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Abstract—Attribute reduction of information system is one of 

the most important applications of rough set theory. This paper 

focuses on generalized decision system and aims at studying 

positive region reduction and distribution reduction based on 

generalized indiscernibility relation. The judgment theorems for 

attribute reductions and attribute reduction approaches are 

presented. Our approaches improved the existed discernibility 

matrix and discernibility conditions. Furthermore, the reduction 

algorithms based on discernible degree are proposed. 
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I. INTRODUCTION 

The theory of rough sets, proposed by Pawlak[6], is an 
extension of the set theory. Rough set theory has been 
conceived as a tool to conceptualize, organize, and analyze 
various types of data, in particular, to deal with inexact, 
uncertain or vague knowledge in applications related to 
artificial intelligence. 

Information systems (sometimes called data tables, 
attribute-value systems, decision system etc.) are used for 
representing knowledge. A basic problem related to many 
practical applications of information systems is whether the 
whole set of attributes is always necessary to define a given 
partition of a universe. This problem is referred to as 
knowledge reduction, i.e., removing superfluous attributes 
from the information systems in such a way that the remaining 
attributes are the most informative. A large variety of 
approaches have been proposed in the literatures for effective 
and efficient reduction of knowledge. Of all paradigms, rough 
set theory is perhaps the most recent one making significant 
contribution to the field. Based on this theory and 
discernibility functions, some approaches for attribute 
reduction in complete and discrete decision systems are 
proposed[5,9,11,14,16]. 

In many practical situations, it may happen that the precise 
values of some of the attributes in an information system are 
not known, i.e. are missing or known partially. Such a system 
is called an incomplete information system. In order to deal 
with incomplete information systems, classical rough sets 
have been extended to several general models by using other 
binary relations or covers on the 
universe[1,2,7,8,10,15,18,19]. Based on these extended rough 
set models, the researchers have put forward several 

meaningful indiscernibility relations in incomplete 
information system to characterize the similarity of objects. 
For instance, Kryszkiewicz[3,4] introduced a kind of 
indiscernibility relation, called tolerance relation, to handle 
incomplete information tables. Stefanowski[12] introduced 
two generalizations of the rough sets theory to handle the 
missing value. The first generalization introduces the use of a 
non symmetric similarity relation in order to formalize the 
idea of absent value semantics. The second proposal is based 
on the use of valued tolerance relations. The tolerance relation 
has also been generalized to constrained similarity relation and 
constrained dissymmetrical similarity relation[2,13,17]. 
Accordingly, some attribute reduction approached for 
incomplete decision systems have been proposed. In this 
paper, an approach to attribute reduction for incomplete 
decision systems based on generalized indiscernibility relation 
is presented. Specifically, this study is not limited to a 
particular indiscernibility relation, but focus on the 
indiscernibility relation that satisfies reflexivity and 
symmetry. A general theory frame of attribute reduction for 
incomplete decision system will be presented. The paper is 
organized as follows: In Section 2, we recall some notions and 
properties of rough sets and decision systems. In Section 3, we 
propose an approach for positive region reduction. The 
reduction algorithm based on discernible degree is also 
presented. Section 4 is devoted to distribution reduction. The 
paper is completed with some concluding remarks. 

II. GENERALIZED DECISION SYSTEMS 

An information system is a triplet ( , , )U A F , where U is a 

nonempty finite set of objects called the universe of discourse, 

1{ , , }mA a a is a nonempty finite set of attributes, 

{ ; }jF f j m  is a set of information functions such that 

( )j jf x V  for all x U , where jV is the domain of attribute ja

. A decision system ( , { }, )U C d F is a special case of an 

information system, where d is a special attribute called 

decision. The elements of C are called conditional attributes. 

In a generalized decision system, we do not care about the 
information function, but focus on the indiscernibility 
relations generated by attributes. Concretely, a generalized 
decision system is a triple ( , , )S U A d , whereU is a nonempty 

universe of objects, A is a set of conditional attributes, and d is 

a distinguished decision attribute. Each conditional attribute a

determines an indiscernibility relation which is denoted by aR . 
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In what follows we suppose that aR is reflexive. Additionally, 

the decision attribute d determine a partition 1/ { , , }rU d D D

ofU . If ix D , then we take i as the decision value of x and 

denoted by ( )d x i . 

Let ( , , )S U A d be a generalized decision system. For any

B A , the indiscernibility relation generated by B is defined 

as B a
a B

R R


  . For x U , the neighborhood of x related to BR  is 

denoted as ( ) { ;( , ) }B BR x y U x y R   . Obviously, 

( ) ( )B a
a B

R x R x


  . Additionally, because of the reflexivity of 

BR , { ( ); }BR x x U forms a cover of U . 

Definition 2.1[2,15] Let ( , , )S U A d be a generalized 

decision system. For any B A , X U , the lower 

approximation and upper approximation of X with respect to 

BR are defined as 

( ) { ; ( ) }B BR X x U R x X                                 (1) 

( ) { ; ( ) }B BR X x U R x X                            (2) 

Theorem 2.1[2,15] Let ( , , )S U A d be a generalized 

decision system, B A , ,X Y U . Then 

(1) ( ) ( )B BR X X R X  . 

(2)If X Y , then ( ) ( )B BR X R Y , ( ) ( )B BR X R Y . 

(3) ( ) ( ) ( )B B BR X Y R X R Y   , ( ) ( ) ( )B B BR X Y R X R Y   . 

(4) ( ) ~ (~ )B BR X R X , ( ) ~ (~ )B BR X R X . 

III. ATTRIBUTE REDUCTION BASED ON POSITIVE REGION 

The section is devoted to the discussion of positive region 
reduction of generalized decision systems. 

Definition 3.1[11] Let ( , , )S U A d be a generalized 

decision system, B A , 1/ { , , }rU d D D . The positive 

region of d  with respect to B  is defined as 

/
( ) ( ) ( )B B B i

X U d i r
Pos d R X R D

 
                                   (3) 

The above definition shows that ( )Bx Pos d  if and only if 

the objects in ( )BR x  have the same decision values. Thus, 

( )BPos d  is the set of all elements of U  that can be uniquely 

classified to blocks of the partition /U d  by means of B . If 

we take B as the set of conditional attributes, then ( )Bx Pos d  

means the decision rule with respect to x  is definite. 

Theorem 3.1[9] Let ( , , )S U A d be a generalized decision 

system, B A , 1/ { , , }rU d D D . Then 

(1) ( ) ( )B APos d Pos d . 

(2) ( ) ( )B APos d Pos d if and only if ( ) ( )B i A iR D R D for each 

i r . 

(3) ( )Bx Pos d if and only if ([ ] )B dx R x . 

Definition 3.2 Let ( , , )S U A d be a generalized decision 

system. If B A  such that ( ) ( )B APos d Pos d , then B  is 

called a positive region consistent set of S . The minimal 

positive region consistent set of S  (with respect to set 

inclusion relation) is called as positive region reduction of S . 

Let ( , , )S U A d be a generalized decision system, ,x y U . 

We consider the following condition ( , )x y : 

( , ) : ( ) ( ) ( )Ax y x Pos d d x d y    . 

We note that ( , )x y   is not symmetric to x and y . 

Theorem 3.2[9] Let ( , , )S U A d be a generalized decision 

system. If  ,x y U  satisfy ( , )x y , then ( , )A x y  , where 

( , ) { ;( , ) }A ax y a A x y R    . 

Theorem 3.3 Let ( , , )S U A d be a generalized decision 

system, B A . B  is a positive region consistent set of S if and 

only if ( , )AB x y  for ,x y U  satisfy ( , )x y . 

Proof:  Suppose that B  is a positive region consistent set 
of S  and ,x y U  satisfy ( , )x y . Then ( ) ( )d x d y and 

( )Ax Pos d . By ( ) ( )A Bx Pos d Pos d  , we have ( ) [ ]B dR x x .  

Because of [ ] [ ]d dx y  , it follows that ( ) [ ]B dR x y  ,  

and consequently ( )By R x . Thus there exists a B  such that 

( , ) ax y R , namely ( , )Aa x y , and thus ( , )AB x y  . 

Conversely, we suppose that ( , )AB x y  for ,x y U  

satisfy ( , )x y . It only need to prove ( ) ( )A BPos d Pos d . For 

any x U , if ( )Bx Pos d , then ( ) [ ]B dR x x . Thus there exists 

( )By R x  such that [ ]dy x . By ( , )AB x y  , we know 

that ,x y  do not satisfy ( , )x y . It follows that ( )Ax Pos d  by 

( ) ( )d x d y . Thus ( ) ( )A BPos d Pos d  as required. 

This theorem shows that, with respect to positive region 
reduction, x  and y need to be discerned if ,x y  satisfy ( , )x y .  

In this case, we let 
( , )

( , )
A

A
a x y

x y a





   denote the disjunction 

of all attributes in ( , )A x y ,  where each attribute is looked 

upon as a Boolean variable. In what follows, 

( , )
( , )A

x y D
x y






     is called the positive discernibility 

function of S , where {( , ) ; ( , )}D x y U U x y    .  It is noted 

that AR is reflexive, therefore, D need not to be symmetry in 

general. 

Theorem 3.4 Let ( , , )S U A d be a generalized decision 

system and   be the positive discernibility function of S . If 

111 1 1( ) ( )
km k kma a a a         

is the reduced disjunctive form of  , then 1Re { , , }kd T T  is 

the set of all positive region reductions of S , where 

1{ , , }
ii i imT a a for each i k . 
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Proof:  (1) For any i k , iT is a positive region reduction 

of S . In fact, if there exist ,x y U  such that ,x y satisfy 

( , )x y  and ( , )i AT x y  , then we let all Boolean variable 

in iT be assigned 1 and the other Boolean variables be assigned 

0. It follows that 0  because ( , ) 0A x y   and 1   

because 
1 1

ii ima a   . This contradicts the fact that  is 

the disjunctive form of  . Thus iT  is a positive region 

consistent set. 

We suppose that there exists a proper subset iT T such 

that ( , )AT x y  for any ( , )x y D . By the property of 

Boolean function, there exist j k such that jT T . It follows 

that 
j iT T . This contradicts the fact that  is the reduced 

disjunctive form of  . Thus iT is a positive region reduction 

of S . 

(2) We suppose that B  is a reduction of S . It follows that 

( , )AB x y  for ( , )x y D . It follows that there exist i k  

such that iT B . Because iT is a positive region consistent set, 

we have iT B . Thus, 1{ , , }kT T  is just the set of all positive 

region reductions of S . 

If AR  is reflexive and symmetric, then ( , ) ( , )A Ax y y x   

for any ,x y U .  Hence we have the following corollary. 

Corollary 3.1 Let ( , , )S U A d be a generalized decision 

system and 1 2{ , , , }nU x x x . If aR is reflexive and symmetric 

for any a A ,  then the positive discernibility function of S  is 

1( , )
( , )A

x y D
x y






     

where
1 1{( , );1 , ( , )}i j i jD x x j i n x x     , 1( , )x y  represents 

the condition: ( ( ) ( )) ( ) ( )A Ax Pos d y Pos d d x d y     . 

Theorem 3.5 Let ( , , )S U A d be a generalized decision 

system and aR an equivalence relation for any a A . If 

( )Ax Pos d , ( )Ay Pos d  and ( ) ( )d x d y , then there exists 

( )Az Pos d  such that ( ) ( )d x d z  and ( , ) ( , )A Ax y x z  . 

Proof:  It is trivial that AR is an equivalence relation on U . 

We use [ ]Ay  to denote ( )AR y . By ( )Ax Pos d , ( )Ay Pos d  we 

have [ ] [ ]A dx x , [ ] [ ]A dy y .  It follows that there exists 

[ ]Az y  such that [ ]dz y . Thus ( ) ( )d y d z , and hence 

( ) ( )d x d z . By [ ]Az y , we have ( , ) ay z R for any a A . In 

consequence,  

( , ) { ; ( ) ( )} { ; ( ) ( )} ( , )A Ax y a A a x a y a A a x a z x z        . 

Furthermore, by [ ]Az y ,  it follows that [ ] [ ]A Az y . Thus we 

have ( )Az Pos d  by ( )Ay Pos d . 

Remark: Let ( , , )S U A d be a decision system and aR an 

equivalence relation for any a A .  

Skowron[11] proposed the discernibility conditions for 
object pairs that need to discern with respect to positive region 
reduction. The discernibility conditions are  

( , ) : ( ) ( )S A Ax y x Pos d y Pos d    ;  

              or ( ) ( )A Ax Pos d y Pos d   ;  

or ( ) ( ) ( ) ( )A Ax Pos d y Pos d d x d y     . 

According to above theorem, the object pair ( , )x y  that 

satisfies ( ) ( )d x d y   do not need to discern in the criterion of 

positive region reduction. To be specific, Skowrons’ 
discernibility conditions can be simplified as following: 

1( , ) : ( ( ) ( )) ( ) ( )A Ax y x Pos d y Pos d d x d y      . 

In essence, based on Corollary 3.1, the discernibility 
condition is 1( , )x y  when the indiscernibility relation satisfies 

reflexivity and symmetry. 

Theorem 3.4 presents an approach to calculate the positive 
region reductions by discernibility function. Similarly as 
pointed out in [11], the approach is NP hard. In the following 
of this section, we present a heuristic algorithm based on 
discernibility matrix to calculate positive region reduction. 

Let ( , , )S U A d be a generalized decision system, B A . 

By Theorem 3.3, B  is a positive region consistent set of S if 

and only if ( , )AB x y  for ,x y U  satisfy ( , )x y . It 

follows that D is the set of element pairs that needs to be 
discerned with respect to positive region reduction. For an 

attribute a A , {( , ) ; ( , )}Ax y D a x y  is the set of object 

pairs that a can discern. Thus, the bigger the set 

{( , ) ; ( , )}Ax y D a x y  , the more possible that a is an element 

of a reduction. Based on this observation, we propose  the 
notion of discernible degree. 

Definition 3.3 Let ( , , )S U A d be a generalized decision 

system, 
( , )

( , )A
x y D

E x y


  . For any a E , the positive region 

discernible degree ( )a of a is defined as 

{( , ) ; ( , )}
( )

Ax y D a x y
a

D








 
 , 

where {( , ) ; ( , )}Ax y D a x y   and D are  cardinalities of 

{( , ) ; ( , )}Ax y D a x y  and D respectively. 

Intuitively speaking, the bigger the ( )a , the more 

important the attribute a . We propose the following algorithm. 

Algorithm 1  

1) Input the generalized decision system ( , , )S U A d . 

2) Compute the positive region
( )APos d

of d and 
( , )A x y

 

for every ( , )x y D . 

3) Place 
( , )A x y

 in  discernibility matrix 1DM
.  

4) Compute the positive region discernible degree ( )a

for each 
1( , )

( , )
A

A
x y DM

a x y





  , where  
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1

1

{ ( , ) ; ( , )}
( )

A Ax y DM a x y
a

DM

 


 
 . 

5) Choose 1a such that 1( ) max ( )
b E

a b 


 (If there are more 

than one attributes with this property, then any one of the 

attribute may be chosen), delete ( , )A x y which contain a from 

discernibility matrix 1DM to obtain 2DM . 

6) Go back to step 3 till 1iDM   . Then 1{ , , }iT a a is 

a positive region reduction.  
Example 3.1 We consider the generalized decision system 

( , , )S U A d , where 1 2 3 4{ , , , }U x x x x , { , , }A a b c , the 

neighborhoods are given by: 

1 1 2( ) { , }aR x x x , 2 2 3 4( ) { , , }aR x x x x , 3 2 3( ) { , }aR x x x ,  

4 3 4( ) { , }aR x x x , 1 1 2 4( ) { , , }bR x x x x , 2 2 3( ) { , }bR x x x ,  

3 1 3 4( ) { , , }bR x x x x , 4 4( ) { }bR x x , 1 1 2( ) { , }cR x x x ,  

2 2 3 4( ) { , , }cR x x x x , 3 2 3 4( ) { , , }cR x x x x , 4 4( ) { }cR x x . 

Furthermore, 1 2/ { , }U d D D , 1 1 2{ , }D x x , 2 3 4{ , }D x x . It 

follows that 1 1 2( ) { , }AR x x x , 2 2 3( ) { , }AR x x x , 3 3( ) { }AR x x , 

4 4( ) { }AR x x . We note that AR is reflexive, but not symmetric 

and transitive. By routine computation, 1 3 4( ) { , , }APos d x x x ,  

1 2 3 4

1

1 2

3

4

{ , , } { , }

{ , } { }

{ , , } { , , }

x x x x

x a b c a c

DM x

x a c b

x a b c a b c

 
 
 
 
 
 
 
 

. 

Thus 
5

( )
6

a  , 
4

( )
6

b  , 
5

( )
6

c  . Choose a , then  

1 2 3 4

1

2 2

3

4

{ }

x x x x

x

DM x

x b

x

 
 
 
 
 
 
 
 

, 

and choose b , then 3DM  . Thus { , }T a b  is a positive 

region reduction.  

Note: If we firstly choose c , then we obtain another 

positive region reduction { , }T b c . 

IV. DISTRIBUTION REDUCTIONS FOR GENERALIZED 

DECISION SYSTEMS 

Kryszkiewicz[3] proposed an rough set approach to 
incomplete information systems where the indiscernibility 
relation is a tolerance relation (reflexive and symmetric 
relation). In this section, we generalized the approach to 
generalized decision systems. 

Let ( , , )S U A d be a generalized decision system, B A . 

We define : ( )B dd U P V  as 

( ) ( ( )) { ( ); ( )}B B Bd x d R x d y y R x   . 

Namely, ( )Bd x  is the set of d  attribute values of objects in 

( )BR x . The mapping Bd  is called decision function determined 

by B . 

Definition 4.1 Let ( , , )S U A d be a generalized decision 

system, B A . If B Ad d , then B  is called a distribution 

consistent set of S , and the minimal  distribution consistent 

set of S  (with respect to set inclusion relation) is called a 

distribution reduction of S . 

Theorem 4.1[11] Let ( , , )S U A d be a generalized decision 

system, B A , 1/ { , , }rU d D D . Then B is a distribution 

consistent set  if and only if ( ) ( )B i A iR D R D for each i r . 

Theorem 4.2 Let ( , , )S U A d be a generalized decision 

system, B A . Then B is a distribution consistent set  if and 

only if ( , )AB x y  for any
2( , )x y D  , where 

2 {( , ); ( ) ( )}AD x y d y d x   . 

Proof:  Necessity: Notice that when 2( , )x y D , we have 

( ) ( )Ad y d x  and hence ( )Ay R x , ( , )A x y  . Let B Ad d  

and 2( , )x y D . By ( ) ( )Ad y d x   it follows that ( ) ( )Bd y d x . 

Thus ( ) [ ]B dR x y  , and ( )By R x . It follows that there 

exists b B  such that ( , ) bx y R ,  namely, ( , )AB x y  . 

Sufficiency: For any x U , we have ( ) ( )A Bd x d x . 

Suppose that u is a decision value of d , ( )Au d x  and 

( )d y u . For any [ ]dz y ,  it follows that ( ) ( ) ( )Ad z d y d x  , 

and hence 
2( , )x z D .  Consequently, we have ( , )AB x z  ,  

namely, there exists b B  such that ( , ) bx z R , and thus 

( )Bz R x . It follows that ( ) [ ]B dR x y  , and in consequence 

( ) ( ( )) ( )B Bu d y d R x d x   . Thus ( ) ( )B Ad x d x .  It follows that 

B Ad d and B is a distribution consistent set of S as required. 

Let ( , , )S U A d be a generalized decision system. In what 

follows, 
2

0

( , )
( , )A

x y D
x y


     is called the distribution 

discernibility function of  S . 

Corollary 4.1 Let ( , , )S U A d be a generalized decision 

system. If 
1

0

11 1 1( ) ( )
km k kma a a a         is the 

reduced disjunctive form of 0 , then 1Re { , , }kd T T  is the set 

of all  distribution reductions of S , where 1{ , , }
ii i imT a a for 

each i k . 

Theorem 4.2 and Corollary 4.1 show the method of 
distribution reduction based on generalized indiscernibility 
relation, which only satisfies reflexivity. Obviously, the 
methods improve the conclusion of literature. Similarly, We 
propose the following algorithm to compute distribution 
reduction. 

Algorithm 2  

1) Input the generalized decision system ( , , )S U A d . 

2) Compute 2D

 and 
( , )A x y

 for every 2( , )x y D
. 

3) Place 
( , )A x y

 in  discernibility matrix 1DM 

.  
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4) Compute the distribution discernible degree ( )a for 

each 
1( , )

( , )
A

A
x y DM

a x y





  , where  

1

1

{ ( , ) ; ( , )}
( )

A Ax y DM a x y
a

DM

 






 
 . 

5) Choose 1a such that 1( ) max ( )
b E

a b 


 (If there are more 

than one attributes with this property, then any one of the 

attribute may be chosen), delete ( , )A x y which contain a from 

discernibility matrix 
1DM  to obtain 

2DM  . 

6) Go back to step 3 till 
1iDM 

  . Then 1{ , , }iT a a is 

a distribution reduction. 

The following theorem shows the connection between the 
concepts of distribution reduction and positive region 
reduction. 

Theorem 4.3 Let ( , , )S U A d be a generalized decision 

system, B A , 1/ { , , }rU d D D . If B is a distribution 

consistent set, then B is a positive region consistent set. 

Proof:  We suppose that B  is a distribution consistent set. 

It follows that ( ) ( )B i A iR D R D for each i r . Thus 

( ) ~ (~ ) ~ ( ) ~ ( )B i B i B j B j
j i j i

R D R D R D R D
 

      

~ ( ) ~ ( ) ~ (~ ) ( )A j A j A i A i
j i j i

R D R D R D R D
 

      . 

Consequently, B  is a positive region consistent set. 

V. CONCLUSIONS 

Rough set under incomplete information has been 
extensively studied. Researchers have put forward several 
similarity relations on objects and some attribute reduction 
approaches for incomplete information systems. This paper is 
devoted to the study of positive region reduction and 
distribution reduction based on generalized indiscernibility 
relation.  

The judgment theorems for positive region reduction and 
distribution reduction of generalized decision systems and 
attribute reduction approaches are presented. Furthermore, the 
reduction algorithms based on discernible degree are proposed. 
Based on this work, we can further probe the rough set model 
under incomplete information and its application in 
knowledge discovery. 
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