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Abstract—Obtaining accurate prediction of stock index sig-
nificantly helps decision maker to take correct actions to develop
a better economy. The inability to predict fluctuation of the
stock market might cause serious profit loss. The challenge is
that we always deal with dynamic market which is influenced
by many factors. They include political, financial and reserve
occasions. Thus, stable, robust and adaptive approaches which
can provide models have the capability to accurately predict
stock index are urgently needed. In this paper, we explore the
use of Artificial Neural Networks (ANNs) and Support Vector
Machines (SVM) to build prediction models for the S&P 500
stock index. We will also show how traditional models such
as multiple linear regression (MLR) behave in this case. The
developed models will be evaluated and compared based on a
number of evaluation criteria.

Index Terms—Stock Market Prediction; S&P 500; Regres-
sion; Artificial Neural Networks; Support Vector Machines.

I. I NTRODUCTION

Understanding the nature of the relationships between
financial markets and the country economy is one of the
major components for any financial decision making system
[1]–[3]. In the past few decades, stock market prediction
became one of the major fields of research due to its wide
domain of financial applications. Stock market research field
was developed to be dynamic, non-linear, complicated, non-
parametric, and chaotic in nature [4]. Much research focuses
on improving the quality of index prediction using many
traditional and innovative techniques. It was found that sig-
nificant profit can be achieved even with slight improvement
in the prediction since the volume of trading in stock markets
is always huge. Thus, financial time series forecasting was
explored heavenly in the past. They have shown many
characteristics which made them hard to forecast due to the
need for traditional statistical method to solve the parameter
estimation problems. According to the research developed in
this field, we can classify the techniques used to solve the
stock market prediction problems to two folds:

• Econometric Models: These are statistical based ap-
proaches such as linear regression, Auto-regression and
Auto-regression Moving Average (ARMA) [5], [6].
There are number of assumptions need to be considered

while using these models such as linearity and stationary
of the the financial time-series data. Such non-realistic
assumptions can degrade the quality of prediction results
[7], [8].

• Soft Computing based Models: Soft computing is a
term that covers artificial intelligence which mimic bio-
logical processes. These techniques includes Artificial
Neural Networks (ANN) [9], [10], Fuzzy logic (FL)
[11], Support Vector Machines (SVM) [12], particle
swarm optimization (PSO) [13] and many others.

ANNs known to be one of the successfully developed
methods which was widely used in solving many prediction
problem in diversity of applications [14]–[18]. ANNs was
used to solve variety of problems in financial time series
forecasting. For example, prediction of stock price movement
was explored in [19]. Authors provided two models for the
daily Istanbul Stock Exchange (ISE) National 100 Index
using ANN and SVM. Another type of ANN, the radial
basis function (RBF) neural network was used to forecast the
stock index of the Shanghai Stock Exchange [20]. In [21],
ANNs were trained with stock data from NASDAQ, DJIA
and STI index. The reported results indicated that augmented
ANN models with trading volumes can improve forecasting
performance in both medium-and long-term horizons. A
comparison between SVM and Backpropagation (BP) ANN
in forecasting six major Asian stock markets was reported in
[22]. Other soft computing techniques such as Fuzzy Logic
(FL) have been used to solve many stock market forecasting
problems [23], [24].

Evolutionary computation was also explored to solve the
prediction problem for the S&P 500 stock index. Genetic
Algorithms (GAs) was used to simultaneously optimize all
of a Radial Basis Function (RBF) network parameters such
that an efficient time-series is designed and used for business
forecasting applications [25]. In [26], author provided a new
prediction model for the S&P 500 using Multigene Symbolic
Regression Genetic Programming (GP). Multigene GP shows
more robust results especially in the validation/testing case
than ANN.
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In this paper, we present a comparison between traditional
regression model, the ANN model and theSVM model for
predicting the S&P 500 stock index. This paper is structured
as follows. Section II gives a brief idea about the S&P
500 Stock Index in the USA. In Section III, we provide an
introduction to linear regression models. A short introduction
to ANN and SVM is provided in Section IV and Section V,
respectively. The adopted evaluation methods are presented
in Section VI. In Section VII, we describe the characteristics
of the data set used in this study. We also provide the
experimental setup and results produced in this research.

II. S&P 500 STOCK INDEX

The S&P 500, or the Standard & Poor’s 500, is an
American stock market index. The S&P 500 presented its
first stock index in the year 1923. The S&P 500 index with
its current form became active on March 4, 1957. The index
can be estimated in real time. It is mainly used to measure the
stock prices levels. It is computed according to the market
capitalization of 500 large companies. These companies are
having stock in the The New York Stock Exchange (NYSE)
or NASDAQ. The S&P 500 index is computed by S&P Dow
Jones Indices. In the past, there were a growing interest on
measuring, analyzing and predicting the behavior of the S&P
500 stock index [27]–[29]. John Bogle, Vanguard’s founder
and former CEO, who started the first S&P index fund in
1975 stated that:

The rise in the S&P 500 is a virtual twin to the
rise in the total U.S. stock market, so of course
investors, and especially index fund investors, who
received their fair share of those returns, feel
wealthier,”

In order to compute the price of the S&P 500 Index, we
have to compute the sum of market capitalization of all the
500 stocks and divide it by a factor, which is defined as the
Divisor (D). The formula to calculate the S&P 500 Index
value is given as:

Index Level =

∑

Pi × Si

D

P is the price of each stock in theindex andS is the
number of shares publicly available for each stock.

III. R EGRESSIONANALYSIS

Regression analysis have been used effectively to answer
many question in the way we handle system modeling
and advance associations between problem variables. It is
important to develop such a relationships between variables
in many cases such as predicting stock market [13], [14],
[30], [31]. It is important to understand how stock index
move over time.

A. Single Linear Regression

In order to understand how linear regression works, as-
sume we haven pairs of observations data set{xi, yj}i=1,..,n

as given in Figure 1. Our objective is to develop a simple
relationship between the two variablesx (i.e. input variable)

Fig. 1. Simple Linear Model

and y (i.e output variable) so that we candevelop a line
equation (see Equation 1).

y = a+ bx (1)

wherea is a constant (i.e. bias) andb is the slope of the
line. It is more likely that the straight line will not pass by all
the points in the graph. Thus, Equation 1 shall be re-written
as follows:

y = a+ bx+ ǫ (2)

whereǫ represents the error difference between the values
of xi and yi at any samplei. Thus, to find the best line
that produce the most accurate relationship betweenx and
y. We have to formulate the problem as an optimization
problem such that we can search and find the best values
of the parameters (i.e.̂a and b̂). In this case, we need to
solve an error minimization problem. To minimize the sum
of the error over the whole data set. We need to minimize
the functionL given in Equation 3.

L =

n
∑

i=1

ǫ2i =

n
∑

i=1

(yi − a− bxi)
2 (3)

To find the optimal values for̂a and b̂ we have to
differentiateL with respect toa andb.

∂L

∂â
= −2

n
∑

i=1

(yi − â− b̂xi) = 0

∂L

∂b̂
= −2

n
∑

i=1

(yi − â− b̂xi)xi = 0 (4)

By simplification of Equations 4, we get to the following
two equations:

n â+

n
∑

i=1

xi b̂ =

n
∑

i=1

yi

n
∑

i=1

xi â+

n
∑

i=1

x2

i b̂ =

n
∑

i=1

xiyi (5)
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Equations 5 is called least square (LS) normal equations.
The solution of these normal equations produce the least
square estimate for̂a and b̂.

B. Multiple Linear Regression

The simple linear model Equation 2 can be expanded to a
multivariate system of equations as follows:

y = a1x1 + a2x2 + · · ·+ anxj (6)

wherexj is thejth independent variable. In this case, we
need to use LS estimation to compute the optimal values for
the parametersa1, . . . , aj . Thus, we have to minimize the
optimization functionL, which in this case can be presented
as:

L =
n
∑

i=1

ǫ2i =
n
∑

i=1

(yi − â1x1 − â2x2 − . . . ânxn)
2 (7)

To get the optimal values of the parametersâ1, . . . , ân,
we have to compute the differentiation for the functions:

∂L

∂â1
=

∂L

∂â2
= · · · =

∂L

∂âj
= 0 (8)

Solving the set of Equations 8, we can produce the optimal
values of the model parameters and solve the multiple
regression problem. This solution is more likely to be biased
by the available measurements. If you we have large number
of observations the computed estimate of the parameters shall
be more robust. This technqiue provide poor results when the
observations are small in number.

IV. A RTIFICIAL NEURAL NETWORKS

ANNs are mathematical models which were inspired from
the understanding of some ideas and aspects of the biological
neural systems such as the human brain. ANN may be
considered as a data processing technique that maps, or
relates, some type of input stream of information to an
output stream of processing. Variations of ANNs can be used
to perform classification, pattern recognition and predictive
tasks [15], [19], [20], [22], [30].

Neural network have become very important method for
stock market prediction because of their ability to deal with
uncertainty and insufficient data sets which change rapidly
in very short period of time. In Feedforward (FF) Multilayer
Perceptron (MLP), which is one of the most common ANN
systems, neurons are organized in layers. Each layer consists
of a number of processing elements called neurons; each
of which contains a summation function and an activation
function. The summation function is given by Equation 9
and an activation function can be a type of sigmoid function
as given in Equation 10.

Training examples are used as input the network via the
input layer, which is connected to one, or more hidden layers.
Information processing takes place in the hidden layer via the
connection weights. The hidden layers are connected to an
output layer with neurons most likely have linear sigmoid
function. A learning algorithms such as the BP one might be

used to adjust the ANN weights such that it minimize the
error difference between the actual (i.e. desired) output and
the ANN output [32]–[34].

S =
n
∑

i=0

wixi (9)

φ(S) =
1

1 + e−S
(10)

There are number of tuning parameters should be des-
ignated before wecan use ANN to learn a problem. They
include: the number of layers in the hidden layer, the type
of sigmoid function for the neurons and the adopted learning
algorithm.

V. SUPPORT VECTOR MACHINES

Support vector machine is a powerful supervised learning
model for prediction and classification. SVM was first in-
troduced by Vladimir Vapnik and his co-workers at AT&T
Bell Laboratories [35]. The basic idea of SVM is to map the
training data into higher dimensional space using a nonlinear
mapping function and then perform linear regression in
higher dimensional space in order to separate the data [36].
Data mapping is performed using a predetermined kernel
function. Data separation is done by finding the optimal
hyperplane (called the Support Vector with the maximum
margin from the separated classes. Figure 2 illustrates the
idea of the optimal hyperplane in SVM that separates two
classes. In the left part of the figure, lines separated data
but with small margins while on the right an optimal line
separates the data with the maximum margins.

A. Learning Process in SVM

Training SVM can be described as follows; suppose
we have a data set{xi, yj}i=1,..,n where the input vector
xi ∈ ℜd and the actualyi ∈ ℜ. The modeling objective of
SVM is to find the linear decision function represented in
the following equation:

f(x) ≤ w, φi(x) > +b (11)

where w and b are the weight vector and a constant
respectively, which have to be estimated from the data set.
φ is a nonlinear mapping function. This regression problem
can be formulated as to minimize the following regularized
risk function:

R(C) =
C

n

n
∑

i=1

Lε(f(xi), yi) +
1

2
‖w‖

2 (12)

whereLε(f(xi), yi) is known asε−intensive loss function
and given by the following equation:

Lε(f(x), y) =

{

|f(x)− y| − ε |f(x)− y| ≥ ε

0 otherwise
(13)

To measure the degree of miss classification to achieve
an acceptable degree of error, we use slack variablesξi and
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Fig. 2. Optimal hyperplane in Support Vector Machine

Fig. 3. Optimal hyperplane with slack variables

ξ∗i as shown in Figure 3. This additionmakes the problem
presented as a constrained minimum optimization problem
(See Equation 14).

Min. R(w, ξ∗i ) =
1

2
‖w‖

2
+ C

n
∑

i=1

(ξi + ξ∗i ) (14)

Subject to:










yi− < w, xi > −b ≤ ε+ ξi

< w, xi > +b− yi ≤ ε+ ξ∗i

ξi, ξ
∗

i ≥ 0

(15)

whereC is a regularized constant greater than zero. Thus
it performs a balance between the training error and model
flatness.C represents a penalty for prediction error that is
greater thanε. ξi and ξ∗i are slack variables that form the
distance from actual values to the corresponding boundary
values ofε. The objective of SVM is to minimizeξi, ξ∗i and
w2.

The above optimization with constraint can be converted
by means of Lagrangian multipliers to a quadratic program-
ming problem. Therefore, the form of the solution can be
given by the following equation:

f(x) =

n
∑

i=1

(αi − α∗

i )K(xi, x) + b (16)

TABLE I
COMMON SVM KERNEL FUNCTIONS

Polynomial Kernel K(xi, xj) = (xi.xj + 1)d

Hyperbolic Tangent Kernel K(xi, xj) = tanh(c1(xi.xj) + c2)
Radial Basis Kernel p: K(xi, xj) = exp(|xj − xi|/2p

2)

whereαi andα∗

i are Lagrange multipliers. Equation 16 is
subject to the following constraints:

n
∑

i=1

(αi − α∗

i ) = 0 (17)

0 ≤ αi ≤ C i = 1, . . . , n

0 ≤ α∗

i ≤ C i = 1, . . . , n

K(.) is the kernel function and its values is an inner
product of two vectorsxi andxj in the feature spaceφ(xi)
andφ(xj) and satisfies the Mercer’s condition. Therefore,

K(xi, xj) = φ(xi).φ(xj) (18)

Some of the most common kernel functions used in the
literature are shown in Table I. In general, SVMs have
many advantages over classical classification approaches like
artificial neural networks, decision trees and others. These
advantages include: good performance in high dimensional
spaces; and the support vectors rely on a small subset of
the training data which gives SVM a great computational
advantage.

VI. EVALUATION CRITERION

In order to assess the performance of the developed stock
market predication models, a number of evaluation criteria
will be used to evaluate these models. These criteria are
applied to measure how close the real values to the values
predicted using the developed models. They include Mean
Absolute Error (MAE), Root Mean Square Error (RMSE)
and correlation coefficientR. They are given in Equations
19, 20 and 21, respectively.
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MAE =
1

n

n
∑

t=1

|(yi − ŷi)| (19)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (20)

R =

∑n

i=1
(yi − y)(ŷi − ŷ)

√

∑n

i=1
(yi − y)2

∑n

i=1
(ŷi − ŷ)2

(21)

wherey is actual stock index values,ŷ is the estimated
values using the proposed technqiues.n is the total number
of measurements.

VII. E XPERIMENTAL RESULTS

A. S&P 500 Data Set

In this work, we use 27 potential financial and economic
variables that impact the stock movement. The main con-
sideration for selecting the potential variables is whether
they have significant influence on the direction of (S&P 500)
index in the next week. While some of these features were
used in previous studies [30]. The list, the description, and
the sources of the potential features are given in Table III
show the 27 features of data set.

The categories of these features include: S&P 500 index
return in three previous days SPY(t-1), SPY(t-2), SPY(t-
3); Financial and economic indicators (Oil, Gold, CTB3M,
AAA); The return of the five biggest companies in S&P 500
(XOM, GE, MSFT, PG, JNJ); Exchange rate between USD
and three other currencies (USD-Y, USD-GBP, USD-CAD);
The return of the four world major indices (HIS, FCHI,
FTSE, GDAXI); and S&P 500 trading volume (V).

S&P 500 stock market data set used in our case consists
of 27 features and 1192 days of data, which cover five-
year period starting 7 December 2009 to 2 September 2014.
We sampled the data on a weekly basis such that only 143
samples were used in our experiments. The S&P 500 data
were split into 100 samples as training set and data for 43
samples as testing set.

B. Multiple Regression Model

The regression model shall have the following equation
system.

y = a0 +

27
∑

i=1

aixi (22)

The values of the parametersa′s shall be estimated
using LS estimation to produce the optimal values of the
parameterŝa′s. The produced linear regression model can be
presented as given in Table II. The actual and Estimated S&P
500 index values based the MLR in both training and testing
cases are shown in Figure 4 and Figure 5. The scattered plot
of the actual and predicted responses is shown in Figure 6.
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Fig. 4. Regression: Actual and Estimated S&P 500 Index values in Training
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TABLE II
A REGRESSIONMODEL WITH INPUTS: x1, . . . , x27

ŷ = −0.0234 ∗ x1 + 0.13 ∗ x2 + 0.021 ∗ x3 + 0.021 ∗ x4 − 0.021 ∗ x5

− 10.303 ∗ x6 + 6.0031 ∗ x7 + 0.7738 ∗ x8 + 0.2779 ∗ x9 − 0.43916 ∗ x10

− 0.27754 ∗ x11 + 0.12733 ∗ x12 − 0.058638 ∗ x13 + 13.646 ∗ x14 + 9.5224 ∗ x15

− 0.0003 ∗ x16 + 0.24856 ∗ x17 − 0.0016 ∗ x18 + 0 ∗ x19 − 2.334× 10−9 ∗ x20

+ 0.16257 ∗ x21 + 0.63767 ∗ x22 − 0.14301 ∗ x23 + 0.08 ∗ x24 + 0.074 ∗ x25

− 0.0002 ∗ x26 + 0.026301 ∗ x27 + 6.9312 (23)

TABLE III
THE 27 POTENTIAL INFLUENTIAL FEATURES OF THES&P 500 INDEX [30]

Variable Feature Description
x1 SPY(t-1) The return of the S&P 500 index in dayt− 1 Source data: finance.yahoo.com
x2 SPY(t-2) The return of the S&P 500 index in dayt− 2 Source data: finance.yahoo.com
x3 SPY(t-3) The return of the S&P 500 index in dayt− 3 Source data: finance.yahoo.com
x4 Oil Relative change in the price of the crude oil Source data: finance.yahoo.com
x5 Gold Relative change in the gold price Source data: www.usagold.com
x6 CTB3M Change in the market yield on US Treasury securities at 3-month constant maturity,quoted on investment basis Source

data: H.15 Release - Federal Reserve Board of Governors
x7 AAA Change in the Moody’s yield on seasoned corporate bonds - all industries, AaaSource data: H.15 Release - Federal

Reserve Board of Governors
x8 XOM Exxon Mobil stock return in day t-1 Source data: finance.yahoo.com
x9 GE General Electric stock return in day t-1 Source data: finance.yahoo.com
x10 MSFT Micro Soft stock return in day t-1 Source data: finance.yahoo.com
x11 PG Procter and Gamble stock return in day t-1 Source data: finance.yahoo.com
x12 JNJ Johnson and Johnson stock return in day t-1 Source data: finance.yahoo.com
x13 USD-Y Relative change in the exchange rate between US dollar and Japanese yen Sourcedata: OANDA.com
x14 USD-GBP Relative change in the exchange rate between US dollar and British pound Sourcedata: OANDA.com
x15 USD-CAD Relative change in the exchange rate between US dollar and Canadian dollar Source data:OANDA.com
x16 HIS Hang Seng index return in day t-1 Source data: finance.yahoo.com
x17 FCHI CAC 40 index return in day t-1 Source data: finance.yahoo.com
x18 FTSE FTSE 100 index return in day t-1 Source data: finance.yahoo.com
x19 GDAXI DAX index return in day t-1 Source data: finance.yahoo.com
x20 V Relative change in the trading volume of S&P 500 index Source data: finance.yahoo.com
x21 CTB6M Change in the market yield on US Treasury securities at 6-month constant maturity,quoted on investment basis Source

data: H.15 Release - Federal Reserve Board of Governors
x22 CTB1Y Change in the market yield on US Treasury securities at 1-year constant maturity,quoted on investment basis Source data:

H.15 Release - Federal Reserve Board of Governors
x23 CTB5Y Change in the market yield on US Treasury securities at 5-year constant maturity,quoted on investment basis Source data:

H.15 Release - Federal Reserve Board of Governors
x24 CTB10Y Change in the market yield on US Treasury securities at 10-year constant maturity,quoted on investment basis Source

data: H.15 Release - Federal Reserve Board of Governors
x25 BBB Change in the Moody’s yield on seasoned corporate bonds - all industries, BaaSource data: H.15 Release - Federal Reserve

Board of Governors
x26 DJI Dow Jones Industrial Average index return in day t-1 Source data: finance.yahoo.com
x27 IXIC NASDAQ composite index return in day t-1 Source data: finance.yahoo.com

C. Developed ANN Model

The proposed architecture ofthe MLP Network consists
of three layers with single hidden layer. Thus input layer
of our neural network model has 27 input nodes while
the output layer consists of only one node that gives the
predicted next week value. Empirically, we found that 20
neurons in the hidden layer achieved the best performance.
The BP algorithm is used to train the MLP and update its
weight. Table IV shows the settings used for MLP. Figure
7 and Figure 8 show the actual and predicted stock prices
for training and testing cases of the developed ANN. The
scattered plot for the developed ANN model is shown in
Figure 9.

D. Developed SVM Model

SVM with an RBF kernel is used to develop the S&P 500
index model. The RBF kernel has many advantages such as

TABLE IV
THE SETTING OF MLP

Maximum number of epochs 500
Number of Hidden layer 1
Number of neurons in hidden layer 20
Learning rate 0.5
Momentum 0.2

the ability to map non-linearly the training data and the ease
of implementation [37]–[39]. The values of the parameters
C and σ have high influence on the accuracy of the SVM
model. Therefore, we used grid search to obtain these values.
It was found that the best performance can be obtained with
C = 100 and σ = 0.01. Figure 10 and Figure 11 show
the actual and predicted stock prices for training and testing
cases of the developed SVM model. The scattered plot for
the developed SVM model is shown in Figure 12.
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Fig. 7. ANN: Actual and Estimated S&P 500 Index values in Training
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Fig. 8. ANN: Actual and Estimated S&P 500 Index values in Testing Case
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Fig. 10. SVM: Actual and Estimated S&P 500 Index values in Training
Case
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Fig. 11. SVM: Actual and Estimated S&P 500 Index values in Testing
Case
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E. Comments on the Results

The calculated evaluation criterion of the regression, MLP
and SVM models for training and testing cases are shown in
Table V. Based on these results it can be noticed that SVM
outperformed the MLP and MLR models in both training
and testing cases. SVMs has many advantages such as using
various kernels which allows the algorithm to suits many
classification problems. SVM are more likely to avoid the
problem of falling into local minimum.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we explored the use MLP and SVM to
develop models for prediction the S&P 500 stock market
index. A 27 potential financial and economic variables which
impact the stock movement were adopted to build a relation-
ship between the stock index and these variables. The basis
for choosing these variables was based on their substantial
impact on the course of S&P 500 index. The data set was
sampled on a weekly bases. The developed SVM model with
RBF kernel model provided good prediction capabilities with
respect to the regression and ANN models. The results were
validated using number of evaluation criteria. Future research
shall focus on exploring other soft computing techniques to
solve the stock market prediction problems.
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