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Abstract—Many current regression algorithms have 

unsatisfactory prediction accuracy with small samples. To solve 

this problem, a regression algorithm based on Nadaraya-Watson 

kernel regression (NWKR) is proposed. The proposed method 

advocates parameter selection directly from the standard 

deviation of training data, optimized with leave-one-out cross- 

validation (LOO-CV). Good generalization performance of the 

proposed parameter selection is demonstrated empirically using 

small sample regression problems with Gaussian noise. The 

results show that proposed parameter optimization method is 

more robust and accurate than other methods for different noise 

levels and different sample sizes, and indicate the importance of 

Vapnik’s ε-insensitive loss for regression problems with small 

samples. 

Keywords—small samples regression; Nadaraya-Watson kernel 

regression; parameter optimization; loss function; cross validation 

I. INTRODUCTION 

This template, modified in MS Word 2007 and saved as a 
“Word 97-2003 Document” for the PC, provides authors with 
most of the formatting specifications needed for preparing 
electronic versions of their papers. All standard paper 
components have been specified for three reasons: (1) ease of 
use when formatting individual papers, (2) automatic 
compliance to electronic requirements that facilitate the 
concurrent or later production of electronic products, and (3) 
conformity of style throughout a conference proceedings. 
Margins, column widths, line spacing, and type styles are built-
in; examples of the type styles are provided throughout this 
document and are identified in italic type, within parentheses, 
following the example. Some components, such as multi-
leveled equations, graphics, and tables are not prescribed, 
although the various table text styles are provided. The 
formatter will need to create these components, incorporating 
the applicable criteria that follow. 

Regression is one of the most fundamental and useful 
statistical techniques and is widely used to model practical 
problems arising from such fields as economics, psychology, 
management, signal processing, product design and medicine. 
It helps to relate explanatory variable(s) with a response 
variable and build predictive models. Given a set of 
independent observations D ={(x1,y1),…,(xn,yn)} from a 
population (X,Y), where X and Y are called the explanatory 
variable(s) and the response variable respectively, we want to 
find a function f(x), assumed to be smooth, such that 

iii xfy  )( , ),,2,1( ni  , where 
i  are independent, 

identically distributed random noises, so that 0)( iE   for 

each i. The function f(x) is called a regression function of Y on 
X. 

At present, there are many available regression analysis 
models. In general, these regression models can be divided into 
the classes of parametric regression models and nonparametric 
regression models (Wand & Jones, 1995). Parametric 
regression models can be specified by a finite number of 
parameters, which implies that the regression function f(x) is 
known except for the values of the parameters. Linear 
regression models and polynomial regression models are 
typical of the parametric models usually applied. Parametric 
regression models have a distinct interpretation of the 
relationship between X and Y, but the choice of parametric 
model depends on the situation. Restricting f(x) to belong to a 
parametric family means that f(x) can sometimes be too rigid 
(Zhang, Huang, et al, 2007). Once a parametric family is 
chosen, the mathematical form is fixed regardless of whether it 
is appropriate in reality, which could result in incorrect 
conclusions in the regression analysis. Non-parametric 
regression is proposed to overcome the rigidity of parametric 
regression. It only assumes that the regression function belongs 
to a smooth family of functions, and offers a way of estimating 
the regression function without specifying a parametric model. 
When the regression function between X and Y is complex, it is 
hard to deal with the observations using a parametric model, 
while a nonparametric model can analyze such situations 
effectively. 

In nonparametric regression, ANNs (artificial neural 
networks) and k-nearest neighbor are widely used, and have 
good performance in many applications (Maxwell & 
Stinchcombe, 1995; Su, Jing, et al, 2008; Cho, Ishida, et al, 
2011; La, Guo, et al, 2012). However, these methods need 
sufficiently large samples. When the size of samples is 
insufficient the quality of the results can decrease. In real world 
applications, obtaining sufficient training samples is often too 
expensive when dangerous measurements or complex technical 
experiments have to be performed, such as fault diagnosis for 
expensive equipment(Huang & Moraga, 2004), semi-conductor 
manufacturing (Li, Wu, et al, 2006), engine control simulation 
(Andonie, 2009), and biological studies (Lee & Ong, 2010). 
Therefore, designing a regression approach that performs well 
with small samples is a significant problem. Support vector 
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regression (SVR) is motivated by the growing popularity of 
support vector machines (SVM) for regression with small 
samples (Smola & Scholkopf, 2004; Chu & Keerthi, 2007; 
Bloch, 2008; Huang, Zheng, et al, 2009). However, the quality 
of SVR models depends on proper settings of the SVR 
hyperparameters, and the main issue for practitioners trying to 
apply SVR is determining these parameter values for a given 
data set. Cherkassky and Ma have proved an effective 
approach to selecting SVR parameters, based on noise variance 
estimation in the observed data (Cherkassky & Ma, 2004a). In 
practice, with small samples, the noise variance cannot be 
precisely estimated by any well-known approach (such as 
polynomial or k-nearest-neighbor regression). Nadaraya- 
Watson kernel regression (NWKR) is a nonparametric 
technique in statistics for estimating the conditional 
expectation of a random variable, and allows interpolation and 
approximation a little beyond the samples (Shapiai, Ibrahim, et 
al, 2010). However, there is no appropriate approach for the 
selection of its parameter. This paper describes a practical 
analytical approach to selecting the parameter for NWKR 
directly from training data. The practical validity of the 
proposed approach is demonstrated using synthetic data sets. 

This paper is organized as follows. Section 2 gives a brief 
introduction to NWKR regression. Section 3 describes the 
proposed approach to selecting the NWKR parameter using 
cross-validation (CV). Section 4 describes experimental tests 
for regression problems with Gaussian noise; these tests 
indicate that the proposed approach provides better 
generalization performance than other approaches. Finally, a 
conclusion is given in Section 5. 

II. NADARAYA-WATSON KERNEL REGRESSION 

Nadaraya-Watson kernel regression (NWKR) estimates the 
regression function )(xf  corresponding to any arbitrary x 

value using Eq. (1): 




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where D denotes the training set, ),( ih xxK  denotes a 

kernel function which fulfills some properties and h is the 
bandwidth parameter of the kernel function. Several types of 
kernel functions are commonly used, such as the Gaussian, 
uniform, triangle and Epanechnikov functions. 

According to Eq. (1), we can see that NWKR is a weighted 
average technique that matches the given samples using a 
kernel function as weighting values. This method allows 
accurate interpolation and approximation in the vicinity of 
training samples. Kernels assign weights to arbitrary samples 
based on their distance from the given samples. 

In NWKR, a Gaussian kernel function is found to have a 
better prediction accuracy than the other kernel functions 
(Shapiai, Sudin, et al, 2011). The expression of the Gaussian 
kernel is as follows: 
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                                 (2) 

However, several articles found that the performance of 
NWKR mainly depends on the choice of the bandwidth 
parameter h rather than the kernel function. Figure 1 shows the 
relationship between the bandwidth h and the root mean 
squared error (RMSE, shown in Eq. (10)). In Fig. 1, the 
bandwidth h distinctly influences RMSE. Choosing h based on 
experience may result in poor prediction accuracy, especially 
when knowledge of the bandwidth h is insufficient. Thus, 
finding the optimal value of h is crucial for the prediction 
quality of NWKR. 

 

Fig. 1. Scatter diagram of bandwidth h and RMSE 

(Note: The samples are generated from y = f(x) + δ, and the 
target function )(xf  is shown in Eq. (9). The x-values for the 

training data are sampled from a uniform distribution in the 
input space [0, 3], and the y-values are corrupted using an 
additive Gaussian noise δ with zero mean, with the noise levels 
0.1 and 0.5 denoting the standard deviation of the noise. The 
sample size is n=20.) 

III. PARAMETER OPTIMIZATION WITH CROSS-VALIDATION 

Because the number of samples is small, CV is used to 
optimize the value of h. CV is a standard resampling technique 
used in many applications, such as model selection, and 
selecting variables and the number of components (Browne, 
2000; Arlot & Celisse, et al, 2011). Under CV, the available 
data are divided into v disjoint sets, and the v-fold CV is then 
run v times using (v-1) groups as training sets and the 
remaining group as the validation set. This is done in turn until 
each group is left out once. Clearly, if v=n then v-fold CV is 
leave-one-out CV (LOO-CV), since exactly one object is left 
out at a time. The sample reuse technique of CV can help us 
optimize the parameter h where the amount of available data is 
small. Therefore, the CV error is taken as the objective 
function, and the optimal value of the bandwidth h is that 
which minimizes CV error. Owing to the fact that LOO-CV 
provides an almost unbiased estimate (Cawley & Talbot, et al, 
2003), LOO-CV is chosen and the objective function is given 
by: 

Min 
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where )( i

ii yyL 


 denotes the loss function of the LOO-

CV estimator when (xi,yi) is the validation set, and 
i

iy
 

denotes the prediction value corresponding to ix  by using D
(-i) 

:= D \ (xi,yi) for training. 
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represents the quality of estimation. In 

practice, different optimization results can be obtained by using 
different loss functions, which significantly influences the 
performance of the regression model. For such problems, we 
consider three representative loss functions, namely square 
loss, Huber’s loss, and Vapnik’s ε-insensitive loss function. 

The square loss function is the following: 
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                                          (5) 

Huber’s loss function, which is also called the L1-loss 
function, is: 
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Vapnik’s ε-insenstive loss function is defined as: 

otherwise
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In SVR, it has been demonstrated that for small sample 
regression problems Vapnik’s ε -insensitive loss (with a 

properly chosen ε-parameter) yields better generalization than 
other loss functions (Cherkassky & Ma, 2004b). Cherkassky 
and Ma proposed a practical method for selecting the value of ε 
for SVR directly from the training data: 

nnnoise /)ln(3 
 
                                                 (8) 

where ζnoise is the standard deviation of the additive noise 
and n is the number of training samples. 

Vapnik’s loss function coincides with a special form of 
Huber’s loss (with ε=0). From the viewpoint of traditional 
robust statistics, there is a well-known correspondence between 
the noise model and the optimal loss function. However, this 
connection between the noise model and the loss function is 
based on (asymptotic) maximum likelihood arguments, which 
are not suitable with small samples. Therefore, we compare the 
generalization performance of Vapnik’s ε -insensitive loss in 
NWKR (with different values for ε) with other loss functions in 
the next section. 

IV. PREPARE YOUR PAPER BEFORE STYLING 

EXPERIMEENTAL RESULTS WITH GAUSSIAN NOISE 

A. Comparison with Three Loss Function 

First we describe the experimental procedure used for 
comparisons, and then we present the experimental results. 

Training data: The simulated training data is (xi,yi), (i= 
1,2,…,n), where the x-values are sampled from a uniform 
distribution on the input space, and the y-values are generated 
according to  )(xfy . The target function f(x) is shown in 

Eq. (9). The y-values of the training data are corrupted by 
additive Gaussian noise. For each training data set, we generate 
five data sets using a small sample size (n=20) with additive 
Gaussian noise (the different noise levels are shown in Table 1). 

]3,0[,)13( 42  xxxy
                              

(9) 

Test data: 150 samples are used for the testing data set, 
generated sequentially with step-size 150/)( abx   from 

the lower bound a=0 to the upper bound b=3. 

Kernel function: Gaussian kernel functions (2) are used in 
all experiments. 

Performance metric: Since the goal is optimal selection of 
the NWKR parameter in the sense of generalization, the main 
performance metric is Pred_accuracy (prediction accuracy): 
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where RMSE(h) defines the root mean squared error 
between NWKR estimates and the true values of the target 
function for the inputs. hbest is the approximate optimal 
(minimum RMSE) bandwidth h obtained by calculating the 
RMSE for a range value of h with step t=0.01 in the domain 
[0,1]. 

TABLE I.  EXPERIMENTAL RESULTS FOR DIFFERENT PARAMETER 

SELECTION METHODS AND SEVERAL NOISE LEVELS 

Noise 

level(σ) 
Loss function 

Pred_accuracy 

Min Max Average 

0.01 

Square 99.44% 99.95% 99.67% 

Huber 78.42% 100.00% 95.58% 

Vapnik(c-m) 78.44% 100.00% 95.66% 

Vapnik(opt) 99.85% 100.00% 99.97% 

0.03 

Square 61.97% 99.52% 91.42% 
Huber 61.22% 99.96% 87.60% 
Vapnik(c-m) 62.56% 99.61% 87.76% 
Vapnik(opt) 99.92% 100.00% 99.98% 

0.05 

Square 94.78% 100.02% 97.21% 
Huber 45.40% 99.40% 87.41% 
Vapnik(c-m) 45.77% 99.02% 87.69% 
Vapnik(opt) 96.74% 100.00% 99.24% 

0.08 

Square 80.38% 94.35% 88.36% 
Huber 65.91% 99.96% 83.43% 
Vapnik(c-m) 72.20% 96.82% 83.08% 
Vapnik(opt) 98.40% 99.99% 99.61% 

0.1 

Square 98.33% 99.61% 98.97% 
Huber 86.46% 99.76% 96.82% 
Vapnik(c-m) 97.48% 99.68% 98.57% 
Vapnik(opt) 99.73% 100.01% 99.85% 

0.2 

Square 88.78% 99.94% 97.11% 
Huber 86.67% 99.30% 93.95% 
Vapnik(c-m) 94.96% 99.80% 97.90% 
Vapnik(opt) 99.47% 100.00% 99.78% 

0.3 

Square 80.48% 98.99% 86.96% 
Huber 58.03% 100.00% 82.82% 
Vapnik(c-m) 74.29% 99.66% 87.66% 
Vapnik(opt) 96.01% 99.99% 99.15% 
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0.5 

Square 61.91% 99.52% 88.15% 
Huber 52.94% 95.00% 73.64% 
Vapnik(c-m) 84.01% 99.98% 94.79% 
Vapnik(opt) 87.41% 100.00% 96.85% 

0.8 

Square 72.92% 98.81% 90.22% 
Huber 65.71% 98.77% 81.43% 
Vapnik(c-m) 77.17% 96.60% 86.94% 
Vapnik(opt) 96.99% 100.00% 99.40% 

1.0 

Square 61.77% 99.77% 89.47% 
Huber 58.50% 99.95% 85.56% 
Vapnik(c-m) 85.68% 98.44% 93.21% 
Vapnik(opt) 92.59% 100.00% 97.96% 

In Table 1, we present experimental comparisons for 
regression estimation using three representative loss functions: 
squared loss, Huber’s loss (ε=0), and Vapnik’s ε- insensitive 
loss with ε given according to Eq. (8). The noise level (ζ) 
column indicates the standard deviation of the Gaussian noise 
with zero mean. In the column for loss function (and ε - 
selection), Vapnik(c-m) denotes the value of ε from Eq.(8), 
and Vapnik(opt) denotes the optimal value of ε for Vapnik’s ε- 
insensitive loss function whose corresponding h is closest to 
hbest. Pred_accuracy shows the minimal, maximal and average 
values for Pred_accuracy in five training data sets for each 
parameter selection method. 

It can be seen in Fig. 2 that: 

1) the NWKR approach has good performance for small 

sample regression problem (approximately 90%) with 

different noise levels; 

2) the prediction accuracy for the square loss function is 

better than Huber’s and Vapnik’s (c-m) loss functions when 

the noise level is smaller than 0.1, but when the noise level is 

larger than 0.1 Vapnik's (c-m) loss function is the best of the 

three loss functions; 

3) the robustness of the three loss functions is not strong, 

and weakens as the noise level increases; 

4) we can obtain very good prediction accuracy using 

Vapnik's loss function with an appropriate choice of ε 

(Vapnik(opt)). 
Selecting an appropriate value for the parameter ε for better 

prediction accuracy is important, and is studied in the next 
section. 

 
Fig. 2. Scatter diagram of bandwidth h and RMSE The Average Prediction 

Accuracy for Different Loss Function 

B. Parameter estimation with regression model 

As mentioned before, the NWKR regression approach with 
Vapnik's loss function could provide excellent prediction 
accuracy when the parameter ε is set appropriately. However, 
selecting ε from Eq. (8) is not the best choice because of its 
unsatisfactory prediction accuracy and robustness. In practice, 
it is not possible to know in advance the noise level, and the 
deviation in estimating the noise level using some well-known 
approach with small samples is unacceptable. It could be 
feasible to estimate the value of ε according to the dispersion of 
sample data. In this section, we attempt to estimate an 
appropriate value of ε depending on the standard deviation of 
the sample output data in Section 4.1. 

Fig. 3 shows a scatter chart between the standard deviation 
of Y and the optimal value of ε with Vapnik’s ε- insensitive 
loss function. Theoretically, when the standard deviation of Y 
is 0, the parameter ε should also be 0, and the parameter ε 
should increase with an increase in the standard deviation of Y. 
However, when the standard deviation of Y is large enough, 
the parameter ε should remain invariant, for otherwise some 
loss value with the Vapnik’s ε- insensitive loss function could 
be 0 leading to the parameter optimization not obtaining the 
optimum solution. Thus, the logistic regression model was 
used to establish the relationship between the standard 
deviation of Y and the value of ε. The logistic regression model 

chosen in this paper is: 
bxaec

y



1

. The parameters are 

estimated using Matlab 12.0, and the fitting equation is shown 
in Eq. (12) and the fitting curve in Fig. 3: 

ystde _22.89.782.0

1


                                        (12) 

 
Fig. 3. Experimental results between the standard deviation of Y and 

Vapnik(opt), and the fitting logistic model 

C. Comparisons with other parameter selection methods 

In this section, the performance of the proposed method 
(parameter selection with Eq. (12)) is demonstrated in two 
ways. First the standard deviation of Y is changed while the 
sample size is unchanged, and second the sample size is 
changed and the standard deviation of Y is unchanged. 
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1) Standard deviation changed and sample size 

unchanged 
The sample size n is set to 20, and the standard deviation of 

Y takes the values 0.01, 0.05, 0.1 and 0.5. For each training 
data set, we generate ten data sets, with the x-values sampled 
from a uniform distribution on the input space [0, 3], and the y-
values generated from Eq. (9) and corrupted by an additive 
Gaussian noise with zero mean and specified standard 
deviation. The test data set, kernel function and performance 
metric are the same as in Section 4.1. The comparison results 
for the four parameter methods are shown in Table 2. The 
robustness of the proposed method is stronger than the methods 
using square loss, Huber’s loss and Vapnik’s (c-m) loss. Fig. 4 
shows the average prediction accuracy of the different methods 
for ten data sets, where we can see that the proposed method 
performs better than the other three methods. An increase in 
the noise level has little effect on the proposed method, while 
the performances of the other three methods are weakened. 
Meanwhile, the gaps between the average prediction accuracy 
between the proposed method and Vapnik(opt) are less than 
5%. 

TABLE II.  COMPARISON RESULTS FOR SEVERAL PARAMETER METHODS 

AT DIFFERENT NOISE LEVELS 

Noise 
level(σ) 

ε – selection 
method 

Pred_accuracy 

Min Max Average 

0.01 

Square 85.42% 100.0% 95.82% 
Huber 81.09% 100.0% 96.08% 
Vapnik(c-m) 81.09% 99.98% 96.09% 
Proposed 85.31% 100.0% 97.15% 

0.05 

Square 82.67% 99.51% 92.19% 
Huber 81.33% 99.18% 91.06% 
Vapnik(c-m) 86.26% 97.46% 90.96% 
Proposed 89.51% 99.07% 93.84% 

0.1 

Square 58.78% 99.94% 92.57% 
Huber 57.37% 99.98% 88.65% 
Vapnik(c-m) 57.56% 100.0% 90.29% 
Proposed 90.77% 100.0% 96.72% 

0.5 

Square 33.47% 99.87% 85.08% 
Huber 33.47% 99.05% 83.99% 
Vapnik(c-m) 66.12% 99.01% 88.43% 
Proposed 82.20% 98.08% 91.95% 

 
Fig. 4. Average prediction accuracy for several parameter selection methods 

in different noise levels 

2) Sample size changed and standard deviation 

unchanged 

The standard deviation of Y is set to 0.1, and the sample 
size n is between 10, 15, 20, 25, 30 and 50. For each training 
data size, we generate ten data sets, with the x-values sampled 
from a uniform distribution on the input space [0, 3], and the y-
values generated from Eq. (9) and corrupted by the additive 
Gaussian noise N(0, 0.01). The test data set, kernel function 
and performance metric are the same as in Section 4.1. The 
comparison results for the four parameter methods are shown 
in Table 3. Fig. 5 shows the average prediction accuracy of the 
different methods for ten data sets, where we can see that the 
proposed method outperforms the other three methods (square 
loss, Huber’s loss and Vapnik (c-m) loss), and the number of 
samples has little effect on the proposed method. However, the 
computation time is lengthened with the increased sample size, 
and the advantages of the proposed method are weakened 
because the standard deviation of Y is reduced when the 
sample size increases. It is suggested that the proposed method 
is suitable when the sample size is less than 30. 

TABLE III.  COMPARISON RESULTS FOR SEVERAL PARAMETER METHODS 

WITH DIFFERENT SAMPLE SIZES 

The 
sample 
size(n) 

ε – selection 
method 

Pred_accuracy 

Min Max Average 

10 

Square 63.59% 100.00% 92.76% 

Huber 63.32% 100.00% 92.66% 
Vapnik(c-m) 63.51% 100.00% 92.17% 

Proposed 64.19% 100.00% 94.97% 

15 

Square 49.01% 98.50% 91.30% 

Huber 88.83% 99.68% 93.93% 

Vapnik(c-m) 54.64% 99.00% 91.54% 

Proposed 82.95% 99.90% 96.41% 

20 

Square 58.78% 99.94% 92.57% 

Huber 57.37% 99.98% 88.65% 

Vapnik(c-m) 57.56% 100.00% 90.29% 

Proposed 90.77% 100.00% 96.72% 

25 

75.73% 100.00% 95.00% 75.73% 

87.00% 99.89% 95.25% 87.00% 

75.92% 100.00% 93.67% 75.92% 

90.67% 100.00% 97.73% 90.67% 

30 

Square -30.92% 100.00% 81.68% 

Huber 22.97% 100.00% 86.47% 

Vapnik(c-m) 49.26% 100.00% 89.05% 

Proposed 71.56% 100.00% 94.89% 

50 

Square 83.41% 99.59% 95.53% 

Huber 85.35% 99.91% 96.87% 

Vapnik(c-m) 89.09% 99.55% 94.52% 

Proposed 78.71% 99.57% 95.05% 

 
Fig. 5. Average prediction accuracy for several parameter methods with 

different sample sizes 
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V. CONCLUSIONS 

This paper describes practical recommendations for setting 
meta-parameters for NWKR regression with small samples. 
Namely, the value of the ε parameter is obtained directly from 
the training data without estimating the noise level. Empirical 
comparisons suggest that the proposed parameter selection 
method (Eq. (12)) yields good generalization performance for 
NWKR estimates under different noise levels and sample sizes. 
Hence, the proposed approach for NWKR parameter selection 
can be used by practitioners interested in applying NWKR to 
various application domains in which the sample size is small. 

In this paper, the proposed value of ε is derived for one 
target function, with Gaussian noise and an RBF kernel, but it 
is not clear whether such optimal selection is appropriate for 
other target functions, noise distributions and kernel types. 
Future related research may be concerned with investigating 
the optimal selection of ε for different target functions, noise 
distributions and kernel types. 
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