
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

Packrat Parsing: A Literature Review
Manish M. Goswami

Research Scholar,
Dept. of Computer Science and

Engineering,
G.H.Raisoni College of Engineering,

Nagpur, India

Dr. M.M. Raghuwanshi,
Professor,

Department of Computer
Technology,

YCCE,
Nagpur, India

Dr. Latesh Malik,
Professor,

Dept. of CSE,
G.H.Raisoni College of Engg.,

Nagpur, India

Abstract—Packrat parsing is recently introduced technique
based upon expression grammar. This parsing approach uses
memoization and ensures a guarantee of linear parse time by
avoiding redundant function calls by using memoization. This
paper studies the progress made in packrat parsing till date and
discusses the approaches to tackle this parsing process efficiently.
In addition to this, other issues such as left recursion, error
reporting also seems to be associated with this type of parsing
approach and discussed here the efforts attempted by
researchers to address this issue. This paper, therefore, presents
a state of the art review of packrat parsing so that researchers
can use this for further development of technology in an efficient
manner.

Keywords—Parsing Expression Grammar; Packrat Parsing;
Memoization; Backtracking

I. INTRODUCTION
Parsing consists of two processes: lexical analysis and

parsing. The job of the lexical analysis is to break down the
input text (string) into smaller parts, called tokens. The lexical
analyzer then sends these tokens to the parser in sequence.
During parsing, the parser takes the help of a grammar to
decide whether to accept the input string or reject .i.e. whether
it is a subset of the accepting language or not. A set of
grammar rules or productions is used to define the language of
grammar. Each production can then, in turn, compose of
several different alternative productions. These productions
guide the parser throughout the parsing to determine whether to
accept the input string or to reject it. Top-down parsing is a
parsing strategy that attempts left-to-right leftmost derivation
(LL) for the input string. This can be achieved with prediction,
backtracking or a combination of the two. LL(k) top-down
parser makes its decisions based on lookahead, where the
parser attempts to ”look ahead” k number of symbols of the
input string. A top-down parser that uses backtracking instead
evaluates each production and its choices in turn; if a
choice/production fails the parser backtracks on the input string
and evaluates the next choice/production, if the
choice/production succeeds the parser merely continues. The
bottom-up parsing is a parsing method that instead attempts to
perform a left-to-right rightmost derivation (LR) in reverse of
the input string. Shift-reduce parsing is widely used bottom-up
parsing technique. A shift-reduce parser uses two different
actions during parsing: shift and reduce. A shift action takes a
number of symbols from the input string and places them on a
stack. The reduce action reduces the symbols on the stack
based on finding a matching grammar production for the

symbols. The decisions regarding whether to shift or reduce are
done based on lookahead. Several different parsing techniques
have been developed over the years, both for parsing am-
biguous and unambiguous grammars. One of the latest is
packrat parsing [5]. Packrat parsing is based upon a top-down
recursive descent parsing approach with memoization that
guarantees linear parse time. Memoization employed in the
packrat parsing eliminates disadvantage of conventional top-
down backtracking algorithms which suffer from exponential
parsing time in the worst case. This exponential runtime is due
to performing redundant evaluations caused by backtracking.
Packrat parsers avoid this by storing all of the evaluated results
to be used for future backtracking eliminating redundant
computations. This storing technique is called memoization
which ensures guaranteed linear parsing time for packrat
parsers. The memory consumption for conventional parse
algorithms is linear to the size of the maximum recursion depth
occurring during the parse. In the worst case it can be the same
as the size of the input string. In packrat parsing, the memory
consumption for a packrat parser is linearly proportional to the
size of the input string. Packrat parsing is based upon parsing
expression grammars (PEGs) which have the property of
always producing unambiguous grammars. It has been proven
that all LL(k) and LR(k) grammars can be rewritten into a
PEG[7]. Thus, packrat parsing is able to parse all context-free
grammars. In fact, it can even parse some grammars that are
non-context-free [7].

Another characteristic of packrat parsing is that it is
scannerless i.e. a separate lexical analyzer is not needed. In
packrat parsers, they are both integrated into the same tool, as
opposed to the Lex[10]/Yacc[9] approach where Lex is used
for the lexical analysis and Yacc for parsing phase of the
compiler.The founding work for packrat parsing was carried
out in 1970 by A. Birman et. al.[4]. Birman introduced a
schema called the TMG recognition schema (TS). Birman’s
work was later refined by A. Aho and J. Ullman et. al.[2], and
renamed into generalized top-down parsing language
(GTDPL). This was the first top-down parsing algorithm that
was deterministic and used backtracking. Due to deterministic
nature of resulting grammar they discovered that the parsing
results could be saved in a table to avoid redundant
computations. However, this approach was never put into
practice, due to the limited amount of main memory in
computers at that time [10,14]. Another characteristic of
GTDPL is that it can express any LL(k) and LR(k) language,
and even some non-context-free languages[2,3]. Rest of the
paper consists of introduction to Parsing Expression grammar

26 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

along with discussion on its properties followed by the work
carried out by researchers in this area. Finally the paper focuses
upon the open problems in packrat parsing and concluded with
future work.

II. PARSING EXPRESSION GRAMMAR
As an extension to GTDPL and TS, Bryan Ford introduced

PEGs [7]. CFGs (which were introduced mainly for usage with
natural language [7]) may be ambiguous and thereby either (1)
produce multiple parse tree’s, which is not necessary due to
only one is needed, and (2) produce a heuristically chosen one,
which might not even be correct[8]. However, one of the
characteristics of PEGs is that they are by definition
unambiguous and thereby provides a good match for machine-
oriented languages (since programming languages supposed to
be deterministic). It is also shown that PEGs, similar to
GTDPL and TS, can express all LL(k) and LR(k) languages,
and that they can be parsed in linear time with the memoization
technique [7].

A. Definitions and Operators
PEGs, as defined in [7], are a set of productions of the form

A <- e where A is a nonterminal and e is a parsing expression.
The parsing expressions denote how a string can be parsed. By
matching a parsing expression e with a string s, e indicates
success or failure. In case of a success, the matching part of s is
consumed. If a failure is returned, s is matched against the next
parsing expression. Together, all productions form the
accepting language of the grammar. The following operators
are available in PEG productions: [7,14]

Ordered choice: e1/.../en, expression e1,...,en is evaluated
in this order, to the text ahead, until one of them succeeds and
possibly consumes some text. If one of the expressions
succeeded, indicate success. Otherwise indicate failure and
input is not consumed.

Sequence: e1,...,en, expressions e1,...,en, is evaluated in this
order, to consume consecutive portions of the text ahead, as
long as they succeed. If all succeeded, success is indicated.
Otherwise indicate failure and input is not consumed.

And predicate: &e, if expression e matches the text ahead;
indicate success otherwise indicate failure. Text is not
consumed.

Not predicate:!e, if expression e matches the text ahead,
failure is indicated; otherwise, indicate success. Do not
consume any text.

One or more: e+, expression e is repeatedly applied to
match the text ahead, as long as it succeeds. Matched Text is
consumed if any and success is indicated if there is at least one
match. Otherwise failure is indicated.

Zero or more: e∗, As long as expression e matches text
ahead it is applied repeatedly and consumed the matched text
(if any). Always report success.

Zero or one: e?, if expression e matches the text ahead,
consume it. Always report success.

Character class: [s], character ahead is consumed if it
appears in the sting s and success is indicated. Otherwise

failure is indicated.

Character range: [c1- c2], if the character ahead is one
from the range c1 through c2, consume it and indicate success.
Otherwise indicate failure.

String:’s’, if the text ahead is the string s, consume it and
success is indicated. Otherwise failure is indicated.

Any character: (dot), if there is a character ahead,
consume it and indicate success. Otherwise (that is, at the end
of input) indicate failure.

B. Ambiguity
The unambiguousness of a PEG comes from the ordered

choice property. The choices in CFGs are symmetric, i.e., the
choices need not be checked in any specific order. However,
the choices in a PEGs are asymmetric, i.e., the ordering of the
choices determines in which order they are tested. For a PEG
the first expression that matches are always chosen. This means
that a production such as A<-a/aa is perfectly valid and
unambiguous. However, it only accepts the language {a} on
the contrary, a CFG production A->a|aa is ambiguous but
accepts the language {a,aa}.

A traditional example that is hard to express with the use of
CFGs is the dangling else problem. Consider the following if-
statement:

if cond then if cond then statement else statement

This statement can be matched in the following two ways:

if cond then (if cond then statement else statement)
if cond then (if cond then statement) else statement

If the intended matching is the former of the two (in fact,
this is how it is done in the programming language C[8]) then
the following PEG production is sufficient:

Stmt<- ’if’ Cond ’then’ Stmt ’else’ Stmt

 /’if’ Cond ’then’ Stmt
 /...

Note: Matching the outermost if with the else-clause is
believed not to be possible with a PEG. However, no source to
either prove or contradict this statement was found.

Discovering if a CFG production is ambiguous is
sometimes a non-trivial task. Similarly, choosing the ordering
of two expressions in a PEG production without affecting the
accepting language is not always straightforward [7].

C. Left Recursion
Left recursion is when a grammar production refers to itself

as its left-most element, either directly or indirectly. Similar to
the conventional LL(k) parsing methods, left recursion proves
to be an issue for PEGs, and therefore a problem also for
packrat parsing [10,7]. Consider the following alteration of the
production:

A<-Aa / a
For a CFG, this modification is not a problem. However,

for a PEG, parsing of nonterminal A requires testing that A
matches, which requires testing that A matches etc, producing

27 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

an infinite recursion. However, it was early discovered that a
left-recursive production can always be rewritten into an
equivalent right-recursive production [1], and thus making it
manageable for a packrat parser. However, if there is indirect
left recursion involved, the rewriting process may become
fairly complex.

D. Syntatic Predicates
PEGs allow the use of the syntactic predicates! and &.

Consider the following grammar production:

A <- !B C
Every time this production is invoked it needs to establish

if the input string matches a B and if it does, signal a failure. If
there is no match the original input string is compared with the
nonterminal C. This ability to “look ahead” an arbitrary
amount of characters combined with the selective backtracking
gives packrat parsers unlimited lookahead [10, 6, 7, 13].

E. Memoization
The introduction of memoization was treated as a machine

learning method in 1968 by D. Michie et. al. [11]. By storing
calculated results, the machine ”learned” it. The next time it
was asked for the same result, the machine
merely”remembered” it by looking up the previously stored
result. The storage mechanism used was a stack. This makes
the look-up process become linear. However, insertions of
results are constant; they are merely pushed on top of the stack.
In packrat parsing, the results are instead stored in a matrix or
similar data structure that provides constant time look-ups
(when the location of the result is already known) and
insertions [10]. For every encountered production this matrix is
consulted; if the production has already occurred once the
result is thereby already in the matrix and merely needs to be
returned; if not, the production is evaluated and the result is
both inserted into the matrix and returned. Conventional
recursive descent parsers that use backtracking may experience
exponential parsing time in the worst case. This is due to
redundant calculations of previously computed results caused
by backtracking. However, memoization avoids this problem
due to the fact that the result only needs to be evaluated once.
This gives packrat parsing a linear parsing time in relation to
the length of the input string (given that the access and
insertion operations in the matrix are done in constant time).
Let us look at the following trivial PEG, taken from [10]:

Additive <- Multitive ’+’ Additive / Multitive

Multitive <- Primary ’*’ Multitive / Primary

Primary <- ’(’ Additive ’)’ / Decimal

Decimal <- [0-9]

With this grammar and the input string 2*(3+4) the
following memoization matrix can be produced:

The columns correspond to each position of the input
string; the rows correspond to each of the parsing procedures.
To make it clear that the rows are in fact procedures they have
been given a prefix ’p’. Each cell contains either a number that
represents how much of the input string that have been
consumed by a previous call to the procedure, or the cell

pAdditive 7 -1 5 3 -1 1 -1 -
1

pMultitive 7 -1 5 1 -1 1 -1 -
1

pPrimary 1 -1 5 1 -1 1 -1 -
1

pDecimal 1 -1 -1 1 -1 1 -1 -
1

input ’2’ ’*’ ’(’ ’3’ ’+’ ’4’ ’)’ $

A Matrix Containing the Parsing Results of the Input String
2*(3+4) contains a ’-1’ which indicates a failed evaluation. For
instance, if backtracking occurs at input position four (where
the number ’3’ is present) and procedure pAdditive is called,
the parser first checks if a previous computation is stored in the
storage matrix. In this case the number 3 is stored and thereby
the parser immediately knows that it can advance three steps
on the input string and end up at the seventh character of the
input string. If the stored value is ’-1’ the parser knows that a
previous call resulted in a failed parse and can thus avoid
continuing with the procedure call and instead return a failure
response to the calling function. This illustrates how redundant
computations and thereby also potential exponential parsing
times are avoided with the help of memoization. Calculating
the whole matrix in Table1 would be unnecessary since many
of the cells are not needed. The idea behind packrat parsing is
not to evaluate all of the cells in the parsing matrix, only the
results that are needed [10]. This effectively reduces the
amount of memory space required during parsing.

F. Scannerless
Conventional parsing methods are usually divided into two

phases: the lexical analysis phase and the parsing phase. The
tokenization phase is called lexer, lexical analyzer, tokenizer or
scanner. The lexical analysis splits the input string into tokens
which hopefully corresponds to the permitted terminals of the
grammar. This lexical analysis is important for conventional
parsers due to their inability to refer to nonterminals for
lookahead decisions [6]. Thus, the parser treats the tokens
acquired from the lexical analysis as if they were terminals.

Packrat parsers can on the other hand be scannerless, which
means that it requires no lexical analysis. When a scannerless
packrat parser evaluates different alternatives, it can rely on
already evaluated results. This effectively makes a packrat
parser able to use both terminals and nonterminals during
lookahead [10, 6]. Large parts of the code base of programs
may consist of white spaces, comments and other irrelevant
information that is not needed for the semantic analysis. A
lexical analyzer can effectively disregard such information by
simply opting not to create any tokens for them, thus no
specific productions for white spaces and/or comments need to
be included in the grammar specification of the parser. For a
packrat parser that does not use a lexical analyzer, however,
this is not the case. A packrat parser that uses no lexical
analyzer, the white spaces and comments need to be
incorporated into the productions of the grammar.

As previously mentioned, the conventional parsers treat the
created tokens given by the lexical analyzer as if they were
terminals, and between each token the lexical analyzer
disregards any white spaces or comments. To achieve this

28 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

effect for a packrat parser, a production to manage white space
or comments can be created and used after each terminal
symbol of the grammar. For instance, the grammar for
recognizing arithmetic expression altered in the following way
to be able to correctly handle white spaces inside an arithmetic
expression:

Additive<- Multitive ’+’ Spaces Additive / Multitive
Multitive<-Primary ’*’ Spaces Multitive / Primary
Primary <- ’(’ Spaces Additive ’)’ Spaces /Decimal
Decimal <- [0-9] Spaces
Spaces <- (' ' / ' \t' / ' \n' / ' \r')*

This grammar is now able to parse an arithmetic expression
such as: 2 * (3+ 4).

III. LITERATURE SURVEY
PEGs are a recently introduced technique for describing

grammars by Ford in [5] with implementation of the packrat
parser. Theory is based upon strong foundations. Ford [18]
showed how PRGs can be reduced to TDPLs long back in the
1970s. It was shown by Roman[24] that primitive recursive-
descent parser with limited backtracking alongwith integrated
lexing can be used for parsing Java 1.5 where requirement is
of moderate performance. PEG is not good as a language
specification tool as shown in [25]. The characteristic of a
specification is that what it specifies is clearly to be seen. But
this is, unfortunately, not valid for PEG. Further it gives
reasonable performance when C grammar is slightly modified
and also in [16] he studied that classical properties like FIRST
and FOLLOW where he demonstrated those can be redefined
for PEG and can be obtained even for a large grammar. FIRST
and FOLLOW are used to define conditions for choice and
iteration that are similar to the classical LL(1) conditions,
although they have a different structure and semantics. This is
different from classical properties like FIRST and FOLLOW
where letters are terminal expressions, which may mean sets of
letters, or strings. Checking these conditions gives an idea of
useful information like the absence of reprocessing or language
hiding which is helpful in locating places that need further
examination. The properties FIRST and FOLLOW are kind of
upper bounds, and conditions using them are sufficient, but not
necessary which may results in false warnings In [17] a virtual
parsing machine approach is proposed for implementing PEG
which is can be applied to pattern matching. Each PEG is
converted directly into its equivalent corresponding program
Virtual parsing machine then using scripting language excutes
the translated program. Creation and composition of new
programs are done on fly.

In [7] Robert grimm parsing technique made practical for
object-oriented languages. This parser generator employs
simpler grammar specifications. Error reporting is also made
easy by this parser generator and shown to be better
performing parsers through aggressive optimizations.

In [19] cut operator was introduced to parsing expression
grammars (PEGs) and when applied to PEG on which packrat
parsing is based. Disadvantage is largely addressed with this
approach. Concept of cut operator was borrowed from Prolog
[6]. It introduces degree of controlling backtracking. An

efficient packrat parser can be developed avoiding unnecessary
space for memorization by inserting cut operators into a PEG
grammar at appropriate places. To show effectiveness and
usefulness of cut operators, a packrat parser generator called
Yapp was implemented and used. It accepts Parsing Expression
Grammar marked with cut operator. The experimental
evaluations showed that the packrat parsers generated using
grammars with cut operators inserted can parse Java programs
and subset of XML files in mostly constant space, unlike
conventional packrat parsers. In [12] automatic insertion of cut
operators was proposed that achieves the same effect. In these
methods, a statistical analysis is made of a PEG grammar by
parser generator in order to find the places where the parser
generator can insert cut operators without changing the
meaning of the grammar and cut operators are inserted at these
identified points. Definite clause grammar rules and memoing
can be a possible combination for implementation of packrat
parser as shown in [20] .Further it points out that packrat
parsing may degrade its performance over plain recursive
descent with backtracking, but memoing the recognizers of
just one or two nonterminals can sometimes give reasonable
performance.

Warth [21] tweaked memoization approach used by packrat
parser because of which left-recursion even indirectly or
mutually was supported. But some experiments were
conducted out to show that this is not the case for typical uses
of left recursion. In [8] Coq formalization of the theory of
PEGs is proposed and with this as a foundation a formally
verified parser interpreter for PEGs, TRX is developed. This
gives rise to writing a PEG, together with its semantic actions,
in Coq and then a parser can be extracted from it a parser with
total correctness guarantees. This ensures that the parser will
terminate on all kind of inputs and produces output as a parsing
results correct with respect to the semantics of PEGs.

In [27] concept of elastic sliding window is used and it is
based upon the observation of worst longest backtrack length.
Particularly author noted that if a window in the form of small
memorization table slides and covers the longest backtrack
then redundant calls are avoided since the storage is sufficient
enough to store all the results. Practically, it is difficult to get
the longest backtrack before parsing as it is runtime entity.
Here window is approximated from empirical investigation and
if needed may be expanded during parsing.

[28] introduces derivative parsing with memorized
approach algorithm for recognition of PEG. Main problem in
this algorithm since derivative parsing attempts all possible
parses concurrently is to identify which constructs exactly in
the current parse tree can match against or consume the current
character. This problem is solved by using concept of a
backtracking generation (or generation) as a means to take into
account for backtracking choices in the process of parsing.
Execution of the algorithm is found to be in worst case
quadratic time and cubic space. However, it is stressed in this
paper that due to the limited amount of backtracking and
recursion in grammars when put in practical use and input,
practical performance may be nearer to linear time and
constant space and requires experimental validation for the
same which is in progress. Table II summarizes the
comparative study of major packrat parser generators.

29 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

TABLE I. COMPARISON OF VARIOUS PACKRAT PARSER GENERATORS

IV. OPEN PROBLEMS IN PACKRAT PARSING

A. Memoization
One of the drawbacks with using packrat parsing is the

additional memory consumption when compared with
conventional parsing techniques. A tabular approach where the
whole m*n matrix is evaluated would require Θ(mn) space,
where m is the amount of nonterminals and n is the size of the
input string. However, for a packrat parser, only the required
cells in the matrix are evaluated, and these cells are directly
related to the input string and not the nonterminals of the
grammar [22]. In other words, adding more productions to the
grammar may not necessarily increase the storage consumption
while increasing the size of the input string will always
increase the memory consumption. This makes the required
size of the memoization matrix for a packrat parser be
proportional only to the size of the input string, thus O(n).
Even if the space consumption is upper-bounded by the input
string and can therefore be written as O(n) there is a ”hidden
constant multiple” of n [22].This is because there can be more
than n elements in the produced memoization matrix.
Conventional LL(k) and LR(k) parsing algorithms only require
storage space proportional to the maximum recursion depth
that occurs for the given input. This causes these conventional
algorithms to have the same worst case memory requirement as
a packrat parser. However, a packrat parser is also lower
bounded by n and this worst case behavior for LL(k) and LR(k)
parsers rarely occurs [10, 22]. In fact, the maximum recursion
depth is usually significantly smaller than the size of the input
string [22].

B. Maintaining States
A parser for the programming languages C and C++

requires that the parser is able to maintain a global state. The
reason is the nature of typedef’s for the two languages. The
parser needs to be able to distinguish whether the input is a
typedef symbol, an object, a function or an enum constant, and
change the global state accordingly if the meaning of a specific
token changes. For instance, the following C code requires this
feature: [7]

 T(*b)[4]
By only looking at this snippet, the parser has no way of

knowing whether T refers to a function call or a typedef name,
it is context-sensitive. If it is a function call, the snippet
corresponds to accessing the fifth element of the resulting call
to function T with the pointer b as input parameter. If T instead
is a typedef, the snippet corresponds to b pointing to an array
consisting of four elements of type T.

C or C++, however, can still be parsed with a packrat
parser that changes its state whenever a variable changes its
type [8]. This is because of the requirement that the type of a
variable needs to be declared before its usage and therefore no
parsing information prior to a definition of a variable is lost.
This way, a separate symbol table can be constructed during
the parse which keeps track of the type for different tokens.
However, for the general case of context-sensitive grammars,
packrat parsers may experience exponential parsing time and
memory consumption. This is because during parsing a packrat
parser assumes that an already evaluated cell of the result
matrix is the correct result, and that this value will not have to
change. But if a state change occurs the result matrix may have
to be re-evaluated to ensure a correct result during
backtracking. This can potentially break the guaranteed linear
time characteristic due to cells being evaluated multiple times
[22].

C. Left recursion:-
Left recursion is an issue in PEG and solution is proposed

for the same in [11] by Wrath et al. But this approach fails for
some PEGs as shown by Tratt[37] .The solution works for a
safe subset of left-recursive PEGs with this approach. By
extending this algorithm where allowing left-recursive rules
with definite right-recursion to work as expected. In order to
parse right-recursive PEGs safely, a number of subtle issues
need to be addressed, and the set of right-recursive PEGs safely
parseable is less than might originally have been hoped for.
Next step obviously is to extend the solutions presented in this
paper to tackle with indirect left and indirect right recursion.
But this may be quite challenging and may impose further
restrictions on valid PEGs. Therefore, this gives rise to a open
problem: are PEGs really safe for left-recursion?

D. Error Reporting:-
One important property of parser is to provide good syntax

error support. For example, if user enters invalid expression

Name of
Parser

Language used for
implementation Working Principle Memory Utilization Execution Time

YAPP Object oriented Language
Java

Optimized Packrat Parser with
CUT operator

Memory requirement has been cut
down as cut operator reduces
redundant calls

Moderate amount of
parsing time required

RATS Object oriented Language
Java

Packrat Parser with some
aggressive optimization

Less memory space as some
aggressive optimizations used

Moderate amount of
parsing time required

Mouse Object oriented Language
Java

Straightforward Recursive
descent Parser implemented
using PEG with no
memorization support

Least amount of storage used

Amount of parsing time is
highest among all the
parsers as repeated
backtracking is not avoided

PAPPY Functional Programming
Language Huskell

Basic Pakrat Parser with
memoization Use of significant storage space Moderate amount of

parsing time required

Nez Object oriented Language
Java

Packrat Parser implemented
with elastic sliding window
concept

Significant and least amount of
storage is used among all packrat
parser which use memoization

Moderate amount of
parsing time required

30 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

and to recover from it, it is necessary for parser needs to know
if it is parsing an array index or, say, an assignment. It is
preferable that the parser should resynchronize by skipping
ahead to a token. In the later case, it should skip to a; token
since top-down parsers maintains a rule invocation stack and is
able to report things like invalid expression in array index.
Ambiguous context poses a problem before packrat parser
since they are always speculating. In practice, recovery from
syntax errors cannot be possible because they cannot detect
errors until they have seen the entire input.

E. Specification Tool:-
PEG is looked at as a advanced tool for describing syntax

and considered to be better than CFGs and regular expressions.
The reason behind this is cited as grammar is unambiguous.
But though it is an unambiguous specification of a parser, the
language specified by it is whatever that parser happens to
accept. But the language we want is easily seen?
"Specification" means its meaning must be clear to a human
reader. "Prefix capture" in PEG is not immediately visible
which the main pitfall is. In addition to left recursion, detection
of prefix capture is inevitable for any usable parser generator
for PEG. To make sure the grammar defines the language
required are there any other conditions that must be detected?
This gives rise to think in terms of Parsing Expressions. This
raises an argument here that BNF make it to understand easier
because it better reflects the working of human mind, or
because we are using it since long time?

V. CONCLUSION AND FUTURE WORK
In this paper, compressive review is taken about the packrat

parsing introduced by Ford in 2002. It presents the state of the
art about the development and research about packrat parsing
based upon parsing expression Grammar. Specifically this type
of parsing is presented by using memoization technique but
subsequently it is this memoization which is shown to be
hindrance from applying this parsing technique though it
guarantee linear time of execution by avoiding redundant calls.
Therefore authors focused on this problem so that wide use of
this technique is feasible. In addition to this other issues such
as left recursion, error reporting also seems to be associated
with this type of parsing approach and discussed here about the
initiatives made by researchers to address this issue. Future
work may be to apply these techniques to wide variety of
grammars so that authenticities of these techniques are to be
endorsed.

REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Je_rey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[2] Alfred V. Aho and Je_rey D. Ullman. The Theory of Parsing,
Translation, and Compiling.Upper Saddle River, NJ, USA, 1972.
Prentice-Hall, Inc.

[3] A. Birman and J. D. Ullman. Parsing Algorithms with Backtrack.
Journal of Information and Control, 23(1):1{34, 1973.

[4] Alexander Birman. The TMG Recognition Schema. PhD thesis,
Princeton University,Department of Electrical Engineering, Princeton,
NJ, USA, 1970.

[5] B. Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time -
Functional Pearl. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming,ICFP, pages 36{47, New York,
NY, USA, 2002. ACM.

[6] Bryan Ford. Packrat Parsing: A Practical Linear-time Algorithm with
Backtracking. Master'sthesis, Massachusetts Institute of Technology,
Department of Electrical Engeneering and Computer Science,
Cambridge, MA, USA, 2002.57

[7] Bryan Ford. Parsing Expression Grammars: A Recognition-based
Syntactic Foundation.In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Program-ming Languages, POPL
'04, pages 111{122, New York, NY, USA, 2004. ACM.

[8] Robert Grimm. Better Extensibility Through Modular Syntax. In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI '06, pages 38{51, New
York, NY, USA, 2006. ACM.

[9] Stephen C Johnson. Yacc: Yet Another Compiler-Compiler. Bell
Laboratories Murray Hill, NJ, 1975.

[10] M. E. Lesk and E. Schmidt. UNIX Vol. II. chapter Lex; a Lexical
Analyzer Generator,pages 375{387. W. B. Saunders Company,
Philadelphia, PA, USA, 1990.

[11] D. Michie. Memo Functions and Machine Learning. Journal of Nature,
218:19{22, 1968.

[12] Kota Mizushima, Atusi Maeda, and Yoshinori Yamaguchi. Packrat
Parsers Can Handle Practical Grammars in Mostly Constant Space. In
Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE '10,
pages 29{36, New York, NY, USA, 2010. ACM.

[13] Terence J. Parr and Russell W. Quong. Adding Semantic and Syntactic
Predicates To LL(k): Pred-LL(k). In Proceedings of the 5th International
Conference on Compiler Con-struction, CC '94, pages 263{277,
London, UK, UK, 1994. Springer-Verlag.

[14] R. R. Redziejowski. Parsing Expression Grammar as a Primitive
Recursive-Descent Parser with Backtracking. Journal of Fundamenta
Informaticae, 79(3-4):513{524, 2007.

[15] R. Redziejowski. Some aspects of parsing expression grammar. In
Fundamenta Informaticae 85, 1-4, pages 441–454, 2008.

[16] R. Redziejowski. Applying classical concepts to parsing expression
grammar. In Fundamenta Informaticae 93, 1-3, pages 325–336, 2009.

[17] S. Medeiros and R. Lerusalimschy : A Parsing Machine for PEGs. In
Proc. PEPM, ACM (January 2009) 105-110.

[18] R. Grimm. Better extensibility through modular syntax. In Proceedings
of the ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation, pages 19–28, 2006.

[19] K. Mizushima, A. Maeda, and Y. Yamaguchi. Improvement technique
of memory efficiency of packrat parsing. In IPSJ Transaction on
Programming Vol.49 No. SIG 1(PRO 35) (in Japanese), pages 117–126,
2008.

[20] R. Becket and Z. Somogyi. Dcgs + memoing = packrat parsing but is it
worth it? In Practical Aspects of Declarative Languages, January 2008.

[21] Warth, A., Douglass, J., Millstein, T.: Packrat parsers can support left
recursion. In: Proc. PEPM, ACM (January 2008) 103-110.

[22] Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern
matching. In: Proc. Dynamic Languages Symposium, ACM (2007) 11-
19.

[23] R. Redziejowski. Mouse: from parsing expressions to a practical parser.
In Concurrency Specification and Programming Workshop,September
2009.

[24] R. Redziejowski. Parsing Expression Grammar for Java 1.5.
[25] http://www.romanredz.se/papers/PEG.Java.1.5.txt.
[26] Adam Koprowski and Henri Binsztok. TRX: A formally veri_ed parser

interpreter. In Proceedings of the 19th European Symposium on
Programming (ESOP '10), volume 6012 of Lecture Notes in Computer
Science, pages 345-365, 2010.

[27] Kuramitsu, K.: Packrat Parsing with Elastic Sliding Window, Journal of
Infomration Processing, Vol. 23, No. 4, pp. 505–512 (online), DOI:
http://doi.org/10.2197/ipsjjip.23.505 (2015).

[28] AaronMoss: Derivatives of Parsing Expression
Grammars. CoRR abs/1405.4841 (2014)

31 | P a g e
www.ijarai.thesai.org

http://www.romanredz.se/papers/PEG.Java.1.5.txt
http://dblp.uni-trier.de/db/journals/corr/corr1405.html%23Moss14

	I. Introduction
	II. Parsing Expression Grammar
	A. Definitions and Operators
	B. Ambiguity
	C. Left Recursion
	D. Syntatic Predicates
	E. Memoization
	F. Scannerless

	III. Literature Survey
	IV. Open Problems in Packrat Parsing
	A. Memoization
	B. Maintaining States
	C. Left recursion:-
	D. Error Reporting:-
	E. Specification Tool:-

	V. Conclusion and Future Work
	References

