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Abstract—This paper reports the results of experiments to 

develop a minimal neural network for pattern classification. The 

network uses biologically plausible neural and learning 

mechanisms and is applied to a subset of the MNIST dataset of 

handwritten digits. The research goal is to assess the 

classification power of a very simple biologically motivated 

mechanism. The network architecture is primarily a feedforward 

spiking neural network (SNN) composed of Izhikevich regular 

spiking (RS) neurons and conductance-based synapses. The 

weights are trained with the spike timing-dependent plasticity 

(STDP) learning rule. The proposed SNN architecture contains 

three neuron layers which are connected by both static and 

adaptive synapses. Visual input signals are processed by the first 

layer to generate input spike trains. The second and third layers 

contribute to spike train segmentation and STDP learning, 

respectively. The network is evaluated by classification accuracy 

on the handwritten digit images from the MNIST dataset. The 

simulation results show that although the proposed SNN is 

trained quickly without error-feedbacks in a few number of 

iterations, it results in desirable performance (97.6%) in the 

binary classification (0 and 1). In addition, the proposed SNN 

gives acceptable recognition accuracy in 10-digit (0-9) 

classification in comparison with statistical methods such as 

support vector machine (SVM) and multi-perceptron neural 

network. 

Keywords—Spiking neural networks; STDP learning; digit 
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I. INTRODUCTION 

Neural networks that use biologically plausible neurons and 
learning mechanisms have become the focus of a number of 
recent pattern recognition studies [1, 2, 3]. Spiking neurons and 
adaptive synapses between neurons contribute to a new 
approach in cognition, decision making, and learning [4-8].  

Recent examples include the combination of rank order 
coding (ROC) and spike timing-dependent plasticity (STDP) 
learning [9], the calculation of temporal radial basis functions 
(RBFs) in the hidden layer of spiking neural network [10], and 
linear and non-linear pattern recognition by spiking neurons 
and firing rate distributions [11]. The studies mentioned utilize 
spiking neurons, adaptive synapses, and biologically plausible 
learning for classification. 

Learning in the present paper combines STDP with 
competitive learning. STDP is a learning rule which modifies 

the synaptic strength (weight) between two neurons as a 
function of the relative pre- and postsynaptic spike occurrence 
times [12]. Competitive learning takes the form of a winner-
take-all (WTA) policy. This is a computational principle in 
neural networks which specifies the competition between the 
neurons in a layer for activation [13]. Learning and 
competition can be viewed as two building blocks for solving 
classification problems such as handwritten digit recognition. 
Nessler et al. (2009) utilized the STDP learning rule in 
conjunction with a stochastic soft WTA circuit to generate 
internal models for subclasses of spike patterns [14]. Also, 
Masquelier and Thorpe (2007) developed a 5-layer spiking 
neural network (SNN) consisting of edge detectors, subsample 
mapping, intermediate-complexity visual feature extraction, 
object scaling and position adjustment, and categorization 
layers using STDP and WTA for image classification [15]. 

Auditory and visual signals have special authentication 
processes in the human brain. Thus, one or more neuron layers 
are required to model the signal sequences in one and two-
dimensional feature vectors in addition to the learning phase. 
Wysoski et al. (2008 and 2010) proposed a multilayer SNN 
architecture to classify audiovisual input data using an adaptive 
online learning procedure [16, 17]. The combination of 
Izhikevich’s neuron firing model, the use of conductance-based 
synaptic dynamics, and the STDP learning rule can be used for 
a convenient SNN for pattern recognition. As an example, 
Beyeler et al. (2013) developed a decision making system 
using this combination in a large-scale model of a hierarchical 
SNN to categorize handwritten digits [18]. Their SNN 
architecture consists of 3136 plastic synapses which are trained 
and simulated in 500 (ms). They trained the system by 
10/100/1000/2000 samples of the MNIST dataset in 100 
iterations and achieved a 92% average accuracy rate. In 
another study, Nessler et al. (2013) showed that Bayesian 
computation is induced in their proposed neural network 
through STDP learning [2]. They evaluated the method, which 
is an unsupervised method for learning a generative model, by 
MNIST digit classification and achieved an error rate of 
19.86% (80.14% correctness). Their proposed neural network 
for this experiment includes 708 input spike trains and 100 
output neurons in a complete-connected feedforward network. 

Some previous studies (c.f. [18], [2]) have attempted to 
develop an autonomous and strong artificial intelligence based 
on human brain anatomy in a large network of neurons and 
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synapses. However, two inevitable and important aspects of the 
brain simulation are 1) the size of the network that is, number 
of the neurons and synapses, and 2) rapid learning and decision 
making. In some cases, a concise network is needed to be tuned 
and make a decision quickly in a special environment such as 
binary classification in the real time robot vision. Although 
large networks provide convenient circumstances for handling 
the details and consequently desirable performance, they are 
resource intensive. Our goal is to develop a fast and small 
neural network to extract useful features, learn their statistical 
structure, and make accurate classification decisions quickly. 

This paper presents an efficient 3-layer SNN with a small 
number of neurons and synapses. It learns to classify 
handwritten MNIST digits. The training and testing algorithms 
perform weight adaptation and pattern recognition in a time 
and memory efficient manner while achieving good 
performance. The proposed SNN provides a robust solution for 
the mentioned challenge in three steps. First, the digit image is 
converted to spike trains so that each spike is a discriminative 
candidate of a row pixel in the image. Second, to reduce the 
network size and mimic human perception of the image, the 
spike trains are integrated to a few sections. In this part, each 
output spike train specifies a special part of the image in the 
row order. Third, training layer which involves STDP learning, 
output spike firing, and WTA competition by inhibitory neuron 
modifies a fast pattern detection strategy. The remarkably 
simple SNN is implemented for binary (“0, 1” c.f. Fig. 1) and 
10-digit task (0-9) handwritten digit recognition problem to 
illustrate efficiency of the proposed strategy in primitive 
classifications. Furthermore, the obtained results are compared 
with statistical machine learning models in the same 
circumstances (same training/testing data without feature 
mapping) to depict the trustworthy of our model in similar 
situations. 

II. SPIKING NEURAL NETWORK ARCHITECTURE 

The proposed SNN architecture is shown in Fig. 2. It 
includes three components: 1) a neural spike generator, 2) 
image segmentation, and 3) learning session and output pattern 
creator. Theory and implementation of each component will be 
explained. 

A. First layer: Presynaptic spike train generator 

Each row in the 28×28 binary image (c.f. Fig. 3) is 
transcribed into a spike train in a left-to-right fashion. Fig. 3 
shows an example digit “0” with N×M binary pixels. Rows are 
converted to spike trains where a pixel value of “1” represents 
a spike occurrence. To apply the discriminative features of the 
image in a small network architecture, the digit image is 
recoded to N presynaptic spike trains with A×M discrete time 
points. A controls the interspike spacing and is interpreted as 
the refractory period of the neuron. In summary, the first layer 
converts the binary digit image into N rows of spike trains 
according to the white pixels of the digit foreground. 

 
Fig. 1. Sample of handwritten digit images “0” and “1” 
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Fig. 2. Supervised SNN architecture containing spike transcription layer, 

spike train segmentation, STDP learning, output pattern firing, and inhibitory 

neuron. N: number of rows. K: number of adjacent rows connected to one 
neuron. P: number of classes. Black circle inhibits all output neurons except the 

one designated by the class label 
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Fig. 3. A digit image with N×M pixels divided into N/K segments, consisting 
of k rows per segment 

B. Second Layer: Image segmentation 

The first layer generates N spike trains, where N is the 
number of the rows, encoding the image features row by row. 
However, it does not consider the slight change in orientation 
and thickness of the digit foreground in comparison with its 
background. To address this, the second layer illustrated in Fig. 
2 merges every K spike trains (rows) onto one neuron. Then 
the digit image is segmented into N/K parts while preserving 
the spike train order. This preprocessing layer reduces the 
number of trainable parameters. Fig. 4 shows three instances of 
digit “1” (from the MNIST). The second layer converts these 
different shapes to similar N/K rows of spike trains. In addition, 
combining the sequential rows increases the network flexibility 
in pattern classification by decreasing its size. In summary, 
without the second layer, spike trains are sensitive to noise, 
outlier data, and diverse writing styles. 

 
Fig. 4. Three instances of the handwritten digit “1” 
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To simulate the conductance of the postsynaptic membrane 
of the second layer units upon receipt of a presynaptic spike, 
the α-function is used. Equation (1) and Fig. 5 show the 
formula and graph of the postsynaptic conductance based on 
the α-function. 

/

syn syn( )  tG t K t e  

Ksyn controls the peak conductance value and τ controls the 
time at which the peak conductance is reached. 

Additionally, the total conductance of N input synapses 
with Nrec,k (k=1:N) spikes is calculated by (2) 
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where t
f
 is spike firing time. This formula performs linear 

spatio-temporal summation across the received spike train. The 
total postsynaptic current is obtained by (3) 
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In this investigation, spike generation in the second and 
third layer is controlled by Izhikevich’s model [19] (4) 
specified by two coupled differential equations. 
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There is also a reset condition after a spike is generated, 
given in (5). 

peak : ,   if V V V c U U d

an APis emitted
 

Where, V denotes membrane potential and U specifies the 
recovery factor preventing the action potential (AP) and 
keeping the membrane potential close to the resting point. “a”, 
“b”, “k”, “c”, “d”, and “Vpeak” are predefined constants 
controlling the spike shapes. The time of spike events is taken 
to occur at reset. 

 
Fig. 5. Conductance graph with Ksyn=1 (α-function) and τ=2 (msec) 

C. Third layer: Learning and output neurons 

Third layer of the SNN shown in Fig. 2 learns the input 

spike patterns and generates output spikes based on the 
evolving synaptic weights. STDP is controlled by relative pre- 
and postsynaptic spike times. Equation (6) specifies that 
postsynaptic spikes which follow presynaptic spikes cause the 
synaptic weight to be increased (LTP) and in contrast, synapses 
are weakened when presynaptic spike occurs after postsynaptic 
spike generation time (LTD). 
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In  (6), Altp and τ+ (Altd and τ-) are maximum and time 
constant strengthening (weakening) constants respectively. In 
addition, the change in synaptic weights contributes to change 
in conductance amplitude, Ksyn, in α-function derivation. The 
learning strategy used in this investigation is basically derived 
from the STDP concept. The proposed network in the first 
layer emits spike trains with maximum M spikes, where M is 
the number of columns in the image matrix. The second layer 
presents new information of spike trains at which spikes depict 
explicit foreground pixel information. In addition, the 
membrane potential is accumulated based on the received 
action potentials. Therefore, in the proposed minimal network 
architecture which models the patterns by exact object 
coordinates, a modified STDP learning is defined in (7). 
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where Altp, Altd, β>1, and σ are constant parameters. In (7), 
if output neuron Pj fires, the synaptic weights can be either 
increased or decreased. Presence of the presynaptic spikes in 
the σ time interval before current time strengthens the synaptic 
conductance. In contrast, absence of the presynaptic spikes 
reduces the synaptic conductance. To prevent aliasing between 
σ time interval and previous output spike, presynaptic spikes 
after the last emitted postsynaptic spike are counted. Also, the 
inverse value of the conductance amplitude (Kji) controls rate 
of the LTP in the high conductance conditions. 

In addition, output neurons in the third layer receive N/K 
spike trains and generate P (as number of the output patterns) 
output spike trains based on the current synaptic weights, 
presynaptic spike trains, and Izhikevich’s model for the spike 
generation mechanism. Furthermore, each output neuron 
specifies one class. The learning strategy in the output layer is 
supervised. This is implemented by using an inhibitory neuron 
that imposes a WTA discipline across the output units. 
Specifically, the inhibitory unit uses the category label for the 
current training stimulus to inhibit all the output neurons that 
do not match the label. The net learning effect is that the 
nonmatching units undergo LTD, while the single matching 
unit undergoes LTP. Equation (8) specifies the LTD rule for 
inactive neurons. The synaptic conductance reduction in this 
formula depends on the presynaptic spikes “yi” conveyed to the 

neuron in the time interval [
1

min( , )
f f

j j
t t 
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f

j
t ]. 
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Where, γ is rate of the inhibition. In the last step, 
conductance magnitude of the synapses (which can be 
interpreted as synaptic weights) are updated by (9) 

1   t t t

ji ji jiK K K  

where, μ is learning rate. Finally, the result will be an array 
of synaptic weights and output spike patterns. Fig. 6 shows 
pseudocode for the SNN architecture and learning strategy. 

D. Justification 

Digits belonging to the same categories are not entirely 
similar due to different handwriting styles, variations in 
orientation, and variations in line thickness. The second layer 
converts the various images of one digit into a small number of 
similar patterns. It combines K spike trains to adjust the 
thickness and presents the image in N/K row segments. The 
slight diversity of the images in a digit category can be 
manipulated by foreground adjustment in height and width 
which is implemented by row segmentation and regular spiking 
(RS) neurons respectively. In addition, N input spike trains are 
mapped to N/K spike trains to minimize the network size. 

To explain the learning procedure and justify its function in 
classification, an example consisting of the digits 2, 4, 1, and 9 
is described step by step. Fig. 7 shows the digits. They are 
divided into 4 horizontal segments which are mapped into 4 
adaptive synapses. If an output spike occurs, the synapses 
carrying more frequent and closer presynaptic spikes (white 
pixels) before the output spike have more casual effects. Thus, 
their weights are increased based on the LTP rule. For 
example, the synapses {1,4}, {3}, and {1,2} in digits 2, 4, 9 
respectively carry frequent presynaptic spikes, so their weights 
are increased more than the other synapses in each digit. In 
digit “1”, all of the synapses have analogous influences onto 
the output neuron firing. So, the synaptic weights should be 
almost unbiased. After the first training period including 
weight augmentation and reduction, in the next iteration, the 
synaptic weights are tuned better according to the input digit 
patterns. Additionally, synaptic weights, which are connected 
to the same neurons in the second layer and different output 
neurons, are adapted in a competition due to the inhibitory 
neuron. Therefore, the synaptic weights demonstrate 
discriminative weight vectors for different digit patterns. In 
Fig. 7, some nominal synaptic weights (Ex. {0.20, 0.20, 0.45, 
0.15} for digit 4) have been shown. 

In the test session, if the digit spike trains are matched to 
the synaptic weights, the target output neuron releases a spike 
train close to the target pattern. Otherwise, due to 
discriminative synaptic weights, if the input spike trains are not 
compatible with the synaptic weights and target pattern, the 
output neuron might release a spike train either with 0 
frequency or arbitrary pattern. Finally, the digit having 
maximum correlation with training data will be recognized in a 
small and fast neural network. 

III. EXPERIMENTS AND RESULTS 

A subset of the MNIST machine learning data set 
consisting of handwritten digit images was used for evaluation 
of the proposed method [20]. Digital images in the dataset are 
28 pixels in height and 28 pixels in width for a total of 784 
pixels composing each grayscale image. 

A. Binary classification 

In the first experiment, 750 images of the digits “0” and “1” 
were sampled. Each grayscale image was converted to a binary 
image by applying the middle point threshold (threshold 
pixel=128). The 750 digit samples were divided into training 
and testing sets by 3-fold cross validation to guarantee the 
generality of the method. 

The first layer scans the rows pixel by pixel and generates 
spikes where the digit points occur. Pixel values equal to 1 
denote spike occurrences. In addition, a refractory period, A, is 
assumed to be 2 (ms). Therefore, the spike trains represent a 
row fall into a 28×2=56 (ms) temporal window. Fig. 3 gives an 
example of spike train generation for a sample digit “0”. 
Finally, 28 spike trains with 56 (ms) discrete time points are 
obtained as presynaptic spikes conveyed to the second layer. 

To segment the image into groups of rows, presynaptic 
spikes are collected to the N/K layer-2 neurons where N=28 
and K=4. That is, every 4 consecutive sequential spike trains 
are connected to one neuron in the second layer. Spike 
generation of the neuron in this layer is computed by 
Izhikevich’s RS model with parameters given in Table 1. Spike 
trains from seven layer-2 neurons submit information to the 
output neurons in the layer 3. 

Function OneDataPassTraining(image, & 

weights):OutputSpike

{

     [N,M]=size(image);

     r=2; % refractory period

     % Layer 1

     for each row of the B/W image

          spikes=generate spikes in r*M time points (1: spike 

occurrence)

     %Layer 2

     for i=1:N/K

     {

         for j=1:K

preSpikes{i}.append(spikes{(i-1)*K+j})

          middleSpikes{i}=Izhikevich’s model (preSpikes{i});

     }

     %Layer 3

     for p=1:#classes

     {

          OutputSpike=Izhikevich’s model (middleSpikes);

          STDP learning for target output

          Inhibition for non-target output based on STDP

          weights=update Synaptic weights

      }
 

Fig. 6. SNN pseudocode for handwritten digit classification 
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Fig. 7. Synaptic weights for digits 2, 4, 1, and 9. The intervals between 

dashed lines specify synapses. The numbers below each digit denote the 
synaptic weights 

The output neurons use the same parameters in Izhikevich’s 
model of the second layer to generate the spikes. In the third 
layer, synaptic weights projecting to the output neurons are 
initialized uniformly and updated by the STDP rule with 
parameters of LTP and LTD in Table 2. Furthermore, the 
inhibition neuron prevents the non-target (0 or 1) neuron to fire 
while receiving the presynaptic spikes. Hence, synaptic 
weights are changed according to the relative pre- and 
postsynaptic spike times. 

After one batch of training (500 training samples), 14 
synaptic weights (7 synapses for output “0” and 7 synapses for 
output “1”) and a set of output spike patterns for “0” and “1” 
are obtained. Fig. 8 shows the simulation results (with ΔT=0.1 
(msec)) of output spike trains of some handwritten digit images 
in “0” and “1” categories (each row shows a spike train). The 
illustrated spike trains in Fig. 8 show 1) specific first spike 
times and 2) discriminative spike time patterns for class “1” 
and class “0”. Therefore, extracted target patterns are 
appropriate sources for pattern recognition. The output patterns 
of the testing samples are compared with the average target 
patterns for each class. Finally, the similarity measure denotes 
the objective function for the classification that is shown in 
(10). 

pattern

pattern 2

spike train
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1
( )
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 i i

i

Similarity

Target Output
T

 



Where T is size of the target pattern. 

Five different simulation step sizes (ΔT=0.05, 0.1, 0.2, 0.5, 
1 (msec)) were studied. Table 3 specifies scaled synaptic 
weights connected to the output neurons “0” and “1” in the five 
temporal resolutions. Synaptic weights in Table 3 claim that ΔT 
in range of 0.05 to 0.5 (msec) give discriminative weight 
vectors for different classes. On the other hand, in ΔT=1 
(msec), the training is biased to “0” because the simulation step 
size is so large and the learning procedure is not converged. 

A subset of disjoint training and testing data was applied to 
the trained SNN to evaluate the accuracy rate of the proposed 
method. The results are shown in Table 4. The average 
accuracy rate is 97.6 for the testing sets. In addition, values of 
ΔT in the range of 0.05 to 0.5 (msec) give acceptable 
performance. ΔT=1 (msec), as explained, is not applicable. 
According to the results in Table 4, ΔT=0.2 (msec) has the best 
performance. It is also a fast neuron simulation for training and 
testing sessions. 

TABLE I.  REGULAR SPIKING NEURON PARAMETERS 

Parameter Value Parameter Value 

Vrest -60 (mv) a 0.03 

Vthreshold -40 (mv) b -2 

Vpeak 35 (mv) c -50 

C 100 d 100 

K 0.7 U0 0 

ΔT 
0.05, 0.1, 

0.2, 0.5, 1 
Iinj 0 

TABLE II.  STDP PARAMETERS 

Parameter value 

A 103 

B -40 

τ+ 14 

τ- 34 

K Default 10 

Time (msec)

Class “0”

Class “1”

 
Fig. 8. Example output spike trains for the digits “0” (Blue) and “1” (Red) 

after learning. ΔT=0.1 (msec) 

TABLE III.  SYNAPTIC WEIGHTS (AFTER TRAINING) PROJECTING TO THE 

OUTPUT NEURONS REPRESENTING CATEGORIES “0” AND “1” IN DIFFERENT 

SIMULATION STEP SIZES (ΔT). EACH COLUMN INDICATES THE IMPORTANCE 

OF ONE OF THE N/K=7 IMAGE SEGMENTS TO EACH CATEGORY. THE BOLD 

WEIGHTS SHOW ACCEPTABLE LEARNING. ΔT IMPACTS ON MEMBRANE 

POTENTIAL COMPUTATION AND SYNAPTIC WEIGHT ALTERNATIONS. 
THEREFORE, EACH COLUMN SHOWS SOME SLIGHT VARIATIONS IN THE 

SYNAPTIC WEIGHTS. HOWEVER, THE SYNAPTIC WEIGHTS FOR EACH 

SIMULATION SHOW SEPARATE CATEGORIES 

ΔT Digit Syn1 Syn2 Syn3 Syn4 Syn5 Syn6 Syn7 

0.05 
0 0.00 1.30 6.60 5.24 0.26 6.60 0.00 

1 0.00 0.00 0.00 10.19 4.29 5.52 0.00 

0.1 
0 0.00 2.98 5.66 4.17 1.55 5.66 0.00 

1 0.00 0.00 0.00 10.43 4.20 5.37 0.00 

0.2 
0 0.00 3.69 5.94 4.16 0.26 5.94 0.00 

1 0.00 0.00 0.00 9.83 7.36 2.81 0.00 

0.5 
0 0.00 2.42 7.24 1.05 1.27 8.03 0.00 

1 0.00 0.00 0.00 17.40 2.25 0.36 0.00 

1 
0 0.00 5.06 5.06 4.59 0.24 5.06 0.00 

1 0.03 0.00 0.00 0.00 0.00 0.00 19.97 

TABLE IV.  ACCURACY RATE OF THE PROPOSED SNN FOR HANDWRITTEN 

DIGIT CLASSIFICATION OF HANDWRITTEN DIGITS “0” AND “1” 

ΔT Accuracy Rate (Testing Data) % Accuracy Rate (Training Data) % 

0.05 97.20 --- 

0.1 97.60 --- 

0.2 98.00 99.00 

0.5 97.60 --- 

1 56.00 --- 
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B. 10-digit classification task 

In the second experiment, 320 image samples of the 
MNIST handwritten digits were randomly selected and 
converted to binary images. The first and second layers of the 
SNN are the same as in the binary classification experiment 
except the segmentation factor, K, is set to 2. Therefore, the 
learning component consists of 28/2=14 adaptive synapses 
connected to 10 output neurons representing the digits 0 to 9 
(140 adaptive synapses total and 24 layer-2 neurons). 
According to the mentioned theory, the second layer should 
generate candidate spike trains for a large variety of the input 
patterns. Fig. 9b illustrates 14 spike trains in the second layer 
which show a schematic of the input digits in Fig. 9a. 

These discriminative spike trains invoke STDP learning in 
the next layer to adapt the synaptic weights and generate 
distinguishable spike patterns for digit categories (0-9). Fig. 10 
shows the convergence scenario of the training process in 1000 
iterations. This chart determines total distance between 
synaptic weights in sequential trials that is calculated by (11). 
It is concluded that, the training algorithm converges in 84 
iterations and more training trials will not change the synaptic 
weights considerably. The synaptic weight matrix after 84 
training iterations is shown in Table 5. 
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The adjusted synaptic weights and input digits provide 10 
patterns of output spike trains shown in Fig. 11.  The 
membrane potential and spike times in Fig. 11 illustrates 
discriminative patterns for different digits. For example, spikes 
in time stream of the digit “1” are close together in the center 
of the time window because all of the presynaptic spikes are 
gathered in a small range of simulation time (30-40 (ms)). 

However, the proposed method as a minimal SNN 
architecture with 10  14 adaptive synapses (14-D weight 
vector) is designed for small classification problems such as 
binary categorization, not optimized for 10 categories, the 
performance of 10-digit task is 75.93% in average. 

 
                                (a) 

 
                                       (b) 

Fig. 9. a) Handwritten digits 0-9. b) 14 spike patterns emitted from RS 

neurons of the second layer 

ΔW

Iteration

 

Fig. 10. Convergence plot obtained from 1000 iterations 

TABLE V.  SYNAPTIC WEIGHTS OF 14 SYNAPSES OF 10 DIGITS 0-9. THE FIRST TWO SYNAPTIC WEIGHTS AND THE LAST ONE ARE SMALLER THAN OTHER 

SYNAPSES BECAUSE THEY MOSTLY CONVEY BACKGROUND INFORMATION. THUS, RELATIVELY MUCH WEAK SYNAPSES PROVIDE A FAST METHOD OF 

BACKGROUND ELIMINATION IN THE ROW ORDER 

Syn 

Digit     
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.008 0.008 0.041 0.028 0.033 0.070 0.109 0.137 0.158 0.155 0.132 0.105 0.008 0.008 

2 0.009 0.010 0.062 0.147 0.100 0.034 0.026 0.051 0.147 0.190 0.142 0.063 0.009 0.009 

3 0.009 0.009 0.130 0.190 0.083 0.045 0.076 0.062 0.018 0.026 0.122 0.186 0.033 0.010 

4 0.010 0.010 0.010 0.028 0.082 0.138 0.187 0.208 0.159 0.055 0.036 0.038 0.029 0.010 

5 0.008 0.008 0.020 0.065 0.092 0.117 0.137 0.152 0.051 0.105 0.144 0.088 0.008 0.008 

6 0.009 0.033 0.051 0.043 0.051 0.071 0.132 0.165 0.171 0.151 0.097 0.011 0.009 0.009 

7 0.010 0.010 0.010 0.079 0.199 0.114 0.069 0.045 0.051 0.044 0.066 0.091 0.151 0.063 

8 0.006 0.006 0.032 0.084 0.114 0.127 0.113 0.055 0.089 0.113 0.113 0.112 0.029 0.006 

9 0.008 0.008 0.008 0.059 0.133 0.154 0.152 0.155 0.052 0.027 0.041 0.072 0.124 0.008 

0 0.008 0.008 0.021 0.047 0.083 0.092 0.122 0.126 0.114 0.146 0.156 0.061 0.008 0.008 
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Fig. 11. Membrane potential and spike patterns for digits 0-9 after training 

C. Comparison with other models 

To compare our model with statistical machine learning 
strategies, the same training and testing datasets were applied 
to 1) a support vector machine (SVM) which maximizes the 
border distances between the classes [21]; and 2) a back 
propagation multi perceptron artificial neural network (BP-
ANN) which learns the synaptic weights using error-feedback 
adjustment [22]. The obtained results are shown in Table 6. 
They have been implemented by the R software package [23, 
24]. If more data are used in statistical models (with modified 
parameters) and some preprocessing algorithms such as 
principle components analysis (PCA) are applied, the 
performance should be higher than the rates reported in Table 
6. However, based on the same situations at which the SNN 
performs, the SVM and ANN methods show accuracy rates 
that are slightly lower than the proposed SNN. We claim that 
the minimal SNN in this investigation has sufficient capacity to 
be improved more by the required preprocessing and 
experiments while using the biologically plausible principles. 

IV. CONCLUSION AND DISCUSSION 

A minimal time and memory efficient SNN architecture for 
classification was presented. This research shows that 
phenomenological STDP in a minimal model can support 
pattern recognition learning. The algorithms and neuron models 
were chosen to be biologically plausible. The proposed method 
represented an architecture which specifies a remarkably 
simple and fast network in comparison with previous 
investigations. 

TABLE VI.  ACCURACY OF 10-DIGIT RECOGNITION USING STATISTICAL 

MACHINE LEARNING MODELS. 200 TRAINING DATA WITHOUT 

PREPROCESSING 

Method Acc. % Description 

SVM 73.44 Polynomial kernel n=3. 

ANN 70.87 40 hidden neurons, Decay=0.0001, 550 iterations. 

Our SNN was applied to handwritten digit classification for 
a subset of images in the MNIST dataset. First, the initial layer 
interpreted the image logically based on the exact foreground 
pixel locations. Therefore, digit image was scanned row by row 
to generate the spikes as impulse reaction to the object 
perception. Also, this layer extracted the feature spikes directly 
from the image and represented a quick and natural image 
perception without complex computations. Second, every K 
(Ex. 2 or 4) spike trains were accumulated in a sequential order 
to provide the segmentation aspect of object detection in order 
to reduce the working space using Izhikevich’s neuron model. 
This part of the network guaranteed to reduce number of the 
computational neurons and kept the order of the image 
segments from top to bottom. This layer provided a structure to 
produce set of spike trains invariant to diverse handwriting 
styles, outlier points, and slight changes in foreground 
orientation and thickness. The extracted sections mimicked 
digital scanning methods in a fast and implementable manner. 
Third, STDP learning and inhibitory neuron prepared the 
required environment for training the network and competition 
among dissimilar categories. The third layer’s algorithm 
focused on supervised learning of the summarized input 
patterns. Additionally, the STDP rule was applied in two 
different sets of the synapses (connected to the target and non-
target neurons) simultaneously and the training process 
converged after a small number of iterations. Thus, The SNN 
was tuned to categorize the input spike patterns quickly and it 
did not need many feature spike trains. 

In summary, the introduced strategy was implemented in a 
simple and fast way due to the small number of the neurons and 
adaptive synapses (totally, {10 and 25} computational neurons 
and {14 and 140} adaptive synapses for binary and 10-digit 
classifications respectively). Finally, evaluation of the 
presented model demonstrated admirable performance of 
98.0% maximum and 97.6% average accuracy rates for binary 
(“0” and “1”) handwritten digit recognition. Furthermore, in 
spite of the minimal architecture of the presented SNN, 
acceptable performance of 75.93% was obtained in 10-digit 
recognition. The comparison between accuracy rate of the 
proposed method and statistical machine learning approaches 
(basic models without preprocessing and a small number of 
training data) determined slightly better performance of our 
SNN in the same and basic situations as well as incremental 
learning ability of the SNN. The minimal SNN worked much 
better for binary classification than 10-digit task. However, the 
reported results showed the potential capability of the SNN to 
be shrunk and work fast in training and prediction phases.  
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Therefore, the proposed SNN architecture and learning 
procedure can be a trustworthy model for classification due to 
its simple structure, quick feature extraction and learning, 
robust synaptic adaptation, and feasible implementation on 
VLSI chips in the future experiments. 
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