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Abstract—Data granulation is considered a good tool of 

decision making in various types of real life applications. The 

basic ideas of data granulation have appeared in many fields, 

such as interval analysis, quantization, rough set theory, 

Dempster-Shafer theory of belief functions, divide and conquer, 

cluster analysis, machine learning, databases, information 

retrieval, and many others. Some new topological tools for data 

granulation using rough set approximations are initiated.  

Moreover, some topological measures of data granulation in 

topological information systems are defined. Topological 

generalizations using  -open sets and their applications of 

information granulation are developed. 
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I. INTRODUCTION 

Granulation of the universe involves the decomposition of 
the universe into parts. In other words, the grouping individual 
elements or objects into classes, based on offering information 
and knowledge [7, 14,15, 21, 36,37, 42-45]. Elements in a 
granule are pinched together by indiscernibility, similarity, 
proximity or functionality [43]. The starting point of the 
theory of rough sets is the indiscernibility of objects or 
elements in a universe of concern [14,15, 17-20, 51,52, 21-
22]. 

The original rough set theory was based on an equivalent 
relation on a finite universe U. For practical use, there have 
been some extensions on it. One extension is to replace the 
equivalent relation by an arbitrary binary relation; the other 
direction is to study rough set via topological method [8, 14]. 
In this work, we construct topology for a family covering 
rough sets. 

In [40] addressed four operators on a knowledge base, 
which are sufficient for generating new knowledge structures. 
Also, they addressed an axiomatic definition of knowledge 
granulation in knowledge bases. 

Rough set theory, proposed by Pawlak in the early 1980s 
[18, 51-52], is an expansion of set theory for the study of 
intelligent systems characterized by inexact, uncertain or 
insufficient information. Moreover, this theory may serve as a 
new mathematical tool to soft computing besides fuzzy set 
theory [42-45] and has been successfully applied in machine 
learning, information sciences, expert systems, data reduction, 

and so on [28-33,34, 1-13]. In recent times, lots of researchers 
are interested to generalize this theory in many fields of 
applications [1-10]. 

In Pawlak’s novel rough set theory, partition or 
equivalence (indiscernibility) relation is an important and 
primeval concept. But, partition or equivalence relation is still 
limiting for many applications. To study this matter, several 
interesting and having an important effect generalization to 
equivalence relation have been proposed in the past, such as 
tolerance relations, similarity relations [51], topological bases 
and subbases [52, 2,6]  and others [4,5,11]. Particularly, some 
researchers have used coverings of the universe of discourse 
for establishing the generalized rough sets by coverings [11-
14]. Others [24-26,27-33] combined fuzzy sets with rough sets 
in a successful way by defining rough fuzzy sets and fuzzy 
rough sets. Furthermore, another group has characterized a 
measure of the roughness of a fuzzy set making use of the 
concept of rough fuzzy sets [34-38]. They also suggested 
some possible real world applications of these measures in 
pattern recognition and image analysis problems [24,41-46]. 

Topological notions like semi-open, pre-open,   open 

sets are as basic to mathematicians of today as sets and 
functions were to those of last century [48-52]. Then, we think 
the topological structure will be so important base for 
knowledge extraction and processing. 

The topology induced by binary relations on the universes 
of information systems is used to generalize the basic rough 
set concepts. The suggested topological operations and 
structure open up the way for applying affluent more of 
topological facts and methods in the process of granular 
computing. In particular, the notion of topological 
membership function is introduced that integrates the concept 
of rough and fuzzy sets [17-20]. 

In this paper, we indicated some topological tools for data 
granulation by using new topological tools for rough set 
approximations.  Moreover, we introduced using general 
binary relations a refinement data granulation instead of the 
classical equivalence relations.  Section 1 gives a brief 
overview of data granulation structures in the universe using 
equivalence and general relations. Fundamentals of rough set 
theory under general binary relations are the main purpose of 
Section 2.  Section 3 studies the topological data granulation 
properties of topological information systems. Explanation of 
topological data granulation in information systems appears in 
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Section 4.  In Section 5 we are given some more accurate 

topological tools for data granulation using   open sets 

approach. The conclusions of our work are presented in 
Section 6. 

II. ESSENTIALS OF ROUGH SET APPROXIMATIONS UNDER 

GENERAL BINARY RELATIONS 

In rough set theory, it is usually assumed that the 
knowledge about objects is restricted by some indiscernibility 
relations. The Indiscernibility relation is an equivalence 
relation which is interpreted so that two objects are equivalent 
if we can't distinguish them using our information. This means 

that the objects of the given universe U indiscernible by R  

into three classes with respect to any subset X U : 

Class 1: the objects which surely belong to X , 

Class 2: the objects which possibly belong to X  , 

Class 3: the objects which surely not belong to X  , 

The object in Class 1 form the lower approximation of X
, and the objects of Class 1 and 3 form together its upper 

approximation. The boundary of X  consists of objects in 
Class 3. Some subsets of U are identical to both of them 
approximations and they are called crisp or exact; otherwise, 
the set is called rough. 

For any approximation space ( , )A U R , where R is an 

equivalence relation, lower and upper approximations of a 

subset X U , namely ( )R X and ( )R X  are defined as 

follows: 

( ) { :[ ] }RR X x U x X   , 

( ) { :[ ] }RR X x U x X    . 

The lower and upper approximations have the following 
properties: 

For every ,X Y U from the approximation space 

( , )A U R we have: 

1. ( ) ( ),

2. ( ) ( ) ,

3. ( ) ( ) ,

4. ( ) ( ) ( ),

R X X R X

R U R U U

R R
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 



 

),()()(.6

),()()(.5

YRXRYXR

YRXRYXR








 

.)()()()(,.12

),())(())((.11

),())(())((.10

),()(.9

),()(.8

),()()(.7

YRXRandYRXRthenYXIf

XRXRRXRR

XRXRRXRR

XRXR

XRXR

YRXRYXR






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The equality in all properties happens when

( ) ( )R X R X X  . The proof of all these properties can 

be found in [17-23,51]. 

Furthermore, for a subset X U , a rough membership 

function is defined as follows: 
[ ]

( )
[ ]

R

X

R

x X
x

x
  , where 

X  denotes the cardinality of the set X . The rough 

membership value ( )X x may be interpreted as the 

conditional probability that an arbitrary element belongs to 

X  given that the element belongs to[ ]Rx . 

Based on the lower and upper approximations, the 

universe U  can be divided into three disjoint regions, the 

positive ( )POS X , the negative ( )NEG X  and the 

boundary ( )BND X   ,where: 

( ) ( )

( ) ( )

( ) ( ) ( )

POS X R X

NEG X U R X

BND X R X R X



 

 

 

Considering general binary relations in [18,52] is an 
extension to the classical lower and upper approximations of 

any subset X  of U . { : }xR x X   is the base 

generated by the general relation defined in [17,52]. The 

general forms based on   are defined as follows: 

( ) { : , }xR X B B B X    , 

( ) { : , }xR X B B B X     , where

{ : }x B x B    . 

For data granulation by any binary relation, in [E. Lashein 
(2005)  ] a rough membership function is defined as follows: 

( )
( )

x

X

x

X
x





  . 
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III. ROUGH SETS OF EQUIVALENCE AND GENERAL BINARY 

RELATIONS 

Indiscernibility as defined by equivalence relation 
represents a very restricted type of relationships between 
elements and universes. The procedure to granule the universe 
by general binary relations is introduced in [6]. 

A topological space [1,2] is a pair ( , )X   consisting of a 

set X  and a family   of subset of X  satisfying the 

following conditions:  

    (1) ,X  , 

    (2)   is closed under arbitrary union, 

    (3)   is closed under finite intersection. 

The pair ( , )X   is called a topological space. The 

elements of X  are called points . The subsets of X  
belonging to   are called open sets.  The complement of the 

open subsets are called closed sets. The family   of all open 

subsets of X  is also called a topology for X . 

( ) = { : a is closed}cl A F X A F nd F   

is called  -closure of a subset A X . 

Obviously, ( )cl A  is the smallest closed subset of X  

which contains A . Note that A is closed iff = ( )A cl A . 

( ) = { : a is open}int A G X G A nd G   

is called the  -interior of a subset A X . Manifestly, 

( )int A  is the union of all open subsets of X  which 

contained in A . Make a note of that A  is open iff 

= ( )A int A . ( ) = ( ) ( )b A cl A int A  is called the  -

boundary of a subset A X . 

For any subset A  of the topological space ( , )X  , 

( )cl A , ( )int A  and ( )b A  are closure, interior, and 

boundary of A  respectively. The subset A  is exact if 

( ) =b A  , otherwise A  is rough. It is clear that A  is exact 

iff ( ) = ( )cl A int A . In Pawlak space a subset A X  has 

two possibilities either rough or exact. 

In later years a number of generalizations of open sets 
have been considered [21-23]. We talk about some of these 
generalizations concepts in the following definitions. 

Let U  be a finite universe set and R is any binary relation 

defined onU , and ( )rR x   be the set of all elements which are 

in relation to certain elements x  in U  from right for all

x U , in symbols ( ) { , }rR x xR x U   where

{ : ( , ) ; , }xR y x y R x y U   . 

Let   be the general knowledge base (topological base) 

using all possible intersections of the members of ( )rR x . The 

component that will be equal to any union of some members 

of   must be misplaced. 

IV. TOPOLOGICAL GENERALIZATIONS OF ROUGH SETS 

Let ( , )A U R be an approximation space where R is 

any binary relation defined on U . Then we can define two 

new approximations as follows: 

( ) ( ( ))X X R R X  , 

( ) ( ( ))X X R R X   . 

The topological lower and the topological upper 
approximations have the following properties: 

For every ,X Y U and every approximation space 

( , )A U R we have:
 

1. ( ) ( )X X X   , 

2. ( ) ( )U U U   , 

3. ( ) ( )       , 

4. ( ) ( ) ( )X Y X Y       , 

5. ( ) ( ) ( )X Y X Y       , 

6. ( ) ( ) ( )X Y X Y       , 

7. ( ) ( ) ( )X Y X Y       , 

8. ( ) ( )X X     , 

9. ( ) ( )X X     , 

10. ( ( )) ( )X X     , 

11. ( ( )) ( )X X     , 

12.

, ( ) ( ) ( ) ( ).If X Y then X Y and X Y          

Given that topological lower and topological upper 
approximations satisfy that: 

( ) ( ) ( ) ( )R X X X X R X U       this 

enables us to divide the universe U  into five disjoint regions 

(granules) as follows: (See Figure 1) 

1. 
( ) ( )POS X R X 

, 

2. 
( ) ( ) ( )POS X X R X   

,   

3. 
( ) ( ) ( )BND X X X     

, 

4. 
( ) ( ) ( )NEG X R X X    

, 

5. 
( ) ( )NEG X U R X  

. 
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The following theorems study the properties and 
relationships among the above regions namely boundary, 
positive and negative regions. 

Theorem 4.1 let ( , , )RIS U A  be a topological 

information system and for any subset X U   we have: 

(1) ( ) ( )BND X X     , 

(2) ( ) ( )BND X NEG X      , 

(3) ( ) ( ) ( )X X BND X      , 

(4) ( ), ( )X NEG X   and ( )BND X  are disjoint 

granules of U . 

Proof: You can make use of Figure 1. 

Theorem 4.2 let ( , , )RIS U A  be a topological 

information system and for any subsets ,X Y U   we have: 

(1) ( )BND U   , 

(2) ( ) ( )BND X BND U X     , 

(3) ( ( )) ( )BND BND X BND X      , 

( ) ( ) ( )BND X Y BND X BND Y         

Proof: (1) and (2) is obvious, by definitions. 

(3)
))()((

))((

XUXBND

XBNDBND





 



)))()(((

))()((

XUXU

XUX
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







( ) ( ) ( )X U X BND X        .  

     (4) 

( ) ( ) ( )BND X Y X Y U X Y           

Theorem 4.3 let ( , , )RIS U A  be a topological 

information system and for any subset ,X Y U   we have: 

(1) ( )U NEG   , 

(2) ( ) ( )NEG X U X    , 

(3) ( )X NEG X    , 

(4) ( ( )) ( )NEG U NEG X NEG X       , 

(5) 
)()(

)(

YNEGXNEG

YXNEG








, 

(6) 
)()(

)(

YNEGXNEG

YXNEG








 

Proof: (1), (2), (3) and (4) are obvious. 

 (5) 
))()(()(
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YXUYXU

YXNEG

 


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Example 4.1 let 1 2 3 4 5 6 7{ , , , , , , }U u u u u u u u  be the 

universe of 7 patients have data sheets shown in Table I with 
possible dengue symptoms. If some experts give us the 

general relation R defined among those patients as follows: 

TABLE I.  PATIENTS INFORMATION SYSTEM 

U  
Conditional Attributes ( C) 

Decision 

(D) 

Temperature Flu Headache Dengue 

u1 Normal No No No 

u2 High No No No 

u3 Very High No No Yes 

u4 High No Yes Yes 

u5 Very High No Yes Yes 

u6 High Yes Yes Yes 

u7 Very High Yes Yes Yes 

)}.,(,

),(),,(),,(),,(

),,(),,(),,(),,{(

77

66554463

33227111

uu

uuuuuuuu

uuuuuuuuR 

 

The topological knowledge base will take the following 
form: 

1 7 2 3 6 4 5 6 7{{ , },{ },{ , },{ },{ },{ },{ }}u u u u u u u u u   

For some patients 2 3 7{ , , }X u u u  the upper and lower 

approximations based on the topological knowledge base are 
given by: 

1 2 3 6 7( ) { , , , , }R X u u u u u  , and    
2 7{ , }R u u  . 

By using the lower and upper approximations, the granules 
of universe are three disjoint regions as follows: 

2 7( ) ( ) { , }POS X R X u u   , 

1 3 6( ) ( ) ( ) { , , }BND X R X R X u u u     , 

4 5( ) ( ) { , }NEG X U R X u u    . 

According to the topological knowledge base we can 
easily see that: 

1 2 3 7( ) { , , , }X u u u u  , 
2 3 7( ) { , , }X u u u  . 

Then we have the following granules of the universe: 

1. 
( ) { 2, 7}POS X u u 

, 
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2. 
( ) { 3}POS X u  

,   

3. 
}1{)( uXBND 

, 

4. 
( ) { 6}NEG X u  

, 

5. 
( ) { 4, 5}NEG X u u 

. 

V. NEW TOPOLOGICAL GENERALIZATIONS OF ROUGH SETS 

In this section, we used the topological tool  -open sets 

to introduce the concepts of  -lower and  -upper 

approximations. The suggested model helps in decreasing the 
boundary region of concepts in information systems. Also, we 

use the topological measure 
R


  is used as a topological 

accurate measure of data granulation correctness. 

For any subset X  of a topological space ( , )U  . The  -

closure of a subset X  is defined by 

}a

,=))((:{=)(

Gxnd

GGclintXUxXcl



 


. A set 

X  is called  -closed if = ( )X cl X


. The complement of 

a  -closed set is called  -open. 

Notice that 
( ) = \ ( \ )int X U cl U X

  . 

A subset X  of a topological space ( , )U   is called  -

open if ( ( ( )))X cl int cl X


 . 

Let ( , )U   be a topological space and X U , the 

following new topological tools of any  subset X  are defined 
as follows [1,2,6]: 

 Regular open tool  if = ( ( ))X Int Cl X . 

 Semi-open tool  if ( ( ))X Cl Int X . 

   open tool  if ( ( ( )))X Int Cl Int X . 

 Pre-open tool  if ( ( ))X Int Cl X . 

 Semi pre open tool  (    open ) if 

( ( ( )))X Cl Int Cl X . 

The family of all  -open sets of U  is denoted by 

( )O U . The complement of  -open set is called  -

closed  set. The family of  -closed  sets are denoted by 

( )C U . 

Let X  be a subset of a topological space ( , )U  , then we 

have: 

 (i) The union of all  -open sets contained  inside X  is 

called the  -interior of X  and is denoted by ( )int X


 . 

 (ii) The intersection of all  -closed sets containing X  

is called the  -closure of X  and is denoted by ( )cl X


 . 

Lemma 6.1 For a subset X  of a topological space ( , )U   

we have: 

(i) ( ) = ( ( ( )))int X X cl int cl X


  . 

(ii) ( ) = ( ( ( )))cl X X int cl int X


  . 

 -open sets is stronger than any topological near open 

sets such as  -open, regular open, semi-open,   open, 

pre-open,  -open. 

The following example illustrates the above note. 

Example 5.1 Let 
( , )U 

 be a topological space where, 

= { , , , , }U a b c d e
 and 

}},,,{},,,{},,,{

},,{},,{},{},{,,{=

edcbecbeda

eddaedU 
. We have 

{ , } ( )a c O U
 but 

{ , } ( )a c O U , 

{ , , } ( )b d e O U
 but 

{ , , } ( )b d e RO U , 

{ , } ( )a e O U
 but 

{ , } ( )a e PO U , 
{ } ( )c O U

 

but 
{ } ( )c O U , 

{ } ( )b O U
 but 

{ } ( )b SO U  

and 
{ , } ( )c d O U

 but 
{ , } ( )c d O U . Where  

( )O U
, 

( )RO U
, 

( )SO U
, 

( )O U
, 

( )PO U
 and 

( )O U
denoted the family of all  -open, regular open, 

semi-open,   open, pre-open and 


-open sets of U
respectively. 

Arbitrary union of  -open sets is again  -open set, 

but the intersection of two  -open sets may not be  -

open set. Thus the  -open sets in a space U  do not form a 

topology. 

Let U  be a finite non-empty universe. The pair ( , )U R


 

is called a  -approximation space where R


 is a general 

relation used to get a subbase for a topology   on U  which 

generates the class ( )O U  of all  -open sets. 

Example 6.2 Let 
= { , , , , }U a b c d e

 be a universe and a 

relation R  defined by 
= {( , ),R a a ( , ), ( , ),a e b c ( , ),b d

( , ), ( , ),c e d a ( , ), ( , )}d e e e
,thus 

= = { , }aR dR a e
, 
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= { , }bR c d
 and 

= = { }cR eR e
. Then the topology 

associated with this relation is 
= { ,U ,{ },e

{ , },{ , },a e c d { , , },c d e { , , , }}a c d e
 earned 

( ) = ( ) { }O U P U b 
. So ( , )U R


 is a 


-

approximation space. 

Let ( , )U R


 be a   - approximation space.  -lower 

approximation and  -upper approximation of any non-

empty subset X  of U  is defined as: 

( ) = { ( ) : }R X G O U G X


 
,  

( ) = { ( ) : }R X F C U F X


  . 

We see that: 

)()()(

)()()(

XRXRXR

XXRXRXR








. 

Let ( , )U R


 be a   - approximation space, X U . 

From the relation 
),()()(

)()()(

XclXclXcl

XXintXintXint








 

The Universe U  can be separated into divergent 24 granules 

with respect to any X U . 

We can distinguish the degree of completeness of granules 

of U  by the topological  tool named  -accuracy measure 

defined for any granule X U  as follows: 

| ( ) |
( ) = w =

| ( ) |R

R X
X here X

R X



 

  . 

Example 5.2 According to Example 5.1  we can construct  
the following table  (Table II) showing the degree of accuracy 

measure ( )R X ,  -accuracy measure ( )R X


  and  -

accuracy measure ( )R X


  for some granules  of U . 

TABLE II.  ACCURACY MEASURES OF SOME GRANULES 

Some 

granules 

Pawlak's 

accuracy 
 -accuracy  -accuracy 

{b, d} 0% 100% 100% 

{b, e} 33.3%

 
66.6% 100% 

{a, b, e} 66.6% 100% 100% 

{a, c, d} 50% 66.6% 100% 

{b, c, d, e} 60% 80% 100% 

We see that the degree of accuracy of the granule 

{ , , , }b c d e  using Pawlak's accuracy measure equal to 60% , 

using  -accuracy measure equal to 80%  and using  -

accuracy measure equal to 100% . Accordingly  -

accuracy measure is more precise than  Pawlak's accuracy and 

 -accuracy measures. 

VI. CONCLUSIONS AND APPLICATION NOTES 

In the near future is the completion of a new paper for the 
application of the granules concepts of this paper in medicine 
especially in the field of heart disease in collaboration with 
specialists in this field. We designed a JAVA application 
program novelty to generate granules division automatically 
once you select points covered by the heart scan and the 
medical relationship among them using topology defined on it. 
The program works under any operating system but needs to 
be a great RAM memory and strong processor to end the 
division of the millions of points to the granules in seconds. 
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