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Abstract—Packrat parsing is recently introduced technique 
based upon expression grammar. This parsing approach uses 
memoization and ensures a guarantee of linear parse time by 
avoiding redundant function calls by using memoization. This 
paper studies the progress made in packrat parsing till date and 
discusses the approaches to tackle this parsing process efficiently. 
In addition to this, other issues such as left recursion, error 
reporting also seems to be associated with this type of parsing 
approach and discussed here the efforts attempted by 
researchers to address this issue. This paper, therefore, presents 
a state of the art review of packrat parsing so that researchers 
can use this for further development of technology in an efficient 
manner. 
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I. INTRODUCTION 
Parsing consists of two processes: lexical analysis and 

parsing. The job of the lexical analysis is to break down the 
input text (string) into smaller parts, called tokens. The lexical 
analyzer then sends these tokens to the parser in sequence. 
During parsing, the parser takes the help of a grammar to 
decide whether to accept the input string or reject .i.e. whether 
it is a subset of the accepting language or not. A set of 
grammar rules or productions is used to define the language of 
grammar. Each production can then, in turn, compose of 
several different alternative productions. These productions 
guide the parser throughout the parsing to determine whether to 
accept the input string or to reject it. Top-down parsing is a 
parsing strategy that attempts left-to-right leftmost derivation 
(LL) for the input string. This can be achieved with prediction, 
backtracking or a combination of the two. LL(k) top-down 
parser makes its decisions based on lookahead, where the 
parser attempts to ”look ahead” k number of symbols of the 
input string. A top-down parser that uses backtracking instead 
evaluates each production and its choices in turn; if a 
choice/production fails the parser backtracks on the input string 
and evaluates the next choice/production, if the 
choice/production succeeds the parser merely continues. The 
bottom-up parsing is a parsing method that instead attempts to 
perform a left-to-right rightmost derivation (LR) in reverse of 
the input string. Shift-reduce parsing is widely used bottom-up 
parsing technique. A shift-reduce parser uses two different 
actions during parsing: shift and reduce. A shift action takes a 
number of symbols from the input string and places them on a 
stack. The reduce action reduces the symbols on the stack 
based on finding a matching grammar production for the 

symbols. The decisions regarding whether to shift or reduce are 
done based on lookahead. Several different parsing techniques 
have been developed over the years, both for parsing am-
biguous and unambiguous grammars. One of the latest is 
packrat parsing [5]. Packrat parsing is based upon a top-down 
recursive descent parsing approach with memoization that 
guarantees linear parse time. Memoization employed in the 
packrat parsing eliminates disadvantage of conventional top-
down backtracking algorithms which suffer from exponential 
parsing time in the worst case. This exponential runtime is due 
to performing redundant evaluations caused by backtracking. 
Packrat parsers avoid this by storing all of the evaluated results 
to be used for future backtracking eliminating redundant 
computations. This storing technique is called memoization 
which ensures guaranteed linear parsing time for packrat 
parsers. The memory consumption for conventional parse 
algorithms is linear to the size of the maximum recursion depth 
occurring during the parse. In the worst case it can be the same 
as the size of the input string. In packrat parsing, the memory 
consumption for a packrat parser is linearly proportional to the 
size of the input string. Packrat parsing is based upon parsing 
expression grammars (PEGs) which have the property of 
always producing unambiguous grammars. It has been proven 
that all LL(k) and LR(k) grammars can be rewritten into a 
PEG[7]. Thus, packrat parsing is able to parse all context-free 
grammars. In fact, it can even parse some grammars that are 
non-context-free [7]. 

Another characteristic of packrat parsing is that it is 
scannerless i.e. a separate lexical analyzer is not needed. In 
packrat parsers, they are both integrated into the same tool, as 
opposed to the Lex[10]/Yacc[9] approach where Lex is used 
for the lexical analysis and Yacc for parsing phase of the 
compiler.The founding work for packrat parsing was carried 
out in 1970 by A. Birman et. al.[4]. Birman introduced a 
schema called the TMG recognition schema (TS). Birman’s 
work was later refined by A. Aho and J. Ullman et. al.[2], and 
renamed into generalized top-down parsing language 
(GTDPL). This was the first top-down parsing algorithm that 
was deterministic and used backtracking. Due to deterministic 
nature of resulting grammar they discovered that the parsing 
results could be saved in a table to avoid redundant 
computations. However, this approach was never put into 
practice, due to the limited amount of main memory in 
computers at that time [10,14]. Another characteristic of 
GTDPL is that it can express any LL(k) and LR(k) language, 
and even some non-context-free languages[2,3]. Rest of the 
paper consists of introduction to Parsing Expression grammar 
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along with discussion on its properties followed by the work 
carried out by researchers in this area. Finally the paper focuses 
upon the open problems in packrat parsing and concluded with 
future work. 

II. PARSING EXPRESSION GRAMMAR 
As an extension to GTDPL and TS, Bryan Ford introduced 

PEGs [7]. CFGs (which were introduced mainly for usage with 
natural language [7]) may be ambiguous and thereby either (1) 
produce multiple parse tree’s, which is not necessary due to 
only one is needed, and (2) produce a heuristically chosen one, 
which might not even be correct[8]. However, one of the 
characteristics of PEGs is that they are by definition 
unambiguous and thereby provides a good match for machine-
oriented languages (since programming languages supposed to 
be deterministic). It is also shown that PEGs, similar to 
GTDPL and TS, can express all LL(k) and LR(k) languages, 
and that they can be parsed in linear time with the memoization 
technique [7]. 

A. Definitions and Operators 
PEGs, as defined in [7], are a set of productions of the form 

A <- e where A is a nonterminal and e is a parsing expression. 
The parsing expressions denote how a string can be parsed. By 
matching a parsing expression e with a string s, e indicates 
success or failure. In case of a success, the matching part of s is 
consumed. If a failure is returned, s is matched against the next 
parsing expression. Together, all productions form the 
accepting language of the grammar. The following operators 
are available in PEG productions: [7,14] 

Ordered choice: e1/.../en, expression e1,...,en is evaluated  
in this order, to the text ahead, until one of them succeeds and 
possibly consumes some text. If one of the expressions 
succeeded, indicate success. Otherwise indicate failure and 
input is not consumed. 

Sequence: e1,...,en, expressions e1,...,en, is evaluated in this 
order, to consume consecutive portions of the text ahead, as 
long as they succeed. If all succeeded, success is indicated. 
Otherwise indicate failure and input is not consumed. 

And predicate: &e, if expression e matches the text ahead; 
indicate success otherwise indicate failure. Text is not 
consumed. 

Not predicate:!e, if expression e matches the text ahead,  
failure is indicated; otherwise, indicate success. Do not 
consume any text. 

One or more: e+, expression e is repeatedly applied to 
match the text ahead, as long as it succeeds. Matched Text is 
consumed if any and success is indicated if there is at least one 
match. Otherwise failure is indicated. 

Zero or more: e∗, As long as expression e matches text 
ahead it is applied repeatedly and consumed the matched text 
(if any). Always report success. 

Zero or one: e?, if expression e matches the text ahead, 
consume it. Always report  success. 

Character class: [s], character ahead is consumed if it 
appears in the sting s and success is indicated. Otherwise 

failure is indicated. 

Character range: [c1- c2], if the character ahead is one 
from the range c1 through c2, consume it and indicate success. 
Otherwise indicate failure. 

String:’s’, if the text ahead is the string s, consume it and 
success is indicated. Otherwise failure is indicated. 

Any character: (dot), if there is a character ahead, 
consume it and indicate success. Otherwise (that is, at the end 
of input) indicate failure. 

B. Ambiguity 
The unambiguousness of a PEG comes from the ordered 

choice property. The choices in CFGs are symmetric, i.e., the 
choices need not be checked in any specific order. However, 
the choices in a PEGs are asymmetric, i.e., the ordering of the 
choices determines in which order they are tested. For a PEG 
the first expression that matches are always chosen. This means 
that a production such as A<-a/aa is perfectly valid and 
unambiguous. However, it only accepts the language {a} on 
the contrary, a CFG production A->a|aa is ambiguous but 
accepts the language {a,aa}. 

A traditional example that is hard to express with the use of 
CFGs is the dangling else problem. Consider the following if-
statement:  

if cond then if cond then statement else statement 

This statement can be matched in the following two ways: 

if cond then (if cond then statement else statement) 
if cond then (if cond then statement) else statement 

If the intended matching is the former of the two (in fact, 
this is how it is done in the programming language C[8]) then 
the following PEG production is sufficient: 

Stmt<- ’if’ Cond ’then’ Stmt ’else’ Stmt  

      /’if’ Cond ’then’ Stmt 
     /... 

Note: Matching the outermost if with the else-clause is 
believed not to be possible with a PEG. However, no source to 
either prove or contradict this statement was found. 

Discovering if a CFG production is ambiguous is 
sometimes a non-trivial task. Similarly, choosing the ordering 
of two expressions in a PEG production without affecting the 
accepting language is not always straightforward [7]. 

C. Left Recursion 
Left recursion is when a grammar production refers to itself 

as its left-most element, either directly or indirectly. Similar to 
the conventional LL(k) parsing methods, left recursion proves 
to be an issue for PEGs, and therefore a problem also for 
packrat parsing [10,7]. Consider the following alteration of the 
production: 

A<-Aa / a 
For a CFG, this modification is not a problem. However, 

for a PEG, parsing of nonterminal A requires testing that A 
matches, which requires testing that A matches etc, producing 
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an infinite recursion. However, it was early discovered that a 
left-recursive production can always be rewritten into an 
equivalent right-recursive production [1], and thus making it 
manageable for a packrat parser. However, if there is indirect 
left recursion involved, the rewriting process may become 
fairly complex. 

D. Syntatic Predicates 
PEGs allow the use of the syntactic predicates! and &. 

Consider the following grammar production: 

A <- !B C 
Every time this production is invoked it needs to establish 

if the input string matches a B and if it does, signal a failure. If 
there is no match the original input string is compared with the 
nonterminal C. This ability to “look ahead” an arbitrary 
amount of characters combined with the selective backtracking 
gives packrat parsers unlimited lookahead [10, 6, 7, 13]. 

E. Memoization 
The introduction of memoization was treated as a machine 

learning method in 1968 by D. Michie et. al. [11]. By storing 
calculated results, the machine ”learned” it. The next time it 
was asked for the same result, the machine 
merely”remembered” it by looking up the previously stored 
result. The storage mechanism used was a stack. This makes 
the look-up process become linear. However, insertions of 
results are constant; they are merely pushed on top of the stack. 
In packrat parsing, the results are instead stored in a matrix or 
similar data structure that provides constant time look-ups 
(when the location of the result is already known) and 
insertions [10]. For every encountered production this matrix is 
consulted; if the production has already occurred once the 
result is thereby already in the matrix and merely needs to be 
returned; if not, the production is evaluated and the result is 
both inserted into the matrix and returned. Conventional 
recursive descent parsers that use backtracking may experience 
exponential parsing time in the worst case. This is due to 
redundant calculations of previously computed results caused 
by backtracking. However, memoization avoids this problem 
due to the fact that the result only needs to be evaluated once. 
This gives packrat parsing a linear parsing time in relation to 
the length of the input string (given that the access and 
insertion operations in the matrix are done in constant time). 
Let us look at the following trivial PEG, taken from [10]: 

Additive <-  Multitive ’+’ Additive / Multitive 

Multitive <-  Primary ’*’ Multitive / Primary 

Primary <-  ’(’ Additive ’)’ / Decimal 

Decimal <-  [0-9] 

With this grammar and the input string 2*(3+4) the 
following memoization matrix can be produced: 

The columns correspond to each position of the input 
string; the rows correspond to each of the parsing procedures. 
To make it clear that the rows are in fact procedures they have 
been given a prefix ’p’. Each cell contains either a number that 
represents how much of the input string that have been 
consumed by a previous call to the procedure, or the cell 

 

pAdditive  7  -1  5  3  -1  1  -1  -
1  

pMultitive  7  -1  5  1  -1  1  -1  -
1  

pPrimary  1  -1  5  1  -1  1  -1  -
1  

pDecimal  1  -1  -1  1  -1  1  -1  -
1  

input  ’2’  ’*’  ’(’  ’3’  ’+’  ’4’  ’)’  $  

A Matrix Containing the Parsing Results of the Input String 
2*(3+4) contains a ’-1’ which indicates a failed evaluation. For 
instance, if backtracking occurs at input position four (where 
the number ’3’ is present) and procedure pAdditive is called, 
the parser first checks if a previous computation is stored in the 
storage matrix. In this case the number 3 is stored and thereby 
the parser immediately knows that it can advance three steps 
on the input string and end up at the seventh character of the 
input string. If the stored value is ’-1’ the parser knows that a 
previous call resulted in a failed parse and can thus avoid 
continuing with the procedure call and instead return a failure 
response to the calling function. This illustrates how redundant 
computations and thereby also potential exponential parsing 
times are avoided with the help of memoization. Calculating 
the whole matrix in Table1 would be unnecessary since many 
of the cells are not needed. The idea behind packrat parsing is 
not to evaluate all of the cells in the parsing matrix, only the 
results that are needed [10]. This effectively reduces the 
amount of memory space required during parsing. 

F. Scannerless 
Conventional parsing methods are usually divided into two 

phases: the lexical analysis phase and the parsing phase. The 
tokenization phase is called lexer, lexical analyzer, tokenizer or 
scanner. The lexical analysis splits the input string into tokens 
which hopefully corresponds to the permitted terminals of the 
grammar. This lexical analysis is important for conventional 
parsers due to their inability to refer to nonterminals for 
lookahead decisions [6]. Thus, the parser treats the tokens 
acquired from the lexical analysis as if they were terminals. 

Packrat parsers can on the other hand be scannerless, which 
means that it requires no lexical analysis. When a scannerless 
packrat parser evaluates different alternatives, it can rely on 
already evaluated results. This effectively makes a packrat 
parser able to use both terminals and nonterminals during 
lookahead [10, 6]. Large parts of the code base of programs 
may consist of white spaces, comments and other irrelevant 
information that is not needed for the semantic analysis. A 
lexical analyzer can effectively disregard such information by 
simply opting not to create any tokens for them, thus no 
specific productions for white spaces and/or comments need to 
be included in the grammar specification of the parser. For a 
packrat parser that does not use a lexical analyzer, however, 
this is not the case. A packrat parser that uses no lexical 
analyzer, the white spaces and comments need to be 
incorporated into the productions of the grammar. 

As previously mentioned, the conventional parsers treat the 
created tokens given by the lexical analyzer as if they were 
terminals, and between each token the lexical analyzer 
disregards any white spaces or comments. To achieve this 
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effect for a packrat parser, a production to manage white space 
or comments can be created and used after each terminal 
symbol of the grammar. For instance, the grammar for 
recognizing arithmetic expression altered in the following way 
to be able to correctly handle white spaces inside an arithmetic 
expression: 

Additive<- Multitive ’+’ Spaces Additive / Multitive  
Multitive<-Primary ’*’ Spaces Multitive / Primary  
Primary <- ’(’ Spaces  Additive ’)’ Spaces /Decimal  
Decimal <- [0-9] Spaces  
Spaces <- (' ' / '  \t' / ' \n' / ' \r')* 

This grammar is now able to parse an arithmetic expression 
such as: 2 * (3+ 4). 

III. LITERATURE SURVEY 
PEGs are a recently introduced technique for describing 

grammars by Ford in [5] with implementation of the packrat 
parser. Theory is based upon strong foundations. Ford [18] 
showed how PRGs can be reduced to TDPLs  long back in the 
1970s. It was shown by Roman[24] that primitive recursive-
descent parser with limited backtracking alongwith integrated 
lexing can be used for parsing Java 1.5 where requirement is  
of moderate performance. PEG is not good as a language 
specification tool as shown in [25]. The characteristic of a 
specification is that what it specifies is clearly to be seen. But 
this is, unfortunately, not valid for PEG. Further it gives 
reasonable performance when C grammar is slightly modified 
and also in [16] he studied that classical properties like FIRST 
and FOLLOW where he demonstrated those can be redefined 
for PEG and can be obtained even for a large grammar. FIRST 
and FOLLOW are used to define conditions for choice and 
iteration that are similar to the classical LL(1) conditions, 
although they have a different structure and semantics. This is 
different from classical properties like FIRST and FOLLOW 
where letters are terminal expressions, which may mean sets of 
letters, or strings. Checking these conditions gives an idea of 
useful information like the absence of reprocessing or language 
hiding which is helpful in locating places that need further 
examination. The properties FIRST and FOLLOW are kind of 
upper bounds, and conditions using them are sufficient, but not 
necessary which may results in false warnings  In [17] a virtual 
parsing machine approach is proposed for implementing PEG 
which is can be applied to pattern matching. Each PEG is 
converted directly into its equivalent corresponding program 
Virtual parsing machine then using scripting language excutes 
the translated program. Creation and composition of new 
programs are done on fly. 

In [7] Robert grimm parsing technique made practical for 
object-oriented languages. This parser generator employs 
simpler grammar specifications. Error reporting is also made 
easy by this parser generator and shown to be better 
performing parsers through aggressive optimizations. 

In [19] cut operator was introduced to parsing expression 
grammars (PEGs) and when applied to PEG on which packrat 
parsing is based. Disadvantage is largely addressed with this 
approach. Concept of cut operator was borrowed from Prolog 
[6]. It introduces degree of controlling backtracking. An 

efficient packrat parser can be developed avoiding unnecessary 
space for memorization by inserting cut operators into a PEG 
grammar at appropriate places. To   show effectiveness and 
usefulness of cut operators, a packrat parser generator called 
Yapp was implemented and used. It accepts Parsing Expression 
Grammar marked with cut operator. The experimental 
evaluations showed that the packrat parsers generated using 
grammars with cut operators inserted can parse Java programs 
and subset of XML files in mostly constant space, unlike 
conventional packrat parsers.  In [12] automatic insertion of cut 
operators was proposed that achieves the same effect. In these 
methods, a statistical analysis is made of a PEG grammar by 
parser generator in order to find the places where the parser 
generator can insert cut operators without changing the 
meaning of the grammar and cut operators are inserted at these 
identified points. Definite clause grammar rules and memoing 
can be a possible combination for implementation of packrat 
parser as shown in [20] .Further it points out that packrat 
parsing may degrade its performance over plain recursive 
descent with backtracking, but  memoing the recognizers of 
just one or two nonterminals can sometimes give reasonable 
performance. 

Warth [21] tweaked memoization approach used by packrat 
parser because of which left-recursion even indirectly or 
mutually was supported. But some experiments were 
conducted out to show that this is not the case for typical uses 
of left recursion. In [8] Coq formalization of the theory of 
PEGs is proposed and with this as a foundation a formally 
verified parser interpreter for PEGs, TRX is developed.  This 
gives rise to writing a PEG, together with its semantic actions, 
in Coq and then a parser can be extracted from it a parser with 
total correctness guarantees. This ensures that the parser will 
terminate on all kind of inputs and produces output as a parsing 
results correct with respect to the semantics of PEGs. 

In [27] concept of elastic sliding window is used and it is 
based upon the observation of worst longest backtrack length. 
Particularly author noted that if a window in the form of small 
memorization table slides and covers the longest backtrack 
then redundant calls are avoided since the storage is sufficient 
enough to store all the results. Practically, it is difficult to get 
the longest backtrack before parsing as it is runtime entity. 
Here window is approximated from empirical investigation and 
if needed may be expanded during parsing. 

[28] introduces derivative parsing with memorized 
approach algorithm for recognition of PEG. Main problem in 
this algorithm since derivative parsing attempts all possible 
parses concurrently is to identify which constructs exactly in 
the current parse tree can match against or consume the current 
character. This problem is solved by using concept of a 
backtracking generation (or generation) as a means to take into 
account for backtracking choices in the process of parsing. 
Execution of the algorithm is found to be in worst case 
quadratic time and cubic space. However, it is stressed in this 
paper that due to the limited amount of backtracking and 
recursion in grammars when put in practical use and input, 
practical performance may be nearer to linear time and 
constant space and requires experimental validation for the 
same which is in progress. Table II summarizes the 
comparative study of major packrat parser generators. 
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TABLE I.  COMPARISON OF VARIOUS PACKRAT PARSER GENERATORS 

IV. OPEN PROBLEMS IN PACKRAT PARSING 

A. Memoization 
One of the drawbacks with using packrat parsing is the 

additional memory consumption when compared with 
conventional parsing techniques. A tabular approach where the 
whole m*n matrix is evaluated would require Θ(mn) space, 
where m is the amount of nonterminals and n is the size of the 
input string. However, for a packrat parser, only the required 
cells in the matrix are evaluated, and these cells are directly 
related to the input string and not the nonterminals of the 
grammar [22]. In other words, adding more productions to the 
grammar may not necessarily increase the storage consumption 
while increasing the size of the input string will always 
increase the memory consumption. This makes the required 
size of the memoization matrix for a packrat parser be 
proportional only to the size of the input string, thus O(n). 
Even if the space consumption is upper-bounded by the input 
string and can therefore be written as O(n) there is a ”hidden 
constant multiple” of n [22].This is because there can be more 
than n elements in the produced memoization matrix. 
Conventional LL(k) and LR(k) parsing algorithms only require 
storage space proportional to the maximum recursion depth 
that occurs for the given input. This causes these conventional 
algorithms to have the same worst case memory requirement as 
a packrat parser. However, a packrat parser is also lower 
bounded by n and this worst case behavior for LL(k) and LR(k) 
parsers rarely occurs [10, 22]. In fact, the maximum recursion 
depth is usually significantly smaller than the size of the input 
string [22]. 

B. Maintaining States 
A parser for the programming languages C and C++ 

requires that the parser is able to maintain a global state. The 
reason is the nature of typedef’s for the two languages. The 
parser needs to be able to distinguish whether the input is a 
typedef symbol, an object, a function or an enum constant, and 
change the global state accordingly if the meaning of a specific 
token changes. For instance, the following C code requires this 
feature: [7]  

          T(*b)[4]  
By only looking at this snippet, the parser has no way of  

knowing whether T refers to a function call or a typedef name, 
it is context-sensitive. If it is a function call, the snippet 
corresponds to accessing the fifth element of the resulting call 
to function T with the pointer b as input parameter. If T instead 
is a typedef, the snippet corresponds to b pointing to an array 
consisting of four elements of type T. 

C or C++, however, can still be parsed with a packrat 
parser that changes its state whenever a variable changes its 
type [8]. This is because of the requirement that the type of a 
variable needs to be declared before its usage and therefore no 
parsing information prior to a definition of a variable is lost. 
This way, a separate symbol table can be constructed during 
the parse which keeps track of the type for different tokens. 
However, for the general case of context-sensitive grammars, 
packrat parsers may experience exponential parsing time and 
memory consumption. This is because during parsing a packrat 
parser assumes that an already evaluated cell of the result 
matrix is the correct result, and that this value will not have to 
change. But if a state change occurs the result matrix may have 
to be re-evaluated to ensure a correct result during 
backtracking. This can potentially break the guaranteed linear 
time characteristic due to cells being evaluated multiple times 
[22]. 

C. Left recursion:- 
Left recursion is an issue in PEG and solution is proposed 

for the same in [11] by Wrath et al. But this approach fails for 
some PEGs as shown by Tratt[37] .The solution works for a 
safe subset of left-recursive PEGs with this approach. By 
extending this algorithm where allowing left-recursive rules 
with definite right-recursion to work as expected. In order to 
parse right-recursive PEGs safely, a number of subtle issues 
need to be addressed, and the set of right-recursive PEGs safely 
parseable is less than might originally have been hoped for. 
Next step obviously is to extend the solutions presented in this 
paper to tackle with indirect left and indirect right recursion. 
But this may be quite challenging and may impose further 
restrictions on valid PEGs. Therefore, this gives rise to a open 
problem: are PEGs really safe for left-recursion? 

D. Error Reporting:- 
One important property of parser is to provide good syntax 

error support. For example, if user enters invalid expression 

Name of 
Parser 

Language used for 
implementation Working Principle Memory Utilization  Execution Time 

YAPP Object oriented Language 
Java 

Optimized Packrat Parser with 
CUT operator 

Memory requirement has been cut 
down as cut operator reduces 
redundant calls 

Moderate amount of 
parsing time required 

RATS Object oriented Language 
Java 

Packrat Parser with some 
aggressive optimization 

Less memory space as some 
aggressive optimizations used 

Moderate amount of 
parsing time required 

Mouse Object oriented Language 
Java 

Straightforward Recursive 
descent Parser  implemented 
using PEG with no 
memorization support 

Least amount of storage used 

Amount of parsing time is 
highest among all the 
parsers as repeated 
backtracking is not avoided 

PAPPY Functional Programming 
Language Huskell 

Basic Pakrat Parser with 
memoization Use of significant storage space Moderate amount of 

parsing time required 

Nez Object oriented Language 
Java 

Packrat Parser implemented 
with elastic sliding window 
concept 

Significant and least amount of 
storage is used among all  packrat 
parser which use memoization 

Moderate amount of 
parsing time required 
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and to recover from it, it is necessary for parser needs to know 
if it is parsing an array index or, say, an assignment. It is 
preferable that the parser should resynchronize by skipping 
ahead to a token. In the later case, it should skip to a; token 
since top-down parsers maintains a rule invocation stack and is 
able to report things like invalid expression in array index. 
Ambiguous context poses a problem before packrat parser 
since they are always speculating. In practice, recovery from 
syntax errors cannot be possible because they cannot detect 
errors until they have seen the entire input. 

E. Specification Tool:- 
PEG is looked at as a advanced tool for describing syntax 

and considered to be better than CFGs and regular expressions. 
The reason behind this is cited as grammar is unambiguous. 
But though it is an unambiguous specification of a parser, the 
language specified by it is whatever that parser happens to 
accept. But the language we want is easily seen? 
"Specification"   means its meaning must be clear to a human 
reader. "Prefix capture" in PEG is not immediately visible 
which the main pitfall is. In addition to left recursion, detection 
of prefix capture is inevitable for any usable parser generator 
for PEG. To make sure the grammar defines the language 
required are there any other conditions that must be detected? 
This gives rise to think in terms of Parsing Expressions. This 
raises an argument here that BNF make it to understand easier 
because it better reflects the working of human mind, or 
because we are using it since long time? 

V. CONCLUSION AND FUTURE WORK 
In this paper, compressive review is taken about the packrat 

parsing introduced by Ford in 2002. It presents the state of the 
art about the development and research about packrat parsing 
based upon parsing expression Grammar. Specifically this type 
of parsing is presented by using memoization technique but 
subsequently it is this memoization which is shown to be 
hindrance from applying this parsing technique though it 
guarantee linear time of execution by avoiding redundant calls. 
Therefore authors focused on this problem so that wide use of 
this technique is feasible. In addition to this other issues such 
as left recursion, error reporting also seems to be associated 
with this type of parsing approach and discussed here about the 
initiatives made by researchers to address this issue. Future 
work may be to apply these techniques to wide variety of 
grammars so that authenticities of these techniques are to be 
endorsed. 
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