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Abstract—The Forward algorithm is an inference algorithm 

for hidden Markov models, which often leads to a very large 

hidden state space. The objective of this work is to reduce the 

task of solving the Forward algorithm, by offering faster 

improved algorithm which is based on divide and conquer 
technique. 
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I. INTRODUCTION 

A Hidden Markov Model (HMM) is a doubly stochastic 
process, one of whose components is an unobservable Markov 
chain; it is used extensively in pattern recognition, speech 
recognition [1, 2], Handwriting recognition [3, 4, 5], 
computational biology [6], Machine translation [7]. During the 
use of HMMs we are led to treat three fundamental problems: 
Evaluation, decoding and learning [8]. 

The HMMs fall most often on a large dimension state space 
that makes interesting use of the Divide and Conquer 
technique. The principle is based on dividing a large problem 
into several similar problems which avoids the curse of 
dimensionality. In this direction, we will propose a 
decomposition method and improved algorithm to solve large 
HMMs. 

This paper is organized as follows: We briefly present in 
the second section a general introduction to Hidden Markov 
Models and their fundamental problems. In the third section 
the Forward algorithm is described. The problematic and the 
solution are given in the next section. Finally, we propose an 
improved version and the complexity of the Forward algorithm 
in the fourth section. 

II. HIDDEN MARKOV MODEL 

A. Definition 

The HMM is defined by a tuple [9, 10] {N, M, A, B, }: 

The Model is formed by N states  1 2, ,..., .NS S S S  

The M observations  1 2, ,..., .MO O O O  

The matrix of transition probabilities is denoted by 

A= ija 
  ,where: 

1 ,( | ) where 1 , ij t j t i i j

j S

a P s S s S a i S



       

ija Specifies the probability of transitioning from state i to 

state j. 

The observation probability matrix or emission probability, 

denoted by ( )jB b m    : 

( ) ( | )j t m t jb m P o O s S  
 

( )jb m Represents the probability of emitting symbol 

Om  at the instant t by the state jS . 

The probability distribution of the initial state is denoted by 

 i  : 

1( ) where ( ) 1i i

i S

P s S i 


    

i  specifies the probability of being in state i at time zero. 

B. Fundamental problems of HMM 

There are three basic HMM problems that must be solved: 

Evaluation: Given an observation sequence 

1 2, ,..., TO O O O and a model { , , }A B   , what is the 

probability of the model generating that observation sequence? 

Decoding: Given the observation 1 2, ,..., TO O O O and an 

HMM model { , , }A B   , how do we find the state 

sequences that best explain the observation? 

Learning: How do we adjust the model parameters

{ , , }A B   , to maximize ( | )P O  ?  

III. FORWARD ALGORITHM 

For each pair (state, time) we associate the Forward 

variable ( )t i given in equation (5) which represents the 

probability of the partial observation sequence 1{ ,..., }tO O
 

(until time t) and state Si at time t, given the model .  

1 1( ) ( ,..., , | )t t t t ii P o O o O s S      

 Algorithm 3.1.  

Step1: Initialization, let i S  

1 1( ) ( )i ii b o    

Step2: Induction,  let    1, 1 , 1,t T j N    







1 1( ) ( ) ( )t t ij j t

i S

j i a b o  



 
  
 





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Step3: Termination 

( | ) ( )T

i S

P O i 


  

IV. PROBLEMATIC AND SOLUTION 

A. The curse of dimensionality 

The statistical learning algorithms such as those dedicated 
to hidden Markov chains they are suffering from the 
exponentially increase of the cost when the volume of data 
grows, which is known as the curse of dimensionality [11].  

B. Divide and Conquer 

The term Divide and Conquer algorithmic technique [12, 
13] yields elegant, simple and very efficient algorithms, their 
principle is based on dividing a large problem into several 
similar problems which avoids the curse of dimensionality.  

C. Principe of decomposition 

Decomposition technique [14] consists of the following 
steps. First, the algorithm of decomposition to levels is applied, 
thereafter the restricted HMMs are constructed, eventually, we 
combine all the partial solutions in order to construct the global 
solution of the HMM. 

In this section, we consider HMM, Let G=(S, U) be the 
graph associated with the HMM, that is, the state space S 

represents the set of nodes and 
2{( , ) : 0}ijU i j S a    the set 

of directed arcs. 

1) Decomposition into levels 
The state space can be partitioned into strongly connected 

classes 1 2, ,..., HC C C . Note that the strongly connected classes 

are defined to be the classes with respect to the relation on G 
defined by: i is strongly connected to j if and only if i=j or there 
exist a directed path from i to j and directed path from j to i. 
There are many good algorithms in graph theory for the 
computations of such partition, see [15]. Now we construct by 

induction the levels of the graph G. The level 0L  is formed by 

all classes 
iC  such that 

iC  is closed, that is, any arc emanating 

from 
iC  has both nodes in

iC . The path level pL  is formed by 

all classes 
iC  such that the end of any arc emanating from 

iC  

is in some level 1 2 0, ,...,p pL L L  .  

Remark 4.1. Let 
iC  be strongly connected class in the level 

pL  then 
iC  is closed with respect to the restricted HMM to the 

state space 1 2 0( , ,..., )p pS L L L  . 

It is clear that, from Remark 4.1, the following algorithm 
finds the levels 

Algorithm 4.1. 

Beginning
 

S  

0p 
 

 L :   closed at  p i iC C 
 

Repeat
 

 
\ Lp

 

 If    then    

        

1L { :  closed for HMM restricted to }p i iC C  

   

  
p 1p 

 

 End if  

Until =   

Example: The classes ; 1,...,5iC i  shown in Fig. 1, 

construct three levels 0 1 2, and LL L , the class 
1C  which is 

situated in the level 
1 L  , is closed by way of contribution of 

the level 
2L .  

 
 

Fig. 1. Construction of levels 

2) Restricted HMM for decoding problem using Forward 

algorithm  
In what follows, we construct, by induction, the restricted 

HMMs corresponding to each level ; ,...,0pL p n .Let ( pkC ) , 

{1,2,..., ( )}k K p  be the 
thK  strongly connected class 

corresponding to the nodes in level p, where K(p) represent the 
maximum of the classes included in the level p. 

a) Construction of the restricted HMM in level nL  







IJACSA Special Issue on Selected Papers from 
Third international symposium on Automatic Amazigh processing (SITACAM’ 13) 

13 | P a g e  
www.ijacsa.thesai.org 

For each  k 1,2, K n  , we denote by 
nkHMM the 

restricted HMM corresponding to the class 
nkC that is the 

restricted HMM in which the state space restricted is
nk nkS C ; 

the same M symbols 1 2, ,..., MO O O ; the matrix of transition 

probabilities and the matrix of observation probability are 
restricted to

nkS . 
 

b) Construction of the restricted HMM in level 

, 1,...,0pL p n    

For each  k 1,2, K p  and 1,...,0p n   we denote by 

pkHMM  the restricted HMM corresponding to the class
pkC . 

Let 
1( )pkC  be the set of predecessors for each state pki C

.The restricted pkHMM  defined by: 

The state space:
1( )pk pk pkS C C   . 

The matrix of transition probabilities A: for each j, i Spk , 

i S
A=

pk
ija


   where ( | ) if  ij pk pka P j i j C  .  

The same symbols  1 2, ,..., MO O O O . 

The probability distribution of the initial state 

 
pki C

,i 
  where 1 pk( ) ( ) if i Cii P s S    . 

The matrix of observation probability 
j

( ) ,
pk

j C
B b m


     

where ( ) ( | ) if jj t m t j pkb m P o O s S C    .  

V. IMPROVED FORWARD ALGORITHM 

We denote by , ( ),  t {1,...,T}, p=n,...,0 and  t pk i   

k={1,..,K(p)}  the Forward variable in state pki C . 

Lemma 5.1. Let j  C pk , the Forward variable for j at time t+1 

is defined by: 

1, , 1

i  S

( ) ( ) ( )

pk

t pk t pk ij j tj i a b o  



 
  
  
  

Proof. From equation (7) to calculate the Forward variable 

1( )t j  we need only the states i such as

1( | ) 0 ,   jt t pkP x j x i C     , these states belongs to the 

original set states of the class pkC or
1( )pki C . 

Remark 5.1. To calculate the Forward variable 1, ( )t pk j   we 

need the Forward variable , ( )t pk i  for each
1( )pki C , 

therefore, we always need some values that have been already 
calculated in the upper levels. 

Algorithm 5.1.  

Step1 : Initialization 

For  p=n,...,0 and k 1,2, K p  ; let i pkS  

1, 1

1
1, 1, ' '

( ) ( ) if  i  C

( ) ( )  if  i (C ),  (i  C , )

pk i i pk

pk mk pk mk

i b o

i i m p

 

  

  

   
 

Step2 : Iteration  

For  1,  1t T  ,  p=n,...,0 and k 1,2, K p  ; let 

pkj S  

1, , 1

i  S

1
1, 1, ' '

( ) ( ) ( ) if  j  C

( ) ( )   if j (C ),  (   C , )

pk

t pk t pk ij j t pk

t pk t mk pk mk

j i a b o

j j j m p

 

 

 




 

 
   
  

   

  

Step2 : Termination  

( )

,

0 1 i  C

( | ) ( )

pk

K pn

T pk

p k

P O i 
  

     

VI. COMPLEXITY 

The classical Forward algorithm generate N (N +1) (T-1) + 
N multiplication and N (N-1) (T-1) addition, it takes on the 

order of 2N T  computations, which represents the quadratic 
complexity in the number of state. Whereas, the complexity of 
improved Forward algorithm can be calculated by using Akra 
Bazzi theorem [16] (A generalization to the well known Master 
Theorem [17]) which allows calculating the complexity for this 
type of problem. Therefore, it will be quasi-linear, equal to

log( )N N . 

VII. CONCLUSION  

The Forward algorithm progressively calculate the 
probability of an observation sequence, it is used in the 
recognition and learning because it represents the basis for 
revaluation in the Baum-Welch algorithm. We benefited from 
the method divide and conquer 
to reduce the charge of calculation of the Forward algorithm. 
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