
(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 5, No. 9, 2016 

27 | P a g e  

www.ijarai.thesai.org 

WSDF: Weighting of Signed Distance Function for 

Camera Motion Estimation in RGB-D Data

Pham Minh Hoang, Vo Hoai Viet, Ly Quoc Ngoc 

Department of Computer Vision and Robotics, University Of Science, VNU-HCM, Viet Nam 

 

 
Abstract—With the recent advent of the cost-effective Kinect, 

which can capture real-time high-resolution RGB and visual 

depth information, has opened an opportunity to significantly 

increase the capabilities of many automated vision based 

recognition including object/action classification, 3D 

reconstruction, etc… In this work, we address the camera motion 

estimation which is an important phase in 3D object 

reconstruction system based on RGB-D data. We segment objects 

by thresholding algorithm based on depth data and propose the 

weighting function for SDF that is called WSDF. The problem of 

minimizing of this function is solved by Gauss-Newton methods. 

We systematically evaluate our method on TUM dataset. The 

experimental results are measured by ATE and RPE that 

evaluate both global and local consistency of camera motion 

estimation algorithm. We demonstrate large improvements over 

the state-of-the-art methods on both plant and teddy3 objects 

and achieve the best ATE as 0.00564 and 0.0182 and the best 

RPE as 0.00719 and 0.00104, respectively. These experiments 

show that the proposed method significantly outperforms state-

of-the-art techniques. 

Keywords—RGB-D data; 3D Reconstruction; SDF; Camera 

Motion Estimation 

I. INTRODUCTION 

Reconstructing 3D object is an interesting and challenging 
problem in computer vision. It has attracted many research 
efforts from the computer vision community in recent decades 
for its high potential applications such as game, SLAM, 
medical technology, virtual reality, and robotics. Due to its 
wide range of applications, 3D object reconstruction has 
attracted much attention in recent years [2]. Generally 
speaking, 3D object reconstruction framework contains three 
main steps namely object segmentation, camera motion 
estimation, and surface reconstruction (see in Fig. 2). Object 
segmentation is to identity the object region in images that can 
achieve by using the algorithms such as kmean, mean shift, 
ostu ... Camera motion estimation aims to represent the 
movement of object over frames. The result of this phase is 
point cloud that describe object in 3D space. Surface 
reconstruction focus on reconstructing the surface mesh… In 
this work, we only focus the problem of the camera motion 
estimation phase. We use the Ostu and thresholding algorithm 
for object segmentation. 

The advent of affordable RGB-D sensors has opened up 
a whole new range of applications based on the 3d perception 

of the environment by computers, which includes 
the creation of a virtual 3d representation of real objects. 
Compared with conventional color data, depth maps provide 
several advantages, such as the ability of reflecting pure 
geometry and shape cues, or insensitive to changes in lighting 
conditions. Moreover, the range sensor provides 3D structural 
information of the scene and objects. These characteristics will 
be helpful for object segmentation and camera motion 
estimation. 

 
Fig. 1. Illustration of 3D camera and RGB-D data: a) Microsoft Kinect 

Device; b) an object example of RGB-D data is captured by Kinect 

In this manuscript, we proposed the weighting parameters 
for SDF that was proposed at [4, 5] to improve the 
performance of camera motion of 3D reconstruction system 
based on RGB-D data. The main contributions of this paper are 
summarized as follows: Firstly, we apply the weighting 
approach for SDF for camera motion estimation based on 
RGB-D data. Secondly, we systematically evaluate our WSDF 
on four challenging datasets. 

The rest of this paper is organized as follows: Section II 
gives a concise review of existing works on camera motion 
estimation for 3D reconstruction. Section III presents signed 
distance function for camera motion estimation. Section IV 
introduces our improvement for camera motion estimation. 
Section V presents action classification. Section V shows the 
experiment results on relevant benchmarks. Finally, section VI 
draws conclusions of our work and indicates future studies. 
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Fig. 2. Flowchart of 3D object reconstruction system in RGB-D data 

II. LITERATURE REVIEW 

Comprehensive reviews of the previous studies can be 
found in [2]. Our discussion in this section is restricted to a 
few influential and relevant parts of literature, with a focus 
on camera motion estimation based on RGB-D data. 

The camera motion estimation aims to find the affine 
transformations to convert point clouds in local frames into 
global coordination and integrate them into a final point cloud 
for object representation. These transformations represent the 
movement of camera from the first frame to the last frame. The 
earliest approaches focus on finding the affine transformation 
between two consecutive frames. In [13], the author use ICP 
algorithm to find affine between two consecutive frames based 
on the features are extracted from them. Another famous 
method are called Kinect Fusion [10, 11], the method build the 
Signed Distance Function (SDF) and use the function for 
initializing the point cloud for each frame. Then, ICP algorithm 
is used to find affine transform in the next frame. However, the 
integration of affine transformations between two consecutive 
frames makes the errors that accumulated to misleading in the 
following frame is greater. The difference from Kinect Fusion, 
these methods in [7, 10] estimate directly the affine 
transformation by minimizing the RSME of SDF, then 
updating SDF based on the computed transformation. In [8], 
the authors build SDF based on Octree to reduce memory and 
computational cost. These methods that use ICP algorithm 
focus on minimizing the point cloud, some methods [3 , 4 , 5,  
6, 10] minimize the RGB-D of SDF between two consecutive 
frames. In [9], the method finds corresponding points between 
two consecutive frames and minimizes the total of the distance 
of these corresponding points. 

In this paper, we propose the camera motion estimation 
based on SDF in [5, 6]. However, we improve SDF by adding 
the weighting function in [3] that is called WSDF. And, the 
problem of minimizing for this function is solved by Gauss-
Newton method. 

III. BACKGROUND OF CAMERA MOTION ESTIMATION 

In this session, we present the camera motion estimation 
over frames from RGB-D sequences. The inputs of this phase 

are local point clouds are extracted from RGB and depth of 

each frame { }i jP x with 
jx is 3D vertex of point cloud 

iP . 

The problem is to find affine transformation to transfer the 
local point cloud at i-th frame from local coordinate to global 
coordinate. The affine transformation also describes motion of 
camera over frames, so this phase is called camera motion 
estimation. In [4, 5], Bylow et al. introduced the method of 
camera motion estimation based on signed distance function 
(SDF). 

 
Fig. 3. An example of camera motion estimation 

A. Signed Distance Function 

The SDF of given surface  ( )      . This function 
returns for any point      the signed distance from   to the 
surface. The SDF have four properties as follows: 

 If   is outside the surface then  ( )   . 

 If   is inside the surface then  ( )   . 

 If   is on the surface then  ( )    . 

 If   is nearer the surface then  ( ) is smaller. 
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Fig. 4. Illustration of SDF for object’s surface 

B. Affine Transformation 

An affine transformation consists of two components: a 

three-dimension square matrix 
iR  and a three-dimension 

translation vector 
it . We assume that we already have the 

surface of object represented by a signed distance function 
(SDF). For each vertex of point cloud in local coordinate, our 
goal is the transformed point lies as close as possible to the 

object surface. It means 
2[ ( )]i j iR x t  is as smaller as 

possible. We must find 
iR and 

it  such that the function 

2( , ) [ ( )]i i i j i

i

E R t R x t   is minimized. 

Considering the function            consists of 12 
parameters. However, the limitation of problem only needs the 
rotation and translation that can be solved by 6 parameters with 
three parameters for rotation (        )   and three 
parameters for translation (        )  . Therefore,    can be 
written as a vector of 6 dimensions 

1 2 3 1 2 3( , , , , , )i t t t     and ( , )i iE R t  is also written as 

2( ) [ ( )]i j i

i

E    . To minimize this function, Bylow et 

al. [4, 5] used Gauss-Newton algorithm. 

C. Update the SDF and the colors 

The SDF is not traditional formula function due to it is 
formed by dividing the space into grids in 3D. Each node in 3D 
grid is called voxel. If a point does not match to voxel, SDF 
value of x is obtained based SDF value of the nearest neighbor 
voxels. So, the objective in this step is to compute SDF for 
each voxel. 

Assume that 
Gv is global coordinate of each voxel. Based 

on the estimated pose 
iT  , we can transfer to local coordinate 

of frame i as ( )L T Gv R v t  . According to camera model, 

with the focal lengths    and    and principal point (     ) we 

can project 3D point ( , , )L L L L

x y zv v v v to image plane by 

projection 

( , , ) ,
yx

x y

f yf x
x y z c c

z z


 
   
 

 

Let (i, j) be pixel coordinate of projected point 
Lv  in image 

and I(d) be the corresponding depth value at (   ). We can 

compute distance ( )Ld v  of the depth of voxel and the depth 

value at (   ). 

( ) ( , )L

dd v z I i j   

Since the distance ( )Ld v  is a rough approximation 

which can get arbitrary wrong, we follow the standard 
approach to reduce the impact of bad measurements by 
truncating the measured distance if |d| > δ for some threshold δ 
as follows: 

| |

if d

d d if d

if d

 



 

  


 
 

 

For each frame, we can compute the distance     of each 
voxel at frame ith . The SDF value of a voxel can be obtained 
by weighted average of these distances as follows: 

 ( )   
∑      

  
 

However, this is not enough to decrease the impact of bad 
measurements. We do also have a higher uncertainty when the 
voxel lies behind the surface. To handle this, we weight the 
measurements using the following weight function as follows: 

2( )

1

( )

0

d

if d

w d e if d and d

if d

 



 



 




  
 


 

Therefore, we can update SDF of each voxel as follows: 

  
        

     
 

        

From the RGB image and each voxel the color is estimated 
as the formula as follows: 

   
      

  

     
  

   
      

  

     
  

   
      

  

     
  

Where   
 

 
the weight of color for new measurement,   

 

 
is 

used as   
         where   is the angle between the ray 
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and the principal axis to give more weight to pixels whose 
normal is pointing towards the key frame. 

IV. WEIGHTING OF SIGNED DISTANCE FUNCTION 

To increase the accuracy for the problem of minimize

( )iE  , we propose the weighting function ( )iw r for SDF 

that is called WSDF where ( ) ( )i j ir    . According to [3], 

the weighting function ( )iw r is defined as follows: 

2

1
( )i

i

w r
r









 
  
 

 

The points are near surface can more accurately describe 
the shape of the object than the points are far from surface. So, 
the w(  ) will increase when    increase, this means the weights 

of the points are near the surface will be higher than the weight 
of the points are far from the surface. Meanwhile, we have to 

find 
i by solving the optimization of the non-linear function 

2argmin( ( )( ( )) )i i i

i

w r r  . We apply the Gauss-

Newton method to solve the problem. The initialization for 
(0)   , and  at each loop is computed by the following 

formula:
( 1) (k) 1 (k)( ) ( )k T TJ WJ J Wr     where J is 

Jacobian matrix 

1 2 3 1 2 3

r r r r r r
J

t t t  

      
  

      
 and W

is matrix that is created by main diagonal of ( )iw r . The loop 

will end when 
( 1) (k)|| ||k 

 is enough small or the number 

of loop achieve the limitation. We adopt 5  based on the 

experiment, 
2  at each loop is computed as follows: 

 

Fig. 5. Some RGB and depth frames from TUM dataset 

2 2

2

1 1
i

i i

r
n r










 
  
 

  

The end of the process, we have    is computed by a vector 

of 6 dimensions of 
i .  Then, we update SDF to compute for 

the next frame. 

V. EXPRIMENT RESULTS 

A. Dataset 

We also evaluated our approach on the TUM 3D object 
reconstruction RGB-D benchmark dataset [12].  In this wok, 
we use plant and teddy 3 to measure the errors of our approach. 
Fig. 5 shows some examples of the TUM dataset. 

B. Measurement Evaluation 

1) Relative pose error (RPE) 
The relative pose error [8] measures the local accuracy of 

the trajectory over a fixed time interval ∆. Therefore, the 
relative pose error corresponds to the drift of the trajectory 

which is in particular useful for the evaluation of visual 
odometry systems. We define the relative pose error at time 
step i as follow: 

   (  
      )

  (  
      ) 

From a sequence of n camera poses, we obtain in this 
way m = n − ∆ individual relative pose errors along the 
sequence. From these errors, we propose to compute the 
root mean squared error (RMSE) over all-time indices of 
the translational component as follows: 

    (      )   (
 

 
∑‖     (  )‖

 

 

   

)

   

 

where      (  ) refers to the translational components of 
the relative pose error   . 

2) Absolute trajectory error (ATE) 
The absolute trajectory error [8] measures the global 

consistency can be evaluated by comparing the absolute 
distances between the estimated and the ground 
truth trajectory. As both trajectories can be specified in 
arbitrary coordinate frames, they first need to be aligned. 
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This can be achieved in closed form using the method 
of Horn [1], which finds the rigid-body transformation S 
corresponding to the least-squares solution that maps the 
estimated trajectory      onto the ground truth trajectory     . 
Given this transformation, the absolute trajectory error at time 
step i can be computed as follows: 

     
      

Similar to the relative pose error, we propose to evaluate 
the root mean squared error over all time indices of the 
translational components as follows: 

    (    )   (
 

 
∑‖     (  )‖

 

 

   

)

   

 

where      (  ) refers to the translational components of 
the relative pose error   . 

C. Experimental Results 

We firstly evaluate our proposed approach on the 
benchmark objects in TUM dataset. Then we compare our 
experimental results to the-state-of-the-art methods to prove 
the effectiveness and robust of the proposed method. 

In this research, we focus on camera motion estimation for 
3D object reconstruction. Our approach based on object 
segmentation and SDF in RGB-D data. More specific, we use 
depth data for segmenting object and proposed the weighting 
function for SDF and solve the problem of minimizing for this 
function by using Gauss-Newton method. We evaluate our 
method by ATE and RPE that evaluate both global and local 
consistency. Moreover, we also evaluate many different time 
intervals to have deeper in understanding of the problem of 
camera motion estimation.  Table I and II give our 
experimental results on plant and teddy3 objects. However, the 
same approach has the different result on the different objects. 
This is the different characteristics of these datasets. The plant 
object have the slow movement more than teddy3 object. In 
addition, teddy3 object have structure of surface more 
complexity than plant object. 

Table III, IV, V and VI compare our experimental results 
with state-of-the-art results on TUM dataset. We achieve better 
than Bylow’s approach on both plant and teddy3 object. Our 
method is more efficient on both global and local consistency 
(can see Fig. 6). These results show that our approach is robust 
for camera motion estimation. To have these promising results 
based on updating SDF with the weighting function to get 
more accuracy when estimate the motion between two 
consecutive frames. 

TABLE I.  EXPERIMENTIAL RESULTS ON PLANT OBJECT 

Frames 
Measurement (m) 

ATE RPE 

10 0.00654 0.0182 

20 0.00856 0.0209 

30 0.00809 0.0294 

40 0.01024 0.0504 

50 0.01444 0.0673 

TABLE II.  EXPERIMENTIAL RESULTS ON TEDDY3 OBJECT 

Frames 
Measurement (m) 

ATE RPE 

10 0.00719 0.00104 

20 0.007 0.01152 

30 0.00813 0.01387 

40 0.01433 0.02149 

50 0.0225 0.03348 

TABLE III.  COMPARISION WITH THE STATE OF THE ARE METHOD ON 

PLANT OBJECT USING ATE 

Frames 
Methods 

Our approach Bylow [4] 

10 0.00654 0.00937 

20 0.00856 0.01168 

30 0.00809 0.01193 

40 0.01024 0.01605 

50 0.01444 0.02335 

TABLE IV.  COMPARISION WITH THE STATE OF THE ARE METHOD ON 

PLANT OBJECT USING RPE 

Frames 
Methods 

Our approach Bylow [4] 

10 0.0182 0.0278 

20 0.0209 0.0338 

30 0.0294 0.0503 

40 0.0504 0.0847 

50 0.0673 0.119 

TABLE V.  COMPARISION WITH THE STATE OF THE ARE METHOD ON 

TEDDY3 OBJECT ON ATE 

Frames 
Methods 

Our approach Bylow [4] 

10 0.00719 0.0114 

20 0.007 0.0224 

30 0.00813 0.027 

40 0.01433 0.0476 

50 0.0225 0.0654 

TABLE VI.  COMPARISION WITH THE STATE OF THE ARE METHOD ON 

TEDDY3 OBJECT ON RPE 

Frames 
Methods 

Our approach Bylow [4] 

10 0.00104 0.0173 

20 0.01152 0.0346 

30 0.01387 0.0401 

40 0.02149 0.0679 

50 0.03348 0.0943 

VI. CONCLUSION 

In this work, we present a novel approach for camera 
motion estimation based on SDF in 3D object reconstruction 
using RGB-D data. In order to segment object, we use depth 
data based on threshold method. To estimate camera motion, 
we proposed a weighting function is added to SDF function is 
called WSDF to improve the performance of camera motion 
estimation phase. And, the WSDF is minimized by Gauss-
Newton method. We systematically evaluate our approach on 
benchmark dataset. The experiments are measured on both 
ATE and RPE that assess the global and local consistency of 
the camera motion estimation. The experimental results show 
that our proposed approach achieves superior performance to 
the state-of-the-art algorithm on TUM dataset. 
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Fig. 6. Comparison with the baseline method in [4]: a) plant object; b) teddy3 object 

In the future, we will consider SIFT or SIFT-flow for 
camera motion estimation based on RGB data to have better 
the performance of the system. 
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