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Abstract— Surrogate assisted evolutionary algorithms (EA) 

are rapidly gaining popularity where applications of EA in 

complex real world problem domains are concerned. Although 

EAs are powerful global optimizers, finding optimal solution to 

complex high dimensional, multimodal problems often require 

very expensive fitness function evaluations. Needless to say, this 

could brand any population-based iterative optimization 

technique to be the most crippling choice to handle such 

problems. Use of approximate model or surrogates provides a 

much cheaper option. However, naturally this cheaper option 

comes with its own price! This paper discusses some of the key 

issues involved with use of approximation in evolutionary 

algorithm, possible best practices and solutions. Answers to the 

following questions have been sought:  what type of fitness 

approximation to be used; which approximation model to use; 

how to integrate the approximation model in EA; how much 
approximation to use; and how to ensure reliable approximation. 
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I. INTRODUCTION 

Evolutionary algorithms (EAs) have long been accepted as 
powerful search algorithms, with numerous applications in 
various science and engineering problem domains. 
Evolutionary algorithms deserve a special mention as powerful 
global optimizers. Also, evolutionary algorithms are found to 
outperform conventional optimization algorithms in problem 
domains involving, discontinuous, non-differential, multi-
modal, noisy, and not well-defined problems. However, many 
real world optimization problems including engineering design 
optimization often involve computationally very expensive 
function evaluations. This makes it impractical for a 
population-based iterative search technique such as 
Evolutionary Algorithm (EA) to be used in such problem 
domains. The runtime for a single function evaluation, in such 
problems, could be in the range from a fraction of a second to 
hours of supercomputer time. A viable alternative is to use 
approximation instead of actual function evaluation to 
substantially reduce the computation time [39, 50 and 51]. 

Use of surrogates to speed up optimization is not a new 
concept [6-15]. The earliest trials date back to the sixties. The 
most widely used models being Response Surface 
Methodology [47], Krieging models [55] and artificial neural 
network models [16]. In the multidisciplinary optimisation 
(MDO) community, primarily response surface analysis and 
polynomial fitting techniques are used to build the approximate 
models [26, 59]. These models work well when single point 
traditional gradient-based optimisation methods are used. 

However, they are not well suited for high dimensional 
multimodal problems as they generally carry out approximation 
using simple quadratic models. In another approach, multilevel 
search strategies are developed using special relationship 
between the approximate and the actual model. An interesting 
class of such models focuses on having many islands using low 
accuracy/cheap evaluation models with small number of finite 
elements that progressively propagate individuals to fewer 
islands using more accurate but expensive evaluations [60]. As 
is observed in [32], this approach may suffer from lower 
complexity, cheap islands having false optima whose fitness 
values are higher than those in the higher complexity, 
expensive islands. Rasheed et al. in [50, 51], uses a method of 
maintaining a large sample of points divided into clusters. 
Least square quadratic approximations are periodically formed 
of the entire sample as well as the big clusters. Problem of 
unevaluable points was taken into account as a design aspect. 
However, it is only logical to accept that true evaluation should 
be used along with approximation for reliable results in most 
practical situations. Another approach using population 
clustering is that of fitness imitation [32]. Here, the population 
is clustered into several groups and true evaluation is done only 
for the cluster representative [39]. The fitness value of other 
members of the same cluster is estimated by a distance 
measure. The method may be too simplistic to be reliable, 
where the population landscape is a complex, multimodal one. 

Jin et al. in [36 and 34] analysed the convergence property 
of approximate fitness-based evolutionary algorithm. It has 
been observed that incorrect convergence can occur due to 
false optima introduced by approximate models. Two 
controlled evolution strategies have been introduced. In this 
approach, new solutions (offspring) can be (pre)-evaluated by 
the model. The (pre)-evaluation can be used to indicate 
promising solutions. It is not clear however, how to decide on 
the optimal fraction of the new individuals for which true 
evaluation should be done [17]. In an alternative approach, the 
optimum is first searched on the model. The obtained optimum 
is then evaluated on the objective function and added to the 
training data of the model [52, 58, and 17]. Yet in another 
approach as proposed in [36], a regularization technique is used 
to eliminate false minima. 

Although using regression and interpolation tools such as 
least square regression, back propagating artificial neural 
network, response surface models, and so on are effective 
means for building the approximate models, accuracy of the 
result is a major risk involved in using meta-models to replace 
actual function evaluation [32, 36, 34 and 59]. Fig. 3 depicts 
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how levels of fitness evaluations influence computational 
expense and accuracy.. 

Apart from the type of the meta-model generator used, the 
concepts of using approximate model vary (i) in approximation 
strategies i.e., what exactly is approximated, (ii) in the model 
integration mechanism used, and (iii) in model management 
techniques used [32]. This paper discusses some of these 
crucial aspects of surrogate assisted evolutionary algorithms. 

The rest of the paper is organised as follows. Section II 
briefly outlines the key issues involved with surrogate assisted 
evolutionary algorithms; Section III presents the different 
approximation strategies or types of approximation; Section IV 
briefly mentions the commonly used approximation model 
generation tools; while Section V discusses the approximation 
model integration mechanisms. Section VI and Section VII 
respectively discusses how much approximation to be used and 
the issue of quality assurance while using meta-models. Section 
VIII presents some concluding remarks. 

II. ISSUES INVOLVED WITH SURROGATE ASSISTED EA 

Replacing actual analysis or evaluation by approximate 
model involves risks and several issues need to be addressed in 
employing fitness approximations in evolutionary computation 
(Fig. 1). Of the several issues, foremost are: 

- What type of fitness approximation to be used; 

- Which approximation model to use; 

- How to integrate the approximation model in EA; 

- How much approximation to use; 

- How to ensure reliable approximation. 

Fitness evaluation can be performed by experimental 
evaluation, complete computational simulation, simplified 
computational simulation as well as by approximation with 
surrogates or meta-models; while experimental evaluation can 
be treated as the true fitness value of a given candidate 
solution. The tradeoff between computational expense and 
accuracy is as depicted in Fig. 3. Quite naturally, actual 
experimental evaluation of fitness gives the highest accuracy 
but incurs the highest computational cost as well. Fitness 
evaluation by approximation with surrogates is order of 
magnitude cheaper compared to the other techniques; but, it 
also results in lowest accuracy. 

Due to inadequate amount of data, ill sampling and the high 
dimensionality of data sets (input space), it is often very 
difficult to obtain an accurate global approximation of the 
original fitness function. Hence, the approximate model should 
be used together with the true fitness function. In most cases, 
the original fitness function is available, although it is 
computationally very expensive. Therefore, it is only feasible 
to use the original fitness function sparingly. The mechanism 
controlling how much of expensive evaluation should be 
incorporated and in what way, is known as model management 
in conventional optimization [21] or evolution control in 
evolutionary computation literature [41, 34]. Also, considering 
the limited number of sample points that can be available, the 
quality of the approximate model could be improved by 

intelligent model selection, use of active data sampling and on-
line and off-line weighting, selection of training method and 
selection of error measures.  

Some of these issues related to using approximate model or 
surrogate in evolutionary algorithm are detailed in the 
following sections. 

III. TYPES OF APPROXIMATION 

There are various strategies to use approximation in 
optimization problems. Two such more traditional approaches 
are [32]: problem approximation and functional approximation. 
A number of other specialized approaches have been 
implemented for evolutionary fitness evaluation. 

A. Problem Approximation 

In this approach, the statement of the problem itself is 
replaced by a reduced one that is easier to solve. One such 
example is reported in [5], where, in CFD simulations, the fluid 
dynamics are described with three-dimensional (3D) Navier-
Stokes equations with a turbulence model. Subjected to certain 
constraints, the 3D flow field can be solved by 2D 
computations, which is computationally less expensive. Some 
other examples are reported in [24, 3]. 

B. Functional Approximation 

As the name suggests, in this approach, an alternate and 
explicit expression is constructed for the objective function, for 
the purpose of reducing the cost of evaluation. 

The surrogate assisted EA techniques reported in [6,8, 10, 
12 and 14] uses approximate models to evaluate fitness to 
reduce the number of actual fitness evaluation. Refer to [32] for 
more examples on the functional approximation technique. 

C. EA Specififc Approximation 

This approach is specific for evolutionary algorithms and 
utilizes the algorithm’s structural and functional aspects. 
Fitness inheritance is an example of this technique. In this 
approach, fitness value of the offspring is estimated from the 
fitness value of the parents to reduce actual fitness evaluations. 
In an alternative approach called fitness imitation, the 
individuals are clustered into several groups. Then, only the 
representative individual of the clusters are evaluated using 
expensive fitness evaluation. The fitness values of the 
remaining individuals in the cluster are estimated based on the 
actual fitness value of the representative individual. Fitness 
inheritance/ fitness imitation has been used in several 
researches [66, 56, 18 and 44]. 

Which of the above three types of approximation should be 
used in a specific case, naturally depends on the actual intent of 
using surrogates in the first place.  
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Fig. 1. The issues involved with using approximation in evolutionary 

algorithm. 

IV. APPROXIMATION MODEL GENERATION TOOLS 

Approximate models or meta-models in this context are 
models that are developed to approximate computationally 
expensive simulation codes. Functional approximation 
modeling generally involves finding a set of parameters for a 
given model to find the good, best or perfect fit between a 
given finite sampling of values of independent variables and 
associated values of dependent variables [32]. A wide variety 
of empirical tools are used to generate functional 
approximation models. Some of the commonly used ones are 

polynomial interpolation, DACE (design and analysis of 
computer model) or kriging model, artificial neural networks, 
regression spline etc.  An important characteristic of a meta 
model generator is generalization. Generalization is the ability 
to map or predict values that were not considered in the 
training set while developing the model. The least square 
method (LSM) performs efficiently only within a small trust 
region and fails in terms of generalization particularly for 
complex polynomials with discontinuity in the target function. 
However, for low dimensional problems with real valued 
parameters, the polynomial regression models often outperform 
the connectionist methods. The connectionist models, like the 
neural networks perform better for high dimensional problems. 
Unlike the LSM, the kriging models are capable of capturing 
multiple local extrema, but at the expense of higher 
computational cost. 

It is hard to compare the performances of the different 
model approximators as performance can be problem 
dependent and also there are several criteria that need to be 
considered. However, the most important ones are the 
accuracy, both on the training and the test data, computational 
complexity and transparency [32]. One of the serious problems 
is the introduction of false optima. A desirable tradeoff may be 
that of lower approximation accuracy if the model is used in 
global optimization. Some methods for prevention of false 
minima in neural network are available. 

In [32] Jin has suggested the following general rules for 
model selection. It is recommended to implement first a simple 
approximate model, for example, a lower order polynomial 
model to see if the given samples can be fitted with reasonable 
accuracy. If it fails a model with higher complexity such as 
higher order polynomials or neural network models should be 
considered, However, for high dimensional problems with 
small number of samples, a neural network model is generally 
preferable. In case of neural network models, in particular a 
multilayer perceptrons network, the model complexity should 
be controlled to avoid over-fitting. The gradient descent based 
method might lead to slow convergence in some cases. The 
RBF networks show superior performance both in terms of 
accuracy and training speed for some problems. Support vector 
machine based approximators, on the other hand, are known to 
provide robust performance in high dimensional problems with 
fewer samples. 

For further information on non EA specific surrogate 
assisted design and analysis, see [1, 29]. 

 

Fig. 2. An example of a false minimum in the approximate model. The solid 

curve denotes the original function and the dashed curve denotes its 
approximation. 
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V. APPROXIMATION MODEL INTEGRATION MECHANISMS 

Integration of approximate model in EA can be done at 
various levels; e.g., population initialization, with genetic 
operators such as recombination and mutation, migration in 
multi-population architecture and so on. The major ones are as 
discussed below.  

- Fitness approximation has been used to initialize 
population and to guide genetic operators 
(recombination and mutation) in [4, 50 and 2]. Using 
approximation only for initialization and for guiding 
genetic operators is expected to reduce the associated 
risk of using approximate model as such operations are 
required only occasionally. However, reduction in 
actual fitness evaluation may not be that significant 
[32].  

- Yet another approach directly uses approximation 
based fitness evaluation in order to reduce the number 
of actual fitness evaluations. This approach of 
incorporation of approximation is of interest to us in 
connection with the frameworks proposed in this 
paper. Different approaches have been proposed with 
varied degrees of success. Some of the works are 
reported in [42, 46, 52, 34; 36]. Application to 
multiobjective optimization has been reported in [23, 
48 and 49]. Different approximation model generators 
and approximation control to some degree have been 
proposed. 

- Approximation with migration may be implemented by 
maintaining sub-populations at different levels of 
approximation and allowing migration of individuals 
from one level of sub-population to another based on 
pre-defined rules. This has been implemented in [60, 
57 and 22]. 

VI. HOW MUCH APPROXIMATION? 

In the context of reducing the number of actual fitness 
evaluations, among the various approaches to incorporate 
approximate models (see Section IV for description of the 
integration mechanisms), using approximate models for fitness 
evaluations is most effective. In the real world it is quite 
common not to have any clear analytical fitness function to 
accurately compute the fitness of a candidate solution. 
Depending on the level of estimation used, the compromise 
between accuracy and computational cost is achieved (see Fig. 
3). 

Nonetheless, any mechanism to use approximation in EA 
should try to achieve the following: 

- The evolutionary algorithm should converge to the 
global optimum or at least to a near optimum of the 
original function. However, in reality it is very difficult 
to construct such an approximate model due to high 
dimensionality of the problem, inadequate number of 
training samples and poor distribution of the candidate 
solutions in the search space. It is obvious that with 
some form of approximation control, it is very likely 
that the evolutionary algorithm will converge to a false 

optimum introduced by the approximate model.  See 
Fig.2 for an example. 

- The overhead of maintaining the approximation 
model/models should be kept low so that the expenses 
do not outweigh the benefits. 

Using true fitness evaluation along with approximation is 
thus extremely important to achieve reliable performance by 
the surrogate assisted EA mechanism. This can be regarded as 
the issue of model management or evolution control [41, 34]. 

In the simplest form of model management true function 
evaluation is not used at all [37, 53]. This is feasible only if the 
approximate model is considered to be of high fidelity. In most 
cases, however, evolution control or model management must 
be used. Some of the popular ones are as follows. 

- Surrogates may be used in some of the generations 
only instead of in all generations of the evolutionary 
process. Some of the examples are [40, 36 and 20]. 

- In another approach, surrogates may be used for 
specific individuals in a generation/ generations only 
instead of for the entire population. See [27, 36]. 

- In yet another approach, more than one sub-population 
may co-evolve using their own surrogate model for 
fitness evaluation. Migration from one such population 
to another can occur. 

- Specialized model management methods may be 
necessary for some surrogated assisted evolutionary 
algorithms [64, 65 and 54]. [65] uses the method for 
single objective optimization and [54] for multi-
objective optimization. Adjusting the frequency of 
evolution control according to the reliability of the 
approximate model seems logical [33]. Along with a 
generation-based approach, [48] has suggested a 
method to adjust the frequency of evolution control 
based on the trust region framework [21]. 

- Relatively recently, Schmidt and Lipson [43] proposed 
the use of co-evolution technique to address issues 
such as accuracy of fitness predictor and level of 
approximation. 

Refer to [31] for details on single and multiple surrogate 
management techniques. 

VII. QUALITY ASSURANCE 

Quality assurance is impacted by among other factors, 
sample selection, approximator selection, and selection of 
surrogate evaluation metrics. In this section we briefly cover 
mainly sample and evaluation metric selection issues. 

If an approximate model is used for evolutionary 
computation, both offline and online training will be involved 
if the evolution is to be controlled. In this context, offline 
learning denotes the training process before the model is used 
in evolutionary computation. On the other hand, on-line 
learning denotes adjusting or rebuilding the model during the 
evolutionary process. Usually, the samples for offline learning 
can be generated using Monte-Carlo method; however, it has 
been shown in different research areas that active selection 
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Fig. 3. Levels of fitness evaluations and their respective tradeoffs between 

computational expense and accuracy. 

[45, 38] of the samples will improve the model quality 
significantly. During on-line learning, data selection is strongly 
related to the search process [35]. 

In Section IV we have briefly mentioned about a number of 
relatively popular approximators and have identified some of 
their comparative functional aspects. However, it may be noted 
that selection of approximator is also problem dependent 
among other factors. 

Estimating the model quality by calculating the average 
approximation error after re-evaluation has been used in some 
research [62]. [25] has suggested a mechanism for adapting the 
number of individuals to be evaluated using surrogates. 
However, there is no clear indication as to which surrogate 
evaluation metric may be advantageous. 

Approximation accuracy is naturally a desirable criterion 
for effective use of surrogates. One of the main difficulties in 
achieving approximation accuracy is the high dimensionality of 
the design space in case of most real world problems. [63] and 
[65] have used dimension reduction techniques to build the 
surrogate in a lower dimensional space to overcome this 
problem. 

VIII. CONCLUSIONS 

Fitness approximation in evolutionary computation is a 
research area with major potential; but, it has not yet attracted 
sufficient attention in the evolutionary computation 
community. In the preceding sections we have presented 
various issues and aspects of use of approximation in EA. 
However, several issues still remain to be addressed for 
approximation based EA to be successful. Below are some of 
such issues: 

- Theoretical research as to how EA can benefit from use 
of surrogates is lacking. Without a theoretical 
background it is hard to satisfactorily answer many of 
the issues raised in this paper. 

- Surrogates have been used in local as well global 
search mechanisms in various researches. However, 

adequate comparative study is not available to 
ascertain which one is more beneficial. 

- A number of different evolution control or model 
management techniques are available in the literature, 
However, still no concrete logic exists that can guide 
the choice of a particular model management technique 
over another. 

- Research is lacking in the area of surrogate assisted 
evolutionary algorithm (or other metaheuristics) for 
combinatorial optimization problems that are 
computationally intensive.  

- Further research is required in the area of surrogate 
assisted EA for problem domains involving variable 
input dimensions and dynamic optimization. 

Majority of the researches available in the literature uses 
benchmark test functions to establish the efficacy of the 
proposed methods involving surrogate assisted evolutionary 
algorithms. However, it is important to test these methods on 
real world expensive optimization problems to realize their true 
potential or lack thereof. 
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