124799 104989

KroC100 126565 106912

KroD100 123197 101391

KroE100 129005 109802

KroB200 269085 240008

Lin105 91707 72879

Lin318 513090 401003

Pr76 432145 289019

Pr124 537678 359097

Pr299 646297 505992

Pr439 1692199 1041839

Pr1002 6050966 4700199

Nrw1379 1344099 1001899

Berlin52 20811 14768

Bier127 520107 371892

A280 29046 18901

To see clearly the difference between SS and its
improvement see Fig. 4.

Fig. 4. Difference between SS and proposed SS-CS

Computational experiments illustrate the differences
between SS algorithm, and the improved SS algorithm. The
Nearest Optimal Solution (NOPT) for improved SS has been
indicated in Table II with bold font. The difference is
increased whenever the size of instance is increased.

Averages of fitness f(x) required to reach the nearest
optimal solutions that output from original SS, and its
improvement have been computed. In all instances, the 2
Improved SS obtained better results than original SS with little
difference in time, averages of elapsed time and difference of
the ratio between the averages of time required to reach

optimal solution in improved SS and SS is 0.33 second.

The ratio of difference was computed as follows (Averages
of Elapsed Time (sec) for improved SS - Averages of Elapsed
Time (sec) for SS).

0

2000000

4000000

6000000

Fr
i2

6

A
tt

4
8

Ei
l1

0
1

K
ro

B
1

0
0

K
ro

D
1

0
0

K
ro

B
2

0
0

Li
n

3
1

8

P
r1

2
4

P
r4

3
9

N
rw

1
3

7
9

B
ie

r1
2

7

Averages Of SS Average of improved SS-CS

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

65 | P a g e

www.ijarai.thesai.org

TABLE II. COMPARISON OF SS AND PROPOSED SS-CS FOR NOPT

Instances
NOPT in

SS

NOPT in

Proposed

SS-CS

Fri26 1379 1207

Dantzig42 1810 1195

Att48 86890 81899

Eil51 1003 858

Eil101 2423 1189

KroA100 113253 101702

KroB100 111239 101099

KroC100 113539 102081

KroD100 113245 102004

KroE100 120552 97099

KroB200 251029 230165

Lin105 82838 73997

Lin318 494126 441786

Pr76 401947 332900

Pr124 500592 402909

Pr299 618178 503128

Pr439 1611932 1470674

Pr1002 5889830 5070901

Nrw1379 1301255 1149099

Berlin52 17931 14811

Bier127 501161 417903

A280 27789 21089

Table III shows the averages of elapsed time for SS and
Improved SS algorithms for the instances in Table I.

TABLE III. AVERAGE OF ELAPSED TIME FOR SS AND PROPOSED SS-CS

Instances
Average of

elapsed time

for SS (Sec)

Average

elapsed time

for Proposed

SS-CS (Sec)

Fri26 0.48 0.51

Dantzig42 0.63 0.70

Att48 0.74 0.80

Eil51 0.61 0.69

Eil101 1.11 1.20

KroA100 1.07 1.27

KroB100 1.08 1.21

KroC100 1.07 1.29

KroD100 1.09 1.31

KroE100 1.08 1.39

KroB200 2.29 2.47

Lin105 1.19 1.41

Lin318 3.91 4.21

Pr76 0.88 1.72

Pr124 1.31 1.51

Pr299 3.64 4.29

Pr439 5.51 5.91

Pr1002 15.87 16.91

Nrw1379 23.56 24.12

Berlin52 0.64 0.78

Bier127 1.55 1.75

A280 3.38 4.49

The results of improved SS will be the best because the
added steps from CS in different steps of SS provided a good
diversity & intensification for the new and ratio of getting
NOPT solutions will be increased. The ratio of getting NOPT
solution will be increased respectively with increasing the size
of RefSet1.

In the second computational experiment we use the same
parameters in first computational experiments except for the
|RefSet1| =b1=20 where |RefSet|=|RefSet1|+|RefSet2|=30.

We compute the averages of fitness and elapsed time with
ten runs for the same instances in Table I. The results of the
second experiments are illustrated in Table IV. When we
increase the value of RefSet1 to 20, we found the results for SS
and improved SS are better than the results in Table I.

TABLE IV. COMPARISON OF SS AND PROPOSED SS-CS FOR AVERAGE

OPTIMALITY WITH REFSET1=20

Instances
Averages

Of fitness

for SS

Average of

fitness

Proposed

SS-CS

Fri26 1461 1012

Dantzig42 1751 1129

Att48 92156 73987

Eil51 1005 973

Eil101 2312 1797

KroA100 118654 97341

KroB100 115987 99762

KroC100 114982 98967

KroD100 111707 97521

KroE100 117233 97939

KroB200 251087 113998

Lin105 84590 71017

Lin318 475691 347531

Pr76 379328 258023

Pr124 500807 401812

Pr299 601011 491763

Pr439 1562181 1170739

Pr1002 5761184 4348761

Nrw1379 1104810 914361

Berlin52 17981 12451

Bier127 478521 317659

A280 27234 19963

To see clearly the difference between SS and its
improvement with RefSet1=20 see Fig. 5.

Fig. 4. Difference between SS and proposed SS-CS with RefSet1=20

In spite of the results are better with RefSet1=20, there is a
still difference in time. This difference is caused by the new
size of RefSet1which increase the exploration and
intensification for new solutions. Table V shows the NOPT
results of SS, SS-CS with RefSet1=20. Table VI shows the
elapsed time for SS and improved SS with RefSet1=20. The

increased time where RefSet1=20 is 1.2 second for SS-CS.

0
2000000
4000000
6000000

In
st

an
ce

s

D
an

tz
ig
…

Ei
l5

1

K
ro

A
1

0
0

K
ro

C
1

0
0

K
ro

E1
0

0

Li
n

1
0

5

P
r7

6

P
r2

9
9

P
r1

0
0

2

B
er

lin
5

2

Averages Of fitness for SS

Average of fitness improved SS-CS

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

66 | P a g e

www.ijarai.thesai.org

TABLE V. COMPARISON OF SS AND THE PROPOSED SS-CS FOR NOPT

WITH REFSET1=20

Instances
NOPT in

SS

NOPT in

Proposed

SS-CS

Fri26 1364 1108

Dantzig42 1689 1195

Att48 84041 79865

Eil51 909 801

Eil101 2091 1009

KroA100 112772 98124

KroB100 114654 98221

KroC100 113124 98722

KroD100 110012 96912

KroE100 114789 93582

KroB200 231314 211133

Lin105 82139 70997

Lin318 467549 400755

Pr76 373254 300991

Pr124 498982 400001

Pr299 608723 490074

Pr439 1631578 1410633

Pr1002 5902741 5000190

Nrw1379 1298711 1079812

Berlin52 17172 12018

Bier127 480941 400901

A280 26576 19754

In the second experiments, for instances with large size
such as Lin318, Pr299, Pr439, Pr1002 and A280 we noticed
that the average of elapsed time with improved SS is larger
than original SS with approximately 1 second only . This case
can lead us to the fact that improved SS with large instances
can reach to the best NOPT solution with a very reasonable
time than original SS.

In general, comparing the time with the NOPT solutions
isn't important for those who are looking for NOPT solutions,
and they aren't cared about the time.

TABLE VI. AVERAGE OF ELAPSED TIME FOR SS AND PROPOSED SS-CS

WITH REFSET1=20

instances
Average of

elapsed time

for SS (Sec)

Average elapsed

time for Proposed

SS-CS (Sec)

Fri26 1.27 1.40

Dantzig42 1.67 1.92

Att48 1.96 2.20

Eil51 1.61 1.85

Eil101 2.93 3.32

KroA100 2.83 3.49

KroB100 2.86 3.31

KroC100 2.83 3.55

KroD100 2.89 3.60

KroE100 2.86 3.82

KroB200 6.06 6.79

Lin105 3.15 3.88

Lin318 10.36 11.15

Pr76 2.33 4.72

Pr124 3.47 4.15

Pr299 9.65 10.89

Pr439 14.60 15.85

Pr1002 42.05 43.34

Nrw1379 62.43 66.33

Berlin52 1.70 2.14

Bier127 4.11 4.82

A280 8.96 10.05

In third experiment we compare the NOPTs of improved
SS in Table VII and VIII with results obtained by other
algorithms. We compute the average deviation for the output
solutions SD = 100(NOPT – opt) / opt, where NOPT is the
Nearest Optimal Solution output from Improved SS and the opt
is the optimal solution taken from TSPLIB [20].

TABLE VII. RESULTS OF IMPROVED SS ARE BETTER THAN SOME

ALGORITHMS

Instances

Optimal

in

TSPLIB

in [20]

SD for

NOPT for

Proposed

SS-CS

SD for

optimal

solutions

in[19]

SD for

optimal

solutions

in[21]

Fri26 937 28.81 - 34.47

Dantzig42 699 70.95 - 119.45

Att48 10628 670.59 - 573.96

Eil51 426 101.40 - 125.35

Eil101 629 89.03 - 259.61

KroA100 21282 377.87 808.51 378.78

KroB100 22141 356.61 - 347.35

KroC100 20749 391.98 854.24 389.84

KroD100 21294 379.02 - 350.37

KroE100 22068 339.99 - 345.15

KroB200 29437 681.89 828.21 662.59

Lin105 14379 414.61 835.15 393.62

Lin318 41345 968.53 880.41 962.99

Pr76 108159 207.78 744.56 216.44

Pr124 59030 582.54 801.44 599.80

Pr299 48191 944.02 894.60 991.79

Pr439 107217 1271.68 882.16 1209.28

Pr1002 259045 1857.53 927.95 1910.50

Nrw1379 56638 1928.84 891.17 2105.92

Berlin52 7542 96.38 - 127.45

Bier127 118282 253.31 724.70 259.06

A280 2579 717.72 872.48 900.34

TABLE VIII. RESULTS OF IMPROVED SS ARE FAR FROM RESULTS OF SOME

OTHER ALGORITHMS

Instances

SD for

NOPT for

Proposed

SS-CS

SD for

optimal

solutions

in[22]

SD for

optimal

solutions

in[23]

Fri26 28.81 0 0

Dantzig42 70.95 0 0

Att48 670.59 0 0

Eil51 101.40 0 0

Eil101 89.03 0.107 0

KroA100 377.87 0 0

KroB100 356.61 0.036 0

KroC100 391.98 0 0

KroD100 379.02 0.019 0

KroE100 339.99 0.001 0

KroB200 681.89 0.509 0

Lin105 414.61 0 0

Lin318 968.53 0.769 0.29

Pr76 207.78 0 0

Pr124 582.54 0 0

Pr299 944.02 0.066 0.01

Pr439 1271.68 0.572 0.18

Pr1002 1857.53 - -

Nrw1379 1928.84 - -

Berlin52 96.38 0 0

Bier127 253.31 0.064 0

A280 717.72 0.305 0

Table VII shows how the results of improved SS-CS are
better than some results such as in [19] and [21]. Also Table

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

67 | P a g e

www.ijarai.thesai.org

VIII shows how the improved SS-CS results are far from other
results of other algorithms such as [22] and [23].

VII. CONCLUSIONS

This paper presented improved SS algorithms. The
improvement provides SS with random exploration for search
space of problem and more of diversity and intensification for
promising solutions based on the Cuckoo search algorithm.
From experimental results, the average of fitness value for
improved SS algorithms are better than original SS algorithm,
the improvement in the value of average fitness is 23.2%
comparing with original SS. From experimental results, the
2improved SS algorithms are better than original SS algorithm
in reaching to nearest optimal solutions.

The elapsed time for the improved SS is larger than the
elapsed time for original SS in a reasonable value. The
difference in elapsed time to reach Nearest Optimal Solution
isn't a problem for those whose look for optimal solutions, and
they aren't cared about the time. In general, the ratio of
difference isn't very large. Also, the optimal solution of the
improved SS is better than some algorithms but is far away
from some others.

For future work, the improved SS algorithm for TSP give
an enhanced results comparing with the original SS but not
good results comparing with most dependent algorithms, so it
is reasonable to improve the SS & other improved SS with a
mix techniques based on more than one improved steps to
obtain the good results.

REFERENCES

[1] El-Ghazali Talbi, ―Metaheuristics from Design to Implementation,‖John
Wiley & Sons, 2009.

[2] F. Glover, Gary A. Kochenberger, ―Handbook of Metaheuristics,‖
Kluwer Academic, 2003.

[3] Dorigo Mario, Stützle Thomas,―Ant Colony Optimization‖. MIT Press,
2004.

[4] Eberhart, R., Y. Shi, and J. Kennedy, ―Swarm Intelligence,‖ Morgan
Kaufmann, San Francisco, 2001.

[5] Ali M. Sagheer, Ahmed T. Sadiq and Mohammed S. Ibrahim,
―Improvement of Scatter Search Using Bees Algorithm‖, Proceedings of
the 6th International Conference on Signal Processing and
Communication Systems ICSPCS2012, Gold Coast, Australia, 12 - 14
December, 2012.

[6] Juan José Pantrigo, Antonio S. Montemayor, Raúl Cabido, " Scatter
Search Particle Filter for 2D Real-Time Hands and Face Tracking",
Springer, 2005.

[7] Jose A. Egea, Emmanuel Vazquez, Julio R. Banga, Rafael Martí,"
Improved scatter search for the global optimization of computationally

expensive dynamic models", Journal of Global Optimization, vol. 43,
pp. 175 – 190, 2009.

[8] Saber M. El-Sayed, Waiel F. Abd EL-Wahed, Nabil A. Ismail, " A
Hybrid Genetic Scatter Search Algorithm for Solving Optimization
Problems", Faculty of Computers and Informatics, Operations Research
Department, Egypt, 2008.

[9] T. Sari, V. Cakir, S. Kilic and E. Ece, Evaluation of Scatter Search and
Genetic Algorithm at Resource Constrained Project Scheduling
Problems, INES 2011 : 15th International Conference on Intelligent
Engineering Systems, June 23–25, 2011, Poprad, Slovakia.

[10] Tao Zhang, W.A.Chaovalitwongse, YuejieZhang, Scatter search fort
hestochastic travel-time vehicle routing problemwith simultaneous pick-
ups and deliveries, Elsevier Ltd., Expert Systems with Applications 39
(2012) 6123–6128.

[11] Oscar Ibáñez, Oscar Cordón, Sergio Damas, José Santamaría, An
advanced scatter search design for skull-face overlay in craniofacial
superimposition, Elsevier Ltd., Expert Systems with Applications 39
(2012) 1459–1473.

[12] Ying Xu and Rong Qu ,A hybrid scatter search meta-heuristic for delay-
constrained, multicast routing problems, Springer Science+Business
Media, LLC 2010, Appl Intell (2012) 36:229–241.

[13] Jue Wang, Abdel-Rahman Hedar, Shouyang Wang, Jian Ma, Rough set
andscatter search metaheuristic based feature selection for credit
scoring, Elsevier Ltd., Expert Systems with Applications 39 (2012)
6123–6128.

[14] M. S. Geetha Devasena and M. L. Valarmathi, Meta Heuristic Search
Technique for Dynamic Test Case Generation, International Journal of
Computer Applications (0975 – 8887) Volume 39– No.12, February
2012.

[15] Laguna, M. and R. Martí, ―Scatter Search: Methodology and
Implementations in C,‖ Kluwer Academic Press, 2003.

[16] Fred Glove, Manuel Laguna, ―Fundamentals of Scatter Search and Path
Relinking,‖ Control and Cybernetics, Volume 29, Number 3, pp. 653-
684, 2000.

[17] X. S. Yang and S. Deb, "Cuckoo search via Lévy flights". World
Congress on Nature & Biologically Inspired Computing (NaBIC 2009).
IEEE Publications. pp. 210–214, December, 2009.

[18] H. Zheng and Y. Zhou, ―A Novel Cuckoo Search Optimization
Algorithm Base on Gauss Distribution‖, Journal of Computational
Information Systems 8: 10, 4193–4200, 2012.

[19] Pham D.T., Ghanbarzadeh A., Koç E., Otri S., Rahim S., and M.Zaidi
―The Bees Algorithm - A Novel Tool for Complex Optimisation
Problems,‖ Proceedings of IPROMS 2006 Conference, pp.454-461.

[20] Reinelt, G.: TSPLIB, 1995. Available: http://www.iwr.uni
heidelberg.de/iwr/comopt/ software/TSPLIB95/

[21] S. B. Liu, K. M. Ng, and H. L. Ong, ―A New Heuristic Algorithm for
the Classical Symmetric Traveling Salesman Problem,‖ World Academy
of Science, Engineering and Technology, pp. 269-270, 2007.

[22] Jens Gottlieb and Günther R. Raidl, ―Evolutionary Computation in
Combinatorial Optimization,‖ Lecture Notes in Computer Science 3906,
Springer-Verlag, pp. 44-46, 2006.

[23] Gutin, G., Punnen, A. P. (Ed.), ―Traveling Salesman Problem and Its
Variations,‖ Kluwer Academic Publishers (2002).

http://conference.iproms.org/the_bees_algorithm_a_novel_tool_for_complex_optimisation_problems
http://conference.iproms.org/the_bees_algorithm_a_novel_tool_for_complex_optimisation_problems
http://conference.iproms.org/iproms_2006_0

