
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

29 | P a g e
www.ijarai.thesai.org

A Simulated Multiagent-Based Architecture for

Intrusion Detection System

Onashoga, S. Adebukola, Ajayi, O. Bamidele and Akinwale, A. Taofik

Department of Computer Science,

Federal University of Agriculture, Abeokuta Ogun State Nigeria.

ABSTRACT—In this work, a Multiagent-based architecture

for Intrusion Detection System (MIDS) is proposed to overcome

the shortcoming of current Mobile Agent-based Intrusion

Detection System. MIDS is divided into three major phases

namely: Data gathering, Detection and the Response phases. The

data gathering stage involves data collection based on the

features in the distributed system and profiling. The data

collection components are distributed on both host and network.

Closed Pattern Mining (CPM) algorithm is introduced for

profiling users’ activities in network database. The CPM

algorithm is built on the concept of Frequent Pattern-growth

algorithm by mining a prefix-tree called CPM-tree, which

contains only the closed itemsets and its associated support count.

According to the administrator’s specified thresholds, CPM-tree

maintains only closed patterns online and incrementally outputs

the current closed frequent pattern of users’ activities in real

time. MIDS makes use of mobile and static agents to carry out

the functions of intrusion detection. Each of these agents is built

with rule-based reasoning to autonomously detect intrusions.

Java 1.1.8 is chosen as the implementation language and IBM’s

Java based mobile agent framework, Aglet 1.0.3 as the platform

for running the mobile and static agents. In order to test the

robustness of the system, a real-time simulation is carried out on

University of Agriculture, Abeokuta (UNAAB) network dataset

and the results showed an accuracy of 99.94%, False Positive

Rate (FPR) of 0.13% and False Negative Rate (FNR) of 0.04%.

This shows an improved performance of MIDS when compared

with other known MA-IDSs.

Keywords- MIDS; CPM; Pattern-growth; Profiling

I. INTRODUCTION

Computer networks, including the Internet, have grown in
both size and complexity. The services they offer made them
the main means to exchange data and optimal environment for
e-businesses. They have consequently become the means to
network attacks. Intrusion detection technology provides
reasonable supplement to the intrusion prevention systems
such as firewalls, audit trails, system log etc. It has been a
research focus for more than two decades from the publication
of John Anderson’s paper in 1980 (Anderson, 1980). Intrusion
Detection Systems (IDSs) detect some set of intrusions and
execute some predetermined actions when an intrusion is
detected (Wang, 2006). Intrusion Detection has been achieved
by following two different strategies of analysis.

- Anomaly detection: relies on models of "normal"
behaviour of a computer system. Behaviour profiles maybe
focused on users, applications or networks. Anomaly detection
compares the defined profiles against the actual usage

patterns to detect "abnormal" activity patterns. These patterns
will be considered as intrusions.

- Policy detection: relies on a set of attack descriptions

called attack signatures (Sasikumar & Manjula, 2011).

A Distributed IDS consists of multiple intrusion detection

systems over a large network, all of which communicate with
each other, or with a central server that facilitates advanced
network monitoring, incident analysis, and inside attack data.
Wrapping each of the components in IDS as mobile agent is
aimed at effective intrusion detection in distributed
environment. Intrusion detection in distributed environment
requires data gathering, analysis and detection at every unit of
the network and it has been established that mobile agent
would perform well with this task (Sodiya, 2006). Agent is an
entity being able to accomplish some work without manual
intervention and supervision in certain condition and is able to
migrate from host to host on a network under its own control.
The agent chooses when and to where it will migrate and may
interrupt its own execution and continue elsewhere on the
network. An agent could also be static, that is, resides
permanently on a platform performing one task or the other. In
a distributed IDS system, each agent shares its data with other
agents in the system (Oriola et. al, 2012).

Mobile Agents are considered to be an effective choice for
many applications for several reasons. The ability for mobile
agents to sense their environments and react dynamically to
changes is useful especially in intrusion detection. As mobile
agents, the IDS can evade attacks. The constant movement of
these agents in a network among multiple hosts makes it
difficult for an attacker to locate and disable them. A
Multiagent system is a system in which several interacting,
intelligent agents pursue some sets of goal, or perform some
sets of tasks. Multiple Agent system can adopt the
characteristic of mobility to carry out activities in a flexible
and intelligent manner that is responsive to changes in the
environment (Bradshaw, 1997). It consists of a number of
agents, which interact with one another, typically by
exchanging messages through some computer network
infrastructure (Wooldridge, 2002).

This paper makes an attempt to propose solutions to
having a better detection rate and to actualize the real
implementation of a Multiagent system for intrusion detection
in an environment by introducing an intelligent and flexible
MultiAgent archtitecture for IDS (MIDS). MIDS is designed
based on the following interests:

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

30 | P a g e
www.ijarai.thesai.org

a) Improving time-to-detection of MA-IDS.

b) Provide an architecture where real time attacks are

efficiently detected.

c) Aims at reducing effectively, false alarm rates mining

the closed frequent patterns of users’ activities (Onashoga, et.

al, 2009) for profiling.

d) Since the role of IDS is to monitor and ensure

security of the network, the MA-IDS itself is a primary target

of attacks. It then becomes important for IDS agents to

operate in hostile environment and still exhibits a high degree

of fault-tolerance and performance.

The rest of the paper is organized as follows: Section 2
reviews past researches that have been done in the area of
mobile agent based intrusion detection system. Section 3
details on the proposed architecture and its considerations for
achieving a better detection rate, while section 4 describes the
testbed implementation procedures and its performance
analysis. Section 5 concludes the work.

II. EXISTING RELATED RESEARCHES

Herrero & Corchado (2009), Kamaruzaman et. al. (2011)
and Onashoga et. al. (2009) reviewed some related work on
MA-IDSs with focus on the tasks, architecture and
implementation of agents. In contrast, an extensive critical
review of MA-IDS with focus on their architecture,
techniques, strengths and weaknesses is done in this paper.
This section details the reviews of recent related researches.

Sasikumar & Manjula (2012) proposed a 3-layer fault
tolerant architecture. The architecture consists of Host and Net
agents at the first layer, the mobile agents at the second layer
and the Decision-making and Replication agents in layer 3.
The Host Agent’s function is to protect the host. When
suspicious activities can’t be decided, the Host Agent
generates an Intrusion Detection event and transmits it to
layer2. The role of the Net Agent is to detect network
intrusions. It supervises the network traffic, records all
suspected events in a data base and responds intrusions. It also
installs mobile agent platform on it. The mobile agent is
responsible for collecting information of an attack from the
Host Agents or Net Agents for further analysis in layer3. The
Decision-making Agent analyses the data collected by the
mobile agent and passes the control to Replication agent, who
in turn is responsible for replication and recovery
management. The fault tolerance reported is the data analysis
by agent and the pass of control to the replication agent. The
techniques used is not reported. Also the security of the agents
is not considered.

Oriola et. al. (2012) proposed a peer to peer architecture
that integrates the concept of multiagent system and data
mining. The architecture proposed has 3 levels namely: The
first level which is the core of the system. It is at this level that
the interaction and integration of static and decentralized
multi-agent system and distributed data mining is established.
The second level is made up of dedicated and specialized
agents that cooperate and communicate to generate host based
and network based intrusion detection system. At the highest
level of composition, different intrusion detection systems are

involved. Their mode of cooperation, communication and
detection capability are not reported..

Zeng and Duo (2009) followed a typical network-based
application where there are more than one application servers,
database servers and clients. The model designed consists of
three agents namely: client agent, communication agent and
server agent. Client agents are installed on a client
workstation, and responsible for collecting extra user
information and then send to server agents with the help of
communication agents. Server agents run in the server where
masquerade intrusion is to be detected. They process the
message sent from client agents, read from and write to user
model, server agents can make a decision on whether the
current user is a legal one or not according to a predictive
model. Communication agents monitor the client agent’s
request. After the received message is parsed, the useful
message is forwarded to the server agents. The client agents
collect user information such as operating system, log files,
network card etc. Zeng and Duo (2009) adapted the use of
Hidden Markov Model (HMM) to model user’s activities on
server. The algorithm makes sure that the likelihood of
sequence with respect to the HMM increases after each
iteration in the training. These training sets are constructed
from the event database. However, a data mining algorithm is
used to filter the events that seem abnormal, because abnormal
user sequences are not allowed to be included in the training
set. The strengths of this algorithm lie on (1) the focus of the
model on detecting only one type of intrusion – masquerade
attack (2) the model makes use of real time detection. The
security of the agents is not reported.

DNIDS architecture proposed by Kuang (2007) consists of
5 components namely Sensors, Detectors, Alert Agents (AA),
Maintenance Agents (MA), the Manager, and the Console.
Sensors capture the network packets from a network segment
and transform them into collection-based vectors. The
Detector is a collection of CSI-KNN (Combined Strangeness
and Isolation K-Nearest Neighbor) classifiers that analyze the
vectors supplied by the sensors. The 3 agents are only
designed for intrusion tolerance not for intrusion detection and
are only installed on the administrative server. Detection rate
of the architecture proposed is not reported in this work.

Abraham et.al (2007) proposed a hierarchical architecture
with Central Analyzer and Controller (CAC) as the heart and
soul of the DIDS. The CAC usually consists of a database and
webserver which allows interactive querying by the network
administrator for attack information/analysis and initiate
precautionary measures. CAC also performs attack
aggregation, building statistics, identify attack patterns and
perform rudimentary incident analysis. The mode of data
collection is not discussed but the algorithm is tested on the
KDD cup 1999 dataset whose source is network based. The
authors tested the model using different soft computing
techniques which consists of neural network, fuzzy inference
system, approximate reasoning and derivative free
optimization techniques on a KDD cup dataset. The
experiments have three phases namely: input feature
reduction, training phase and testing phase. In the data
reduction phase, important variables for real-time intrusion
detection are selected by feature selection. In the training

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

31 | P a g e
www.ijarai.thesai.org

phase, the different soft computing models are constructed
using the Labeled data. The test data is then passed through
the saved trained model to detect intrusions in the testing
phase. The problem faced with hierarchical architecture is
being solved by allowing a free communication between the
layers. A well comparative analysis of the different soft
computing algorithms with other machine learning techniques
is being carried out which serves as references for researchers
in the field. The full description of how the agents detect
intrusions based on the soft computing algorithms proposed is
not well discussed.

Sodiya (2006) proposed a two-level architecture coined
MSAIDS. The first level is the Lower Level Detection (LLD),
which has the data agents and processing agents. The data
agents move around the nodes in the network to collect
associated information. The 2 processing agents also known as
node agents where Node-1 agent is responsible for
construction of the first level database from the information
collected and for data cleansing, classification and formatting.
The Node-2 agent is responsible for data mining and first level
intrusion detection and communicates the possibility of
intrusions to the interface agent through the alarm agent. The
Upper Level Detection (ULD) also known as confirmation
level is involved in separate intrusion detection process. At the
ULD, the lower level agents gather data from the data agents
and inform the Controller and Protector (CP), which acts as
the Facilitator agent about the nature of the data gathered. The
CP also ensures proper communication and delivery of service
among agents. The data gathered are then used to update the
ULD database; the ULD does not check for intrusion if there
is no signal from the LLD. The types of data collected are
application messages, authentication events, system calls, TCP
connections. An Apriori algorithm is modified to extract
patterns by the first level and second level agents. MSAIDS
maintains security of agents by using asymmetric
cryptosystem of the Aglet’s framework. In addition to this,
agents’ states are recorded and authenticated before they are
initiated. Any suspected intrusion is reported by the Interface
Agent to the Site Security Officer (SSO). The action to be
taken by the SSO is not stated. In addition to securing mobile
agents, the use of recorded state mechanism, which has been
proved effective, is a plus in this work. The drawbacks
identified are firstly, the activities at the ULD could still be
integrated with the LLD to form one-level architecture and
have the CP atthe ULD since detection of intrusion at each
level is still based on same algorithm. It took 0.14 seconds to
report an intrusion at the LLD and 0.75 seconds at the ULD.
And secondly, the architecture presented does not provide
security for the database, which could be vulnerable to
changes by attackers.

Wang et. al. (2006) designed a system framework which
includes the Manager, who is the centre of controlling and
adjusting other components. It maintains their configuration
information. The manager receives intrusion alarms from host
monitor mobile agent and executes intrusion responses using
intrusion response mobile agent. It also consists the host
monitor mobile agent that resides on every host in the
network. If intrusions occur confirmatively, the host monitor
MA will appeal to the manager and report the suspicious
activity directly. After receiving the appeal, the manager
distributes a data gathering MA patrolling other hosts in the
network to gather information. If a distributed intrusion is
found, the manager will assign an intrusion response MA to
respond intelligently to every monitored host. The database of
configuration stores the node configuration of detecting
system. The data source of IDS is both host-based and
network-based. The gathering part of data source is to record,
filter and format the connection information of the monitored
host and write them into the log. The types of data collected
includes system log and some conserved audit records. The
intrusion analysis mobile agent mainly analyses the log file in
the monitored host system and compares them with the
characters of known attack activities to find abnormal activity
combined with different detection measures which were not
mentioned. The framework’s security is based on the security
measures provided by Aglet. The intrusion response MA
responds to the intrusion events that occur which can include
tracking the intrusion trace to find the intrusion fountain,
recording the intrusion events into database etc. It changes the
hierarchical system structure of traditional distributed IDS.
The major drawback lies at the control centre carrying out the
major part of the intrusion detection, if the location of this
centre is discovered, then the system collapses.

III. PROPOSED ARCHITECTURE

This section presents a full description of Multi-agent
based Intrusion Detection System (MIDS). MIDS’s agents’
architecture consists of both static and mobile agents. MIDS
uses an algorithm named Closed Pattern Mining (CPM),
which adopts a data mining descriptive model for user
profiling. This is now followed by a full description of the
components of MIDS.

A. Mids Architecture

The MIDS architecture, shown in Figure 1 adopts the data
mining algorithm (CPM) for user profiling. It adopts a real
time mode of detection in a network environment. MIDS
architecture structure is into two parts:

1) The IDS Control: resides on every host;

2) The Administrative Control: resides on the server.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

32 | P a g e
www.ijarai.thesai.org

Fig. 1. Multiagent-based Intrusion Detection System (MIDS) Architecture

In general, the architecture consists of 3 major phases
which involve the data gathering phase, the Detection phase
and then the Response phase which is passed to the Site
Security Officer (SSO).

Each of these phases is explained as below:

3.1.1 Data Gathering phase

The data gathering phase involves collection of data and
profiling stage. The data collection is done on both the host
and network. Each of the host has a sensor, a network sniffer
is integrated in the sensor and is used to gather all network
packets. As data streams travel back and forth over the
network, the sniffer captures each packet and eventually
decodes and analyzes its contents according to specifications.
For example, tcpdump, a network debugging tool can serve as
a sniffer and monitor the packets transmitted over a network.
The preprocessor is responsible for accepting raw packet data
and producing records. This component is capable of reading
packets from the tcpdump file. The output produced by this
component consists of records which are now stored in a

database. Record contains aggregate information for a group
of packets.

In MIDS architecture, the roaming agent (RA) consists of
three parts: the code, itinerary and results. It moves from host
to host to gather data following a predefined itinerary
established by the Manager. The Manager acts as the
supervisor of all agents in the architecture. Each record
gathered is now stored in the database. The profiling stage
involves the use of CPM algorithm by mining only the closed
patterns of users’ activities.

3.1.2 Detection phase

The architecture makes use of the two approaches for
detection: Anomaly and Misuse approach. This phase is the
IDS Control part of the architecture. At this phase, the Agent
Detector collects the newly arrived record and clones (using
the clone() method) itself into “two”: the Agent Misuse (AM)
and Agent Anomaly (AA). The AA, who is in charge of
anomaly detection takes this record and checks the Profile
Builder (where CPM resides) for the user’s profile. This is

Administrative

Control

Administrative

Control

AR

 Preprocessor
Packets

MANAGER

Profile

Builder

Database CPM

 AGENT DETECTOR (AD)

Rule-based Classifier

 Misuse Anomaly

AA AM

IDS Control

Labeled

 Data

 Normal
 Intrusion

 SSO

 Console

AS

Suspicious
AD – AGENT DETECTOR
AA – AGENT ANOMALY
AM – AGENT MISUSE
AS – AGENT SUSPICIOUS
AR- AGENT RESPONSE

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

33 | P a g e
www.ijarai.thesai.org

done so as to know whether the behaviour is in line or deviates
from the normal user’s profile. On the other hand, the AM
searches for any attack signature in the record based on the
rules defined to check for an attack. See5 tool (RuleQuest,
2007) is used for rule classification. See5 is a GUI based
software which is capable of classifying large volumes of data
within a second depending on the speed and specification of
computer processor. The rule-based classifier is used in this
work so as to have an idea of how rules are being defined for
misuse detection. The following are excerpts of the rules
which the cloned agents now classifies the event as ”Normal”,
”Suspicious”, or ”Intrusion”:

a) Suspicious

An event is said to be suspicious if it slightly deviates from
the normal behaviour of the user, that is, its item falls within a
particular range, for example:

if (hot<3 || (failedLogin <=5 | srcByte <=100 |

destByte <= 50) && service == "hotspot")
{

System.out.println ("DETECTOR >>

User: ["+id+"] Suspicious!");

msg.sendReply(1);
}

This event is now transferred to the Agent Suspicious (AS)
which first stores this in a database for monitoring and then
passes it to the SSO through the console.

b) Intrusion

Some rules are also defined for categorizing intrusive
events e.g. an event is said to be “intrusion” if it deviates
entirely from the normal behaviour, that is, the values of its
items passes the ones considered for “suspicious” or some
discrete values are not seen. For example, in a system where
the only network service used is “hotspot”, any event that has
a service aside this is taken as “intrusion”.

c) Normal

Any other event outside the conditions in (a) and (b) is
considered “Normal”. The Agent Detector is responsible for
passing the “Normal” user to the Profile Builder for update.
The condition for classification of normal records is as shown
in the example below:

if (hot==0 || (failedLogin <=3 && srcByte <=128 &&

destByte <=64) && service == "hotspot")

{
System.out.println("DETECTOR >>

User: ["+id+"] Normal!");

msg.sendReply(1);
}

3.1.2.1 CPM Algorithm
This section first describes the factors behind the

development of CPM algorithm and then details the
pseudocode of the algorithm. The Closed Pattern Mining
(CPM) adopts the concept of FP-growth algorithm due to its
advantages, by mining a prefix-tree called CPM-tree. CPM
performs the closure checking on the fly with only one scan

over the dataset unlike in FP-growth algorithm where two
scans are needed.

CPM tree is proposed to perform the closure checking of
any real time intrusion. The CPM tree contains only the closed
itemsets and its associated support count, unlike the FP-tree
which contains all the information of the database.

The main steps of the CPM algorithm are as follows:

1) Perform a closure checking on the first specified

number of transaction, T. (* note that the number of

transactions depends on some selected features).

2) Construct the CPM tree with each node containing

only the closed itemsets and its associated support count

which is a compact representation of the database (Note:

every user has a node in the CPM tree).

3) When a new transaction arrives, the CPM algorithm

for a particular user. If it is, it updates X’s support, otherwise,

if X is a newly arrived closed itemset, the algorithm adds it as

link to the existing node of that user in the CPM tree.

4) A transaction is deleted if within a time window, a

particular transaction is not frequent. Then the node is pruned

out in order to reduce the memory usage of the CPM tree.

5) The closed frequent itemsets (transaction) can be

output any time at the Site Security Officer’s request by

traversing the CPM tree.

The CPM tree is used to maintain the current closed
itemsets. Each node in the CPM tree stores a closed itemset,
its current support information, and the links to its immediate
parent and children nodes.

Pseudocode of CPM algorithm is illustrated below:

Algorithm 1: CPM – Addition

X_close = true; Cnew = φ;

 procedure Add(X, C, Cnew)
 if (X є C)

for all (Y  X and Y є C)
 Ys ← support(Y, C) + 1;

 end for

 if (X_close = true) return;

 else

 if (support(X, C) > 0)

 if (Cnew = φ)

 X0 ← X;

 Cnew ← X;

 X_close = false;

 Xs ← support (X, C) + 1;

 else
 Xc = φ;

 for all (K  X and K  C)
 if (len(K) < len(M) then

M = K;

end for

Xc ← M;

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

34 | P a g e
www.ijarai.thesai.org

if ((Xc / X) ∩ X0 = φ and

Xc ≠ φ)

 Cnew ← Cnew  X;
 Xs ← support(X, C) + 1;

end if

end if

else

 if (Cnew = φ) then
 X0 ← X;

 Cnew ← X;

 Xs = 1;

end if

end if

 end if

 for all (m  X and Len(M) = Len(X) -1
 call Add (M, C, Cnew);

end for

if (X = X0)

 C ← C  Cnew;
 Support (X, C) = Xs;

end if

 end procedure

3.1.2.1.1. Illustration of CPM algorithm
As an illustration, this part describes the use of closed

frequent itemsets to construct anomaly detection. In profiling
users’ behaviour, the normal users are selected from the
labeled data; and a user-id is the major key. Collect all the
transactions for each user and find the closed patterns.

For example, the following transactions occur for users
with service, hot, failed login, src_bytes, dst_bytes, duration
as the 6 features picked respectively:

SP118 = {hotspot, 0, 1, 93, 15, 4:40 . . . }

SP118 = {hotspot, 0, 4, 13, 20, 3:15 . . . }
SP118 = {hotspot, 0, 0, 51, 41, 0:43 . . . }

SP172 = {hotspot, 0, 4, 26, 45, 8:55 . . . }

SP172 = {hotspot, 0, 2, 76, 52, 2:42 . . . }

SP144 = {hotspot, 0, 8, 71, 49, 6:20 . . . }
SP144 = {hotspot, 0, 4, 54, 2, 4:20 . . . }

SP144 = {hotspot, 0, 0, 92, 18, 6:81 . . . }

Applying CPM algorithm as detailed in section 3., with
priority labels assigned to the features that could greatly
contribute to having a normal activity e.g. failed login,
src_bytes, dst_bytes. As an example, transaction {hotspot, 0,
1, 93, 15, 4:40 . . . } is stored in CPM tree for SP118 being a
superset of its first 2 transactions, giving a support of 2. The
3rd transaction is not left out as a transaction for the user.

Also the 2nd transaction for SP172 is closed and then
stored in the CPM tree with support of 2.

Lastly, the 3rd of SP144’s transaction is considered close
with support of 2, in comparison with the 1st transaction, not
leaving out the 2nd transaction with support of 1.

The CPM tree constructed for this example is as shown in
Figure 2 with the nodes identified by the user-id.

Fig. 2. The resulting Closed Pattern Mining (CPM) Tree for the
illustration

3.2.2 Response phase
This phase is part of the Administrative control, but it

could as well be on the host too. The Agent Response is
responsible for alerting the SSO of every occurrence of
intrusion based on real time module. The SSO now takes an
active action which could be “Shut down the host”, “Logout
the user” e.t.c. Either AM or AA stores the “suspicious”
events in a database for check in case of any reoccurrence (>
2), the attention of AR is then called to alert the SSO for an
action to be taken.

Console
The Console is an interface that allows control of agents,

management of the list of monitored systems, and intrusions
are reported through it.

SSO
The Site Security Officer (SSO) is the network

administrator who is in charge of the entire network
environment and its resources. He/She takes an action when
any alarm is raised.

Database
This is where all the data gathered are stored. It also

contains the records of both the normal events and suspicious
events detected by the agents in charge of that task. This is
being put in check by the Manager.

The critical component is the Manager agent who resides
on the server, MIDS is designed in such a way that if at all the
Manager is compromised, which implies that no agent would
have access to the profile or even the database, then the AA is
made to keep tracks of all the user it has checked for. If a new
user now visits a host, the AA calls the attention of the RA to
check for that user’s information on the other hosts on the
network. The RA is encoded with checking rules to identify
the failure of the detector.

B. Communication, Coordination and Security of MIDS’

agents

All agents in this framework communicate and collaborate
with peer agents, using a subset of the agent communication
language and protocol, Knowledge Query and Manipulation
Language (KQML). An agent’s request for information or
service is defined or encoded in KQML format and it is
transported to the provider using ATP – Agents Transfer
Protocol.

SP1182

SP1181

CPM Tree

 NULL

SP1721 SP1142

SP1141

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

35 | P a g e
www.ijarai.thesai.org

For the coordination and security of the agents in MIDS,
on every host are the Static Agent (SA) and the IDS Control
with its embedded agents. The Static agent (SA) ensures the
security of the mobile agent platform. As part of the
advantages of having SA on every host, is to stop the host
from treating the agents as it likes, this problem is usually
referred to as the malicious host problem. When an agent
visits a host, the SA authenticates the agent before any
interaction, when it is found to be from the right source it
issues it a certificate, then it is allowed to perform its task. The
notion of Digital Signature Algorithm is used in this case.

At the Administrative Control point, are the Manager, the
Database and the Profile Builder. The Manager has the Agent
Control list (ACL) which contains all information about the
agents dispatched on the network; its movement, its identifiers
and its state.

IV. IMPLEMENTATION OF MIDS

This section describes the implementation of MIDS
architecture. Aglet Software Development Kit (ASDK)
described in Lange and Oshima (1998) is used in this work.
MIDS is implemented and tested over a UNAAB network
dataset using java 1.1.8 and Aglet 1.0.3. The ASDK
environment, developed by IBM provides mobility facilities to
agent programs. It is written in Java, and includes primitives
to create, move, communicate and dispose programs. A
mobile agent in ASDK is known as an Aglet (contraction of
agent + applet). The aglet migrates from one machine to
another with the help of a server module, known as Aglets
Server or Tahiti Server.

A. Testbed Implementation

In the test carried out, two hosts are established with
Windows Vista operating system in a LAN to construct a
distributed platform based on Aglets as earlier described. The

first host acts as the monitor host while the second one is the
monitored host, each of these hosts has the UNAAB dataset.

UNAAB network log, which is a dataset downloaded from
the local network connections of the University of
Agriculture, Abeokuta, contains the network activities of users
over a period of time. The labeled data consists of 5 weeks log
of users’ activities of 212644 records, where 201,540 are
labeled as “normal” and 11104 as “intrusion”. CPM is used on
the labeled data for profiling The features include ip-address,
Protocol type, User-ID, Service, Hot, Scr_bytes, Dst_bytes,
Failed_logins, Duration, Period, Label etc. There are two main
attack types found in this dataset, hese are guess and sniff
attacks.

Table 1 shows an example of network connection records
in UNAAB network log with the features. Given a set of
records, the CPM algorithm combined with the rules for
classification can assign a label to describe each record in the
unlabeled data.

The Tahiti server shown on Figure 3 offers a graphical
user interface to run the agents described in this architecture
and enables the loading of the MIDS’s agents’ classes for
deployment. It thus provides the useful environment to run the
implementation codes written in Java.

Once the Agent is loaded, the autonomous/mobility
activities can be performed by the agent. In implementing
MIDS, four classes are created: MIDSManager.java,
MIDS_AD.java, MIDS_AA.java, MIDS_AM.java.

B. Performance Evaluation of MIDS

The result displayed in Figure 4. The small pop-up shown
in red is the alert displayed on detecting a “suspicious” event.
The other window at the background is the console showing
the activities of the mobile agents on execution.

TABLE I. Examples of connections found in UNAAB network log

User-ID

Service

hot

Src_bytes

Dst_byte

Failed_logins

. . .

SP 862 Hotspot 0 100 62 0 . . .

Admin Hotspot 2 35 76 1 . . .

SP499 ftp 0 78 32 5 . . .

JP1042 Hotspot 1 54 20 0 . . .

SP535 http 0 8 78 0 . . .

.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

36 | P a g e
www.ijarai.thesai.org

Fig. 3. An Interface showing the Tahiti Server of MIDS

Fig. 4. Alert on detecting Intrusio

The records of the classification are taken by counts in
order to identify the false alarm rates. The addition of the
number of “suspicious” and “intrusions” are classified as

“intrusion”. Table 2 shows the classification on the unlabeled
data.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

37 | P a g e
www.ijarai.thesai.org

TABLE II. Results of MIDS on UNAAB network dataset

 Cases False Positive

Rate

False Negative

Rate

Normal 201540 0.13% 99.87%

Intrusion 11104 99.96% 0.04%

Using the 4 metrics for evaluation of IDS, the following

results are discovered: Accuracy = 99.94% ,

Detection rate = 99.96% ,False Positive Rate = 0.13%, and
False Negative Rate = 0.04%

1) Timing Result
The performance in terms of time to detection and the

mean time of reporting an intrusion are considered. This
involves the system recording each time an intrusion is
detected and then calculates the mean. It is found out that the
mean time for reporting an intrusion is 0.67seconds. On the
other hand, it took 0.89secs to report an intrusion in Sodiya
(2006) while Eid (2004) recorded the overall trip for the
agents in its architecture as 4.42 secs starting from activation
of the sniffer to completion of the processing from one host to
the other.

2) Performance Analysis
UNAAB dataset is divided into batches of 10%, 25%,

50%, 75%, 100%, the True Positive Rate and False Positive
Rate are calculated as shown on Table 3 and depicted in
Figure 5.

TABLE III. Comparison on batches of UNAAB network log

 BATCHES

 10% 25% 50% 75% 100%

MIDS

TPR

(%)

94.5 97.43 98.89 99.54 99.96

FPR

(%)

3.9 3.3 2.2 1.7 0.13

V. CONCLUSION

As network attacks become more alarming, exploiting
systems faults and performing malicious actions, the need to
provide effective intrusion detection methods increases.
Distributed attacks are especially difficult to detect and require
coordination among different intrusion detection components
or systems. The idea of mobile and autonomous components
intuitively seems useful in intrusion detection, hence the use

of multiagent system. A data mining approach is provided in
this paper to enhance the detection performance of the agents
deployed in the design. Experiments performed emphasize the
aim of applying agents to detect intrusions.

ACKNOWLEDGEMENT

Our appreciation to the ICTREC staff for giving us access
to the University network log.

REFERENCES

[1] Anderson J. P. (1980). “Computer security threat monitoring and

surveillance”, Technical report, James P. Anderson co, Box 42, Fort

Washington, February 1980.

[2] Bradshaw, M. J. (1997). “An introduction to Software agents”, In

Jeffrey M. Bradshaw, Editor, Software agents, Chapter 1, AAAI

press, The MIT press,1997.

[3] Eid, M., Artail, H., Kayssi, A. and Chehab, A. (2004) “An Adaptive

Intrusion Detection and Defense System based on Mobile Agents”,

Proceedings of the Innovations in Information technologies

(IIT’2004), Oct, 2004, Dubai, UAE.

[4] Kuang, L. V. (2007). “DNIDS: A Dependable Network Intrusion

Detection System using the CSI-KNN”, M.Sc. thesis, School of

Computing, Queen’s University,Ontario, Canada.

[5] Lange, D. B. and Oshima, M. (1998). “Programming and Deploying

JavaTM Mobile Agents with Aglets”, Addison Wesley

Longman, Inc.

[6] Oriola, O., Adeyemo, A. B. & Robert, A.B.C. (2012). "Distributed

Intrusion Detection System Using P2P Agent Mining

Scheme", IEEE African Journal of Computing & ICT, Vol 5. No. 2,

 March, 2012 ISSN 2006-1781

[7] Onashoga, S. A., Akinde, A. D. & Sodiya, A. S. (2009). "A Strategic

Review of Existing Mobile Agent- Based Intrusion Detection

Systems", Issues in Informing Science and Information

Technology Volume 6, 2009

[8] RuleQuest, (2007). Retrieved from http://www.RuleQuest.com

[9] Sasikumar, R. & Manjula, D. (2011). "A Distributed Intrusion Detection

System Based on Mobile Agents with Fault Tolerance",

European Journal of Scientific Research, Vol.62 No.1

 (2011), pp. 48-55

[10] Sodiya, A. S. (2006). “Multi-Level and Secured Agent-based Intrusion

detection System”, Journal of Computing Science and Information

Technology, vol. 14, no. 3.

[11] Jain, P., Raghuwanshi, S. and Pateria RK (2011) "New Mobile Agent-

based Intrusion Detection Systems for Distributed Networks",

International Journal of Wireless Communication Volume 1, Issue

1, 2011, pp-01-04

[12] Kamaruzaman, M., Shukran, M. A. M., Khairuddin, M. A. & Isa,

M.R.M. (2011). "Mobile Agents in Intrusion Detection System:

Review and Analysis". Modern Applied Science Vol. 5,

No. 6; December 2011

[13] Wang, W., Behera, S. R., Wong, J., Helmer, G., Honavar, V., Miller, L.,

Lutz, R., and Slagel, M. (2006). “Towards the Automatic Generation

of Mobile Agents for Distributed Intrusion Detection System”,

Journal of Systems and Software, Vol 79, pp:1-14.

www.elsevier.com/locate/jss.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.4, 2013

38 | P a g e
www.ijarai.thesai.org

Fig. 5. Comparison of TPR (%) against FPR(%) on batches of UNAAB dataset

