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Abstract— Multi spectral image classification method with 

selection processes of independent spectral features through 

correlation analysis is proposed. The proposed method is 

validated by applying to the polarimetric Synthetic Aperture 

Radar: SAR data. Also Probability Distribution Function: PDF 

for of features are checked and confirmed the most independent 

PDF allows greatest classification performance. 
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I. INTRODUCTION 

Due to the fact that the Synthetic Aperture Radar image 
contains not so small noises, speckle noise in particular, 
classification is not so easy. There are so many methods for 
speckle noise removals. After the speckle noise is removed, it 
still difficult to get high classification performance.   

From full polarimetric SAR images, not so small number 
of features can be derived in comparison to the single 
polarization of SAR images. It is possible to select 
independent feature among the not so small number of 
features. The classification method proposed here is to apply 
feature selection in accordance with the correlation among the 
features derived from full polarimetric SAR imagery data.  

Radar polarimetry allows measurement the physical 
characteristics such as di-electric constant, slope of the ground 
cover targets as well as directionality of artificial objects by 
using scattering mechanism between electromagnetic (EM) 
wave and the targets [1], [2]. Polarimetric SAR image 
classification with the following three components of the 
polrimetric SAR data, (1) transmit Electro-magnetic wave 
with Horizontal Polarization(H-Pol) and receive the echo from 
the ground with H-Pol(HH), (2) transmit Electro-magnetic 
wave with H-Pol and receive the echo with Vertical 
Polarization(V-Pol)(HV) and (3) transmit Electro-magnetic 
wave with V-Pol and receive the echo with V-pol(VV) is 
widely available [3],[4]. On the other hand, the extraction of 
the scattering characteristics of the targets of interest by 
applying eigen value decomposition to the covariance matrix 
derived from the scattering matrix which is calculated from 
the three components are proposed [5]. Furthermore, the 
classification methods with the single / double /multiple, odd / 
even / diffuse, and odd / even / Bragg / multiple scattering 
components derived from the eigen value decomposition were 

proposed [6] while the classification methods with the sphere / 
deplane / helix, and sphere / Bragg / double of scattering 
components which are based on the spherical polarization 
which are derived from the scattering matrix were also 
proposed [7],[8].  

Aforementioned proposed methods were reviewed [9]. 
Moreover, the classification method with the entropy (H) 
which is defined with the sum of the first to third eigen values 
and the ratio of each eigen values, the anisotropy (A) which is 
defined as the ratio of sum and subtraction of the second and 
the third eigen values and cosine α (cos(α)) which is defined 
with the elements of the eigen vector corresponding to the first 
eigen value which is called coherency matrix(3 by 3) was 
proposed by E.Pottier [10].  

The application of these methods to sea ice discrimination 
(such as thin ice (TI), smooth first year ice (SF), rough first 
year ice (RF) and open water (OW)) with the polarimetric 
SAR were attempted by using H, A, and cos(α) [11]. 
Classification performance, however, were not satisfactory 
(20-40% of classification errors were occurred for the 
classification of sea ice into four classes, ridged, compressed, 
new forming and smooth surface due to the fact that scattering 
mechanism based features were not used effectively. 
Meanwhile polarimentirc SAR image classification with 
polarization signature which are derived from Stokes or 
Muller or scattering matrix is widely available [12]. 
Polarization signature represents the scattering mechanism, in 
particular, surface roughness of the targets in concern.  

One of the problems on the classification with polarization 
signature is classification performance. The method for 
effective utilization of polarization signature is still unclear to 
improve classification performance. The method proposed 
here is for extraction of effective information from the 
polarization signature by transforming the polarization 
signature onto an eigen space (eigen value decomposition). As 
the results from the eigen value decomposition which 
corresponds to the largest eigen value, a trajectory can be 
drawn. The trajectory represents the scattering mechanism in 
concern so that the largest curvature of the trajectory 
represents the most effective representatives of the scattering 
mechanism of the target of interest [13]. This is the theoretical 
background to propose the utilization of maximum curvature 
of the trajectory in an eigen space which is derived from the 
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polarization signature to the sea ice classification. 

The following section, the proposed method is described 
followed by the experiments. Then conclusion is described 
together with some discussions. 

II. PROPOSED METHOD  

A. Principle of Polarimetric SAR 

Sending and receiving EM signals are expressed in 

Equation (1). 

 

  (1) 

 
where Shh, Shv, and Svv denotes sending and receiving 

polarizations of scattering components while Eh, Ev denotes 
EM signals in horizontal and vertical polarizations. R and k 
denotes range between sending antenna to the ground and the 
wave number of EM signals. 

Stokes vector, J is defined in equation (2). 

 

(2) 

 
Also Muller matrix is defined in equation (3). 

 

 (3) 

 
Elements of the Muller matrix can be calculated with the 

equation (4), 

 

  (4) 

 
Meanwhile polarization signature can be defined as 

follows, 

 

 
 

Thus polarization signature can be characterized with χ,ψ 
as shown in Figure 1. 

 

Fig.1. Characterization of polarization signature 

B. Full Polarimetric SAR Imagery Data Decompositions 

Full polarimetric SAR is defined as the SAR which allows 
acquisition the scattering components of which polarimetric 
SAR sends Electric Magnetic: EM signals to the ground cover 
targets in horizontal and vertical polarizations and also that 
receives EM signals from the ground cover targets in 
horizontal and vertical polarizations. Therefore, scattering 
matrix of equation (5) can be obtained. 
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X = [ShhShvSvv]
T
     (5) 

 
Where Sij denotes scattering coefficients while the first and 

the second suffix of Shh, Shv, and Svv denotes sending and 
receiving polarizations.  

 

C =< XX*
T 

>     (6) 

C = λ1K1(K1 )*
T
 +λ2K2(K2 )*

T
 +λ3K3(K3 )*

T
  (7) 

 
K1, K2, K3 denotes Single scattering coefficient (Odd), 

Double scattering coefficient (Even), and Defuse scattering 
coefficient (Defuse) while λ1, λ2, λ3  denotes eigen values for K1, 
K2, K3. Ratio of these three variables can be determined by the 
following contribution factors 

 

λi/(λ1 + λ2 + λ3), (i = 1, 2, 3)   (8) 

 
Not only these three features but also the other features can 

be decomposed. Circular polarization of EM wave, SLR, SLL, 
SRR, SRL can be derived from Sij as follows, 

 

   (9) 

 
Linear and circular polarization is illustrated in Figure 2. 

 
(a)Horizontal Polarization (b) Vertical Polarization (c)Circular 

Polarization 

Fig.2. Polarization features 

 

Then Sphere, Di-plane and Helix components are defined 
as follows, 

 

 

 
 

Contribution factors for each component can be calculated 
as follows, 

 

Ki/(Ks + Kd + Kh), (i = s, d, h)   (10) 

 
Namely, this decomposition can be done with eigen value 

decomposition of covariance matrix of scattering matrix. 

Other than these, there is another decomposition method 

which allows extract odd number scattering component, even 
number scattering component, Brag scattering component, 
orthogonal polarization scattering component, etc. can be 
extracted from Sij.  Furthermore, there are some other 
decomposition methods for not only covariance matrix but 
also coherence matrix as well.  

C. Classification Method Used 

There are many image classification methods with features. 
Probability Density Function: PDF of the extracted features 
are followed by normal distribution, usually. Therefore, 
widely used Maximum Likelihood Classification: MLH 
method assuming normal distribution is used. 

D. Correlation Matrix 

Through correlation analysis, correlation coefficients 
among the extracted features are calculated and create 
correlation matrix. Then summation of correlation matrix 
elements is calculated. This variable is referred to SUM 
hereafter. After that, sorting of the summation of correlation 
matrix elements is performed. Small summation of correlation 
matrix elements implies independent feature or effective 
feature for classification. 

E. Overlapped Portion of Probability Density Function 

between Features   

Another measure for effectiveness features, or features can 
be assessed with overlapped portion of PDFs between two 
features. If the overlapped portion is small, then it is effective 
to image classification. 

III. EXPERIMENTS 

A. Polarimetric SAR Image Data Used 

The PI-SAR (Polarimetric and Interferometric SAR) data 
of Tsukuba in Japan which was acquired by CRL 
(Communication Research Laboratory, current NICT: 
National Institute of Communication Technology) and 
NASDA (National Space Development Agency of Japan, 
current JAXA: Japan Aeronautics Exploration Agency) on 23 
February 1999 was used. The major characteristics of the PI-
SAR are in Table 1. 

TABLE I.  MAJOR CHARACTERISTICS OF PI-SAR 

Instrument NASDA/L-band SAR 

Center frequency 1.27GHz 

Peak power 3.5kW 

Band width 50MHz 

Antenna size 1.6m x 0.7m 

Polarization HH/HV/VH/VV(Full Pol.) 

Incident angle 20-60degrees(Fixed) 

Swath width 42.5km 

Spatial resolution 3m 

Quantization bit 8bits(I and Q) 

 
From the data of SSC (Single-look Slant-range Complex) 

of the data, the imagery data of PISAR used for experiments is 
created. Figure 3 shows the imagery data used for the 
experiments of Okhotsk Sea.  
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Intensive Study Area is situated in the Sea of Okhotsk. The 
data is acquired on 23 February 1999. The imagery data is 
created with Single Look Slant Range of Complex Data. The 
data is reprocessed with 8 look processing and is composed 
with 1000 × 987 pixels. It is acquired with PISAR instrument 
with the parameters of L band of HH polarization which is 
onboard the aircraft. In Figure 3, Green colored areas show 
Open Water while Black colored areas show Rough Surface 
Ice. On the other hand, Blue colored areas show Thin Ice 
while White colored areas show Smooth Surface Ice. 

 

Fig.3. Intensive Study Area in the sea of Okhotsk 23 Feb.1999(Single 

look Slant range Complex Data,8look 1000 × 987 pixels,L band HH 
polarization)  

Green: Open water, Black: Rough surface ice, Blue Thin ice White: Smooth 

surface ice. 

B. Correlation Matrix 

Correlation matrix for open water is shown in Table 2 
while that of rough first year ice is shown in Table 3, 
respectively.. Meanwhile, correlation matrix for smooth first 
year ice is shown in Table 4 while that for thin ice is shown in 
Table 5, respectively. Two rows from the bottom shows SUM 
and |SUM|, respectively.   

It is found that the smallest SUM for open water is Sphere 
followed by Diffuse and Helix while that for rough surface of 
first year ice is Odd number of scattering followed by Even 
number of scattering and Sphere. It is also found that the 
smallest SUM for smooth surface of first year ice is Sphere 
followed by Odd number scattering and Helix as well as 
Diffuse while that of thin ice is Odd number of scattering 
followed by Sphere and Even number of scattering. It totally 
depends on the scattering mechanism for the ground cover 
targets. 

TABLE II.  CORRELATION MATRIX FOR OPEN WATER  

open water Odd Even Diffuse Sphere Diplane Helix HH HV VV 

Od 1 -0.99 -0.49 0.399 -0.22 -0.3 0.527 0.13 0.608 

Ev -0.99 1 0.402 -0.37 0.233 0.233 -0.49 -0.18 -0.57 

Df -0.49 0.402 1 -0.41 -0.05 0.66 -0.56 0.39 -0.58 

Sp 0.399 -0.37 -0.41 1 -0.74 -0.48 0.504 -0.06 0.377 

Dp -0.22 0.233 -0.05 -0.74 1 -0.23 -0.22 -0.19 -0.09 

Hx -0.3 0.233 0.66 -0.48 -0.23 1 -0.44 0.32 -0.43 

HH 0.527 -0.49 -0.56 0.504 -0.22 -0.44 1 0.38 0.93 

HV 0.13 -0.18 0.385 -0.06 -0.19 0.322 0.38 1 0.403 

VV 0.608 -0.57 -0.58 0.377 -0.09 -0.43 0.93 0.4 1 

 
0.07 -0.1 0.04 0.02 -0.1 0.04 0.18 0.24 0.18 

 
0.07 0.08 0.04 0.02 0.06 0.04 0.18 0.24 0.18 

TABLE III.  CORRELATION MATRIX FOR ROUGH FIRST YEAR ICE 

rough FYI Odd Even Diffuse Sphere Diplane Helix HH HV VV 

Od 1 -0.99 -0.32 0.621 -0.51 -0.29 0.286 -0.04 0.349 

Ev -0.99 1 0.174 -0.56 0.502 0.215 -0.26 -0.05 -0.32 

Df -0.32 0.174 1 -0.53 0.193 0.545 -0.2 0.59 -0.29 

Sp 0.621 -0.56 -0.53 1 -0.74 -0.57 0.332 -0.24 0.402 

Dp -0.51 0.502 0.193 -0.74 1 -0.13 -0.3 -0.07 -0.32 

Hx -0.29 0.215 0.545 -0.57 -0.13 1 -0.13 0.44 -0.2 

HH 0.286 -0.26 -0.2 0.332 -0.3 -0.13 1 0.52 0.789 

HV -0.04 -0.05 0.586 -0.24 -0.07 0.437 0.519 1 0.44 

VV 0.349 -0.32 -0.29 0.402 -0.32 -0.2 0.789 0.44 1 

 
0.01 -0 0.13 -0 -0 0.1 0.23 0.29 0.21 

 
0.01 0.03 0.13 0.03 0.04 0.1 0.23 0.29 0.21 

TABLE IV.  CORRELATION MATRIX FOR SMOOTH FIRST YEAR ICE 

smooth FYI Odd Even Diffuse Sphere Diplane Helix HH HV VV 

Od 1 -0.99 -0.55 0.693 -0.53 -0.35 0.537 -0.04 0.629 

Ev -0.99 1 0.414 -0.65 0.546 0.271 -0.48 -0.06 -0.58 

Df -0.55 0.414 1 -0.55 0.179 0.589 -0.57 0.53 -0.59 

Sp 0.693 -0.65 -0.55 1 -0.75 -0.53 0.638 -0.14 0.597 

Dp -0.53 0.546 0.179 -0.75 1 -0.16 -0.43 -0.18 -0.37 

Hx -0.35 0.271 0.589 -0.53 -0.16 1 -0.39 0.43 -0.42 

HH 0.537 -0.48 -0.57 0.638 -0.43 -0.39 1 0.15 0.834 

HV -0.04 -0.06 0.535 -0.14 -0.18 0.433 0.146 1 0.14 

VV 0.629 -0.58 -0.59 0.597 -0.37 -0.42 0.834 0.14 1 

 
0.04 -0.1 0.05 0.03 -0.1 0.05 0.14 0.2 0.14 

 
0.04 0.06 0.05 0.03 0.08 0.05 0.14 0.2 0.14 
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TABLE V.  CORRELATION MATRIX FOR THIN ICE 

thin ice Odd Even Diffuse Sphere Diplane Helix HH HV VV 

Od 1 -0.99 -0.34 0.656 -0.48 -0.31 0.331 -0.15 0.44 

Ev -0.99 1 0.193 -0.61 0.493 0.235 -0.28 0.04 -0.38 

Df -0.34 0.193 1 -0.47 0.074 0.533 -0.42 0.73 -0.51 

Sp 0.656 -0.61 -0.47 1 -0.68 -0.54 0.533 -0.27 0.537 

Dp -0.48 0.493 0.074 -0.68 1 -0.26 -0.28 -0.13 -0.25 

Hx -0.31 0.235 0.533 -0.54 -0.26 1 -0.38 0.51 -0.42 

HH 0.331 -0.28 -0.42 0.533 -0.28 -0.38 1 -0.06 0.425 

HV -0.15 0.044 0.73 -0.27 -0.13 0.513 -0.06 1 -0.11 

VV 0.44 -0.38 -0.51 0.537 -0.25 -0.42 0.425 -0.11 1 

 
0.02 -0 0.09 0.02 -0.1 0.04 0.1 0.17 0.08 

 
0.02 0.03 0.09 0.02 0.06 0.04 0.1 0.17 0.08 

C. Overlapped Portion of Probability Density Function 

between Features  

Figure 4 shows PDF of each class for each feature 
extracted from the full polarization SAR and decomposed 
components from the full polarization of SAR. Some of the 
features, in particular, odd and even number of scattering as 
well as diffuse component shows not normal distribution at all. 
Therefore, it would better to check not only correlation 
coefficients but also PDF of the features. 

 

 
(a)HH 

 
(b)HV 

 
(c)VV 

 
(d)Odd number scattering 

 
(e)Even number of scattering 

 
(f)Diffuse 

 
(g)Sphere 
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(h)Di-plane 

 
(i) Helix 

Fig.4. PDF of each class for each feature 

D. Confusion Matrix 

Nevertheless correlation among the received power signals 
of HH, HV, and VV, classification result shows highest 
Percent Correct Classification: PCC of 94.6 % among the all 
possible combination of receiving power signals and the 
decomposed components. Figure 5 shows the classified 
resultant image. 

TABLE VI.  CONFUSION MATRIX FOR UTILIZING THREE RECEIVED POSERS 

ONLY (PCC=94.6%) 

 OpenWater RoughIce SmoothIce ThinIce 

OpenWater 92.2 0.8 7.0 0.0 

RoughIce 2.0 92.2 5.8 0.0 

SmoothIce 3.1 0.4 95.3 1.2 

ThinIce 0.0 0.0 1.2 98.8 

 

 

Fig.5. Classification resultant image for utilizing three received power 

singles only (Black: Rough surface ice, White: Smooth surface ice, Light 
blue: Open water, Dark blue: Thin ice) 

The next highest PCC is achieved by the combination of 
three receiving power signals and Diffuse as well as Odd 
number of scattering components. Figure 6 shows classified 
resultant image. 

TABLE VII.  CONFUSION MATRIX FOR UTILIZING THREE RECEIVED 

POWERS AND ODD NUMBER OF SCATTERING AS WELL AS DIFFUSE COMPONENT 

(PCC=93.6%) 

 OpenWater RoughIce SmoothIce ThinIce 

OpenWater 93.4 0.8 5.8 0.0 

RoughIce 3.1 92.2 4.7 0.0 

SmoothIce 6.6 0.8 92.2 0.4 

ThinIce 0.8 0.0 3.5 95.7 

 

Although PCC of the classification with three received 
power signals and Diffuse and Odd number of scattering 
components is lower than that with just three received power 
signals only, there are some thin ice pixels are observed in the 
open water and smooth surface of first year ice areas. 
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Fig.6. Classification resultant image for utilizing three received power 
singles and Diffuse, Odd number scattering components. (Black: Rough 

surface ice, White: Smooth surface ice, Light blue: Open water, Dark blue: 

Thin ice) 

This is natural. Therefore, classified results from the 
classification with three received power signals and Diffuse 
and Odd number of scattering components shows much 
reliable classified results. 

As the results, it is found that three receiving power 
signals plus Diffuse and Odd number of scattering component 
is effective to the sea ice classifications. The reasons for this 
are 

1) surface scattering is dominant for the smooth and 

rough surface first year ice. 

2) Diffuse component of smooth surface first year ice is 

smaller than that of rough surface first year ice. 
On the other hand, thin ice consists of a kind of layered 

material with open water which is covered with ice so that it is 
hard to discriminate thin ice from smooth surface first year ice 
as well as open water. 

IV. CONCLUSION 

Multi spectral image classification method with selection 
processes of independent spectral features through correlation 
analysis is proposed. The proposed method is validated by 
applying to the polarimetric Synthetic Aperture Radar: SAR 
data. Also Probability Distribution Function: PDF for of 
features are checked and confirmed the most independent PDF 
allows greatest classification performance. 

It is found that three receiving power signals plus Diffuse 
and Odd number of scattering component is effective to the 
sea ice classifications. The reasons for this are (1) surface 
scattering is dominant for the smooth and rough surface first 

year ice. (2)Diffuse component of smooth surface first year ice 
is smaller than that of rough surface first year ice. 

On the other hand, thin ice consists of a kind of layered 
material with open water which is covered with ice so that it is 
hard to discriminate thin ice from smooth surface first year ice 
as well as open water. 
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