(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

Mathematical Modeling of Distributed Image
Processing Algorithms

Vlad Colceriu, Danut Mihon,
Angela Minculescu
{vlad.colceriu, vasile.mihon} @cs.utcluj.ro
angela.minculescu @ gmail.com
Technical University of Cluj-Napoca
Cluj-Napoca, Romania

Abstract—Satellite images play an important role in develop-
ing Geographical Information System software applications that
prove to be useful for different Earth Science phenomena analysis.
Accurate results are obtained from high resolution images, or by
applying the same algorithm multiple times over a specific input
data set. In both cases the data volume that needs to be processed
is large, and usually involves distributed infrastructures. In order
for non-technical users to use these algorithms, they should
be described in a flexible manner, using workflow structure
models. This paper highlights the main achievements within
the GreenLand platform, regarding scheduling, executing, and
monitoring the Grid processes. Its development is based on
simple, but powerful, notion of mathematical directed acyclic
graphs that are used in parallel and distributed executions over
the Grid infrastructure.

I. INTRODUCTION

This paper highlights the parallel and distributed satel-
lite image processing over the Grid infrastructure, as imple-
mented within the GreenLand platform. GreenLand is a free
GIS (Geographical Information System) software used in the
geospatial data management and visualization domain, which
was integrated as part of the BSC-OS(Black Sea Catchment-
Observation System) portal[1][2] alongside other software
platforms, designed for calibration of SWAT models, such
as gSwat[3] and BASHYT[4] and other general purpose GIS
web applications, such as GeoServer[5] and GEOSS[6]. The
following sections present some of the main goals of this
system: provide a flexible description of spatial data process-
ing, schedule, execute and monitor Grid processes, GRASS
(Geographic Resources Analysis Support System) [7] library
integration, and interoperability with other software platforms.

All the executable processes implement a specific function-
ality, related to the Earth Science domains: satellite images
data extraction, thematic map creation, arithmetic operations
on spatial data, raster and vector data conversion, etc. All these
processes are represented within the GreenLand platform as
acyclic graphs, composed from basic operators, Web services
and sub-graphs [15].

The operators are identified as atomic components and rep-
resent the smallest unit of work that can be executed without
further decomposition. The workflow is another GreenLand
concept, used to fulfill the user needs. It could be defined
as a collection of basic operators, adopting a graph-style
representation. Each node implements a particular function,

Victor Bacu,DenisaRodila
Dorian Gorgan
{victor.bacu,denisa.rodila} @cs.utcluj.ro
dorian.gorgan @cs.utcluj.ro
Technical University of Cluj-Napoca
Cluj-Napoca, Romania

while the entire workflow can be used to simulate specific
dataflow scenarios.

The availability of the GreenLand system for non-technical
persons was the main reason for workflow based data represen-
tation. Otherwise they should have been familiar with the XML
standard and with developing Linux based scripts. In order
to ease the user actions, two editor tools were implemented
for operator and workflow description. Another advantage of
using this approach is the portability within other platforms,
as described in section System related architecture.

The Grid infrastructure processing capabilities are needed
due to the large volume of satellite data that could reach a
few GB is size. Executing such data is a complex process and
should be optimized even when executed over the Grid worker
nodes. Some workflows executions are light weight, while
other might take hours to complete. This way it is up to the
gProcess platform [8] to apply the best scheduling techniques.
Currently no solutions exist to overcome this shortcoming, but
several research directions have already analyzed and put into
practice[9].

The gProcess platform is used for Grid process schedule,
execution and monitoring. More information about the oper-
ations performed by this platform can be found in section
entitled Grid based execution.

II. RELATED WORKS

The Grid processes are described using the mathematical
graph concept that seems to fulfill the GreenLand requirements
of extensibility and simplicity . The major disadvantage in
using such a method is represented by the cyclic workflows
that handle looping execution. This is a restrictive case in the
GreenLand workflows editor, and the user has no possibility to
define such kinds of structures. There are several applications
that could be used to create workflows: Pegasus [10], Taverna
[11], GridFlow [12], etc. All of these are working only with
acyclic graphs, called DAG (Direct Acyclic Graph). The main
difference between these tools and the OperatorEditor and
WorkflowEditor, developed within the GreenLand platform, is
related to the flexibility in managing the data structure, the
possibility of creating hyper-graphs, depth workflow naviga-
tion, or ease in creating new basic operators by attaching a
specific functionality (described throughout an executable file,
script file, Web service, etc.).

50|Page

www.ijacsa.thesai.org

COMP
Typewritten Text
Victor Bacu, Denisa Rodila

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

COMP
Typewritten Text

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

Most of the GreenLand operators encapsulate GRASS
functionalities that operate with raster or vector data formats.
The GRASS library allows the usage of more than 300 opera-
tors, supports over 2500 different CRS (Coordinate Reference
System) and handles the most common used spatial data
types: Landsat, MODIS, GeoTIFF, ESRI shapefiles, etc. Due
to its popularity, there are several geospatial applications that
integrate this library: Sextante [13] and QGIS (Quantum GIS)
[14].

The main goal of Sextante is to provide an easy method for
implementing rich geo-processing algorithms, and it integrates
tools like Java GIS, OpenJUMP, ArcGIS, etc. QGIS allows the
user the possibility to execute geospatial data, to analyze the
results, edit raster and vector data, data type conversion, etc.

One of the main goals of the GreenLand platform is to
provide workflows that could be reused in other applications,
such as Pegasus, Taverna, PGRADE [15], etc. This could
be achieved by using the SHIWA (SHaring Interoperable
Workflows for large-scale scientific simulations on Available
DClIs) [16] platform that offers interoperability services in
order to standardize the workflow development and portability.

Workflow interoperability enables their execution over dif-
ferent infrastructures, allows data sharing among scientific
communities around the world, facilitates workflows migra-
tion between applications, and offers the usage of the most
appropriate system or infrastructure in order to execute one
specific workflow.

In order to access GRASS functions, the user has to
write its own Linux bash script, in the Sextante and QGIS
frameworks. On the other hand the GreenLand offers the user
the possibility to do the same operations but in a more intuitive
manner, by using the workflow editor. This approach allows the
non-technical users to develop and process their own scenarios,
without the uncertainty of introducing semantic or syntactic
erTors.

The GreenLand uses the gProcess platform in order to
schedule, execute and monitor processes over the Grid in-
frastructure. Other approaches that share the same experience
regard the GANGA [17] and Diane (Distributed Analysis Envi-
ronment) [18] tools. Grid process configuration and monitoring
is based on the GANGA tool, while the execution scheduling
and task submission is related to the Diane application

III. SYSTEM RELATED ARCHITECTURE

GreenLand is a client-server application, available over the
Web. The client-side represents the graphical user interface
that fulfills user requests for a extensible, parallel running
and internet accessible GIS platform. The server-side is Java
based and implements functionalities for users, projects and
data management. Data exchange between these two modules
is based on Web services.

The only way for the user to access the backend func-
tionality of the GreenLand application is through its graphical
interface (Figure 1). A username and password authentication
is required for system access.

The second architectural level consists of a set of services
exposed by the GreenLand platform: users management, work-
flows development, execution and management, data retrieval,

Graphical user interface

Web and Grid services

Users, workflows, and data

management
gProcess ESIP GRASS
platform platform library

GreenLand data ESIP data

repository repository

Figure 1. System related architecture

data storage, data conversion, etc. These services are available
by integrating the gProcess and ESIP (Environment oriented
Satellite Data Processing Platform) [19] platforms. The Web
services provided by the gProcess fulfil the user requirements
regarding the process scheduling, execution and monitoring.

The workflows developed by the users have two internal
standard representations, both of them using the XML de-
scription. The first one is called PDG (Process Description
Graph) and it is a pattern that describes only the workflow
nodes types and position, and the relationship between them,
but it has no knowledge about its physical inputs and outputs.
This pattern is only used to store the workflow representation,
and it expands during the Grid execution into a so called iPDG
(instantiated PDG). This second representation shares the same
XML structure as the PDG, and allows the gProcess to gather
all the inputs information specified by the user (e.g. spatial
data files, numerical constants, external dependencies, etc).

Based on the iPDG format, the gProcess platform performs
the Grid scheduling operation. In most cases a single node
in the workflow will be processed on a single CPU, but
there are situations in which groups must be created in order
to improve the execution efficiency. Currently this is not an
automated process, because it requires a complexity analysis
of the entire workflow. Several research studies were conducted
in this direction, and the bases for such a module were already
adopted.

The gProcess platform establishes the connection with
Grid infrastructure, by implementing a subset of the gLite
middleware. These services allows the data transfer (i.e. input
data specified by the user) to SE (Storing Element), tasks
execution over CE (Computing Element), proxy creation and
delegation, Grid execution information retrieval, etc.

The ESIP platform are a set of Web services that provide
the following functionalities: basic operators and workflows
development, workflow representation based on DAG (Direct
Acyclic Graph) patterns, spatial data management, etc. Internal

51 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

representations of the basic operators are also part of the
ESIP platform, exposed as: vegetation indices (e.g. NDVI,
EVI), spatial data processes (e.g. mosaic, density slicing, and
data extraction), statistics (e.g. histogram generation, standard
deviation computation), etc.

Other services provided by the GreenLand platform are
related to users management (i.e. create new account, update
profile, etc.), data retrieval using the local upload mechanism,
FTP data transfer and OGC services [20].

Finally it is worth mentioning that the current application
stack is enrolled within the envirogrids.vo-eu.egee.org Virtual
Organization, of which for testing purposes we used the sites
or computing elements: RO-09-UTCN and AM-02-SEUA.

IV. DATA MODEL

This section describes the basic operator, workflow and
project concepts, their development using the GreenLand ed-
itor tools as well as their internal representation within the
ESIP data repository (Figure 1).

A. Project and workflow relationship

GreenLand projects are defined as virtual containers that
allow workflow organization and instantiation. Each project
has a unique name in the user workspace, and supports
workflows attachment. A workflow can be added as multiple
instances within the same project. At graphical user interface
level, the project content is displayed as a forest of trees, where
each tree root represents the workflow name, and leafs consists
of the workflow instances. Each item inside the project, stores
information about its name, description, author who developed
it, inputs and outputs, etc.

From the graphical interface the user is able to specify the
physical inputs for this item (workflow). For each input, only
the available values are displayed to the user (e.g. if the inputs
type requires a spatial data attribute, only the list of available
satellite images are shown). All these information are retrieved
based on ESIP services.

Executing a project consists of processing its entire list of
workflows. This operation is achieved by using the gProcess
services. After the Grid process begins, a monitoring mecha-
nism gives feedback about execution progress.

B. Basic Operator Concept

Operators lie at the center of the gProcess execution envi-
ronment and GreenLand management system. They represent
the basic units of work, the only constructs which can get
executed.

The GreenLand application allows users to create, alter and
delete these structures. By doing so, it allows full customiza-
tion of the Grid execution processes, from its most coarse
grained constructs represented by iPDGs to its most simple,
atomically executed statements.

Operators represent the most fine grained execution units;
they are the only constructs that get executed on the nodes
of the Grid. These units must have their respective program
or executable script defined as well as any dependencies

Table L OPERATOR EDITING CONDITIONS
Operator is owned | Operator is used | Operator is validated
True False True False True False
Insert N/A N/A N/A N/A N/A N/A
Update Yes No Partial Yes Yes Partial
Delete Yes No Partial Yes Yes Yes

they might require, since environment in which they run is
heterogeneous and offers no guarantees on shared library or
version.

The insertion of operators is supported via a visual editor
which takes the users program and annotations and inserts it
in the gProcess and GreenLand databases.

When creating an operator one has to provide besides the
executable code of the program, certain additional information,
which allows the GreenLand application to track the visibility,
unique name, description and category of the operator.

There are two types of visibility properties defined:

e Public means that all the users may view and use the
operator.

e Private means that only the owner of the operator may
view or use it.

The public operators, to which a user is not owner to,
but uses within its private or public workflows, can still be
accessed even if the visibility of the program in question
is changed. However creation of new graphs containing that
element is prohibited.

The category allows the user to create its own hierarchy
of operators, facilitating a quicker lookup when browsing for
them.

An Application Programming Interface (API) has been
created to allow the user to create operators. The problem
with it is that if reuse is desired, the implementer would
have to create a new program form scratch or call its desired
application from within the provided ESIP (Environmental
Satellite Image Processing) API.

Entering, updating and deleting Operators is not a straight
forward operation, since there are some constraints involved
in it as expressed in (Table I).

The first of these limitations refers to ownership of the
operator, since there is a strict traceability of Grid execution
which needs to be maintained. The idea is that each user should
be responsible for its own distributed application. Additionally,
before such an operator is made visible, it is tested locally for
compliance, so that any malicious or unintended effects of the
program may be detected.

The second limitation refers to whether the operator to be
removed or updated is already in use. If it is used, removal
and updating is done only at a formal level; else it is removed
entirely from the database of operators. Deleting or altering
an operator at a formal level means that any of the existing
workflows which use it, can do so without becoming invalid
or having their functionality changed.

52 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

Finally before moving on to workflows and hypergraphs
the programming interface is discussed. It is implemented in
using only the Java programming language, which brings up
certain constraints regarding the generality of the platform.
Of course one can call a program or script implemented in
any programming or scripting language from the required Java
wrapper, as long as it is supported by the operating system on
the worker nodes of the Grid. Where the current worker node
distributions include a CentOS version of the Linux kernel.

Also to be noted is the fact that all operators must be
implemented in such a way so as to be able to parse Linux
type paths, end of line characters and call executables which
were compiled in Linux, preferably having all their library
dependencies packaged alongside themselves.

Further constraints on the program include aspects of code
structure such as [21]:

e Including the Operator class in a certain package
”gPOperators”

e Extending a certain class, which includes the code
for launching the operator on the Grid node “Oper-
atorExec”

e Overriding a certain method included in the ”Opera-
torExec” class

All these limitations exist due to the fact that these opera-
tors need to be integrated inside the gProcess platform, which
was not designed to support such rich and powerful interaction
as exposed by the GreenLand application.

This programming interface also includes all the depen-
dencies and prerequisites needed for generating GRASS and
GDAL based programs as described in section V-B. In order
to do this a different class needs to be extended “GenericOp-
erator” and a different method overridden “grassExecute”.

C. Workflow and Hypergraphs Concept

gProcess and GreenLand give users the opportunity to
develop their own parallel and distributed programs. These
are implemented with the help of Process Description Graphs
(PDG), which plainly put are directed acyclic graphs.

Describing programs with the help of graphs is not a
new concept; it has been extensively studied within [16]
which presents a general solution to integrate already existing
platforms together. It is also present in other well established
frameworks for Grid execution such as [22] and [23].

PDG’s cannot be executed on the gProcess platform since
they represent only the program definition; they lack the input
data necessary to perform useful actions. For execution we
use another construct called Instantiated Process Description
Graphs (iPDG).

iPDG’s are morphologically similar with their counterparts
but they give the possibility to specify user input to the defined
program.

Both PDG’s and iPDG’s may also be referred to as work-
flows, since they present the flow of data, from node to node,
in a Grid program.

<2xm]l version="1.0" encoding="UTF-8" 2>
<Workflow>
<Ncdes:
<Reaource m><fRescurceﬂ
<Operator id="6" name="NIWNI" idDBE="64">
<Preconditicns:>
<Input id="1"/>
<Input id="2"/>
<Input id="3"/>
<Input id="4"/>
<Input id="5"/>
</Preconditions>
</0Operator>
</Nodes>
<Groups></Groups>
</Workflow:>

Figure 2. Simple PDG representing an NDVI program

The internal structure of a PDG is represented by nodes
and directed edges. The nodes can be matched to operators
or other PDG’s. These particular types of entities, which
do not make the scope of the top level structure are called
sub-workflows and are similar to the idea of functions in
programming languages. A structure which has multiple levels
of imbrication is called a hypergraph.

Recursive structures are not supported within workflows
since there is no control structures currently implemented
within workflows. The reason they are not supported is due
to the fact that no control structures have been implemented.

Control statements would allow the distributed program to
test for termination conditions, otherwise not encountered in
the current solution.

The arcs described inside a PDG and iPDG represent the
flow of data. All information passed from a source node to
destination passes trough gProcess file system, where it is
forwarded to the corresponding execution, as specified in the
workflow.

The constraints and operations presented for nodes also
apply here. The major difference is that workflows are auto-
matically created once such a request is submitted and require
no additional validation of their behavior. One may assume
that their behavior is implicitly safe since all their individual
parts function correctly. We can make this assumption because
it is only the operators that get directly executed.

gProcess and GreenLand have different representations of
these two notions. gProcess uses a lightweight XML represen-
tation (Figure 2) of the directed acyclic graph.

The XML format is disadvantageous in allowing for an
editable and extensible program structure mainly because of
the fact that the user must specify the inputs and be able to
validate the program structure manually. This means that it
would need intimate knowledge about application structure.
Such a solution would be impractical and furthermore unsafe
since it would give the user direct access to resources, without
any possibility to restrict or refute its actions.

On the other hand GreenLand allows for a database rep-
resentation of the model, which gives the user the possibility

53 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

to dynamically create and modify workflows, without having
to know anything about internal representation. The model
described was created so as to serve to the purpose of cat-
egorizing, extending and validating the workflows and their
subcomponents.

The basic concepts behind the GreenLand application is the
gProcess workflow, which is represented by a directed acyclic
graph also called a PDG. In this graph each node represents the
executable code submitted on a worker node, an operator. On
the other hand an arc represents a communication path between
two operators. They are not explicitly modelled since they can
be inferred from the connection between two node(Figures 2
and 3).

The GreenLand data model supports ranking of operators
according to categories in order make searching for a given
functionality easier. Atop of this each category element offers
the possibility to generate other subcategories(Figure 3), thus
generating a infinitely extendible structure.

Each node of a workflow can be either a operator or another
workflow, generating a multi-layered structure, inside which no
cycles or self-calling elements can exist.

Additionally resources in the form of inputs and outputs are
attached to a node. The amount of inputs or outputs a node
may contain is unlimited, except for the case of operators,
which may contain at most a single output. This constraint is
imposed by gProcess functionality, which requires this in order
to be able to detect operator output and communicate results
between the nodes of the program graph.

Each resource supports either a string value or a file type.
In order to assure that these elements are matched correctly,
two types of validations need to be performed.

First a syntactic validation assuring that the file is of the
required type. This validation is not done by filtering the file
through a extension sieve, but by pre-emptively inspecting the
file type at import time.

The second type of validation is done at the semantic level,
where each file is checked so that the meta-data attached does
not have conflicting values. An example of this would be the
projection of the files, which according to GRASS and GDAL
operators would have to be the same in order to obtain a
successful execution.

Additionally it is worth mentioning that Greenland is
accompanied by an interface application, which allows the user
to interactively manipulate workflows, as easily as one would
create, update and delete an operator [24].

V. GRID BASED EXECUTION

This Section presents the gProcess and GreenLand in in-
timate detail, highlighting their interfaces and communication
protocols, which help the user to submit, create and manage
distributed Grid programs.

A. GreenLand and gProcess Compatibility

GreenLand and gProcess are a pair of symbiotic applica-
tions designed to complement each other and in some cases of
degraded functionality even work independently. The current

implementation however requires that both applications be
housed by the same machine.

GreenLand is a workflow, operator and file manager which
allows the user to generate, edit and categorize Grid programs.
On the other hand gProcess is a Grid execution manager ,
which allows the submission and cancelling of complex exe-
cution workflows.The task scheduler implemented in gProcess
was also studied in [25].

Although they were thought with the idea of separability in
mind, they still have to communicate with each other, to pass
programs created in GreenLand to gProcess and to synchronize
GreenLand data to gProcess executions.

As mentioned in Sect. IV-C, these two applications have
different representations of PDG’s and iPDG’s. Where Green-
Land has a recursive database hierarchy of operators and
workflows, which contains additional information such as
categories, descriptions and ownership information. Also the
arcs and nodes of the graphs are represented as separate entities
within the storage space. On the other hand gProcess has a
lighter representation, where the entire program is contained
within an executable file.

In order for things to work GreenLand must know the
internal implementation of gProcess programs. This means that
the GreenLand application must be able to create gProcess
execution files. To do this it interrogates the gProcess database
for all available operators and input types, which it uses to
generate and validate its own programs.

gProcess offers services for uploading operators, workflows
and required input files. These services are then called by
GreenLand, so that the data edited within can become available
to the Grid execution environment.

Execution and monitoring of workflows is the most im-
portant part of the GreenLand/gProcess communication and is
divided in 4 distinct steps.

The first operation is the transfer of the iPDG file from
the GreenLand application to gProcess. Even though both
applications are housed by the same machine, they were
designed to operate remotely. This is done by calling the
“importXML” service of the gProcess application.

The second step requires that the file be registered as a
PDG by calling “insertPDG” and then as a iPDG by calling
“insertIPDG”. This step is done on the same file, due to the
similarities between the two file types.

After uploading the program, it is executed by calling the
“execute” service, which returns information about monitoring
identification number. This is then later used to single out the
workflow, from within the set of monitored executions.

Monitoring is done at 2 different levels:

e Top level, which polls the execution in order to
discover the state of the workflow

e Operator level, which inquires about the state of each
node execution separately and extracts the output

54 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

*

«datatype» «datatype» «datatype» _cohtains
Resour ce q Output Category
1
i | -goups
-matches 1 1
«datatype»
Prgjection Data Type «datatype» 1 Node
Input
*
1 1
«dat > ‘
I;ditylep9 «datatype» «datatype» _cbrtains
Operator Workflow
1
Figure 3. GreenLand Data Model

B. GRASS Integration

The operators developed for gProcess can be configured to
run already existing applications. GRASS is one such case of
a fully fledged desktop application, running on the Grid.

All programs which run on the Grid must not require
any interactive user input. They must be applications which
have non-interactive interfaces, meaning that all input must be
known in advance.

The Grid platform exposes to its users a heterogeneous
environment, where program versions and installed shared
libraries can differ from system to system. The only constant
we can count on is that the background operating system is
running a Linux kernel. In such a case we cannot make any
assumptions about whether an application which runs perfectly
on a desktop environment will run in the same manner on all
of the nodes.This means that in order to use GRASS there are
certain steps which have to be performed before one can be
sure of its functionality.

The primary condition that must be satisfied is that all
executable and configuration files used by the operator be
packaged with it as described in (Figure 4).

GRASS has a binary folder which contains all functions,
which must be included in the operator dependencies. Also a
configuration file specifying some of the parameters of the ap-
plication, ex. DATABASE, LOCATION_NAME and MAPSET.
More on this topic can be found in [7].

On a desktop solution the operating system will satisfy all
needed shared libraries at install time. On the Grid platform
an executing operator has limited privileges when writing files,
accessing system state and installing programs. To compensate
for this drawback all needed shared libraries were packaged
with the operator.

Finally a script must be created, which generates the above
mentioned configuration file and appends all executables to the
$PATH system variable and prepends the shared libraries to the
$LD_LIBRARY_PATH variable. The class that implements this

functionality within the GreenLand programming interface is
”GrassGeneric”.

C. Grid Execution and Monitoring

Each program created by GreenLand is later executed,
monitored and managed by gProcess. Once the former men-
tioned application is done creating and launching the workflow,
the second jumps into action.

The executor service processes the iPDG description in
order to accomplish workflow execution on the Grid [26],
where it parses the XML file and generates the appropriate
internal representation. It then tries to check the file for
consistency by matching input and output types. The input data
of one operator, service or resource must match the output of
the node on the other end of the arc which links them.

The executor service also checks for consistency relating to
the availability of the individual operators instantiated within
the internal representation. If any of the operators are missing
or unavailable the system tries to find an operator or service
capable of substituting it, while also checking for cycles and
recursive declarations. Doing so, it creates a planar structure,
which is the expanded structure of the program.

When an internal representation has been created the
backend application then submits each individual node of the
workflow to a CE (Computing Element) of the Grid.

Once a workflow has been launched into execution, the
hierarchies which existed within it are no longer visible.
The user can only see the flattened, instantiated graph. This
means that from the moment the workflow was launched, the
monitoring can follow only the state of the entire structure and
of individual operators, but not of intermediate structures.

Also canceling an entire workflow is supported, but not a
singular node, since operators downstream might suffer from
unsatisfied input constraints. This would require the system to
cancel all dependent nodes, but since this would lead to results
which would be hard to predict without having advanced
knowledge of internal structure.

55|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment

VI. PRACTICAL USE CASE SCENARIOS

This section is divided into 2 subsections each detailing a
different type of program generation mechanisms for gProcess
corresponding to different levels of program abstraction.

The first use case will detail an operator, which was
designed for merging a series of satellite images from a FTP
repository into a single large image. Thus giving the user
the possibility to select year, month and day of the given
image and the region which required combining, without any
prior knowledge of how the data had been organized on that
particular repository, in order to obtain a single image of the
entire Black Sea catchment area.

The reason for generating a new operator instead of a
workflow was chosen due to the very particular functionalities
of this use case, which could not be satisfied by other more
general operators.

The second use case will detail a complex workflow
generated, from a series of predefined operators. Where the
requirement to be satisfied was the generation of a thematic
map highlighting land use in the Istanbul metropolitan area.

More information can be about the particularities of both
these use cases can be found in document [27]

A. Mosaic Operator Use Case

This section presents the usage of a complex atomic struc-
ture within this framework. It gives an idea of how powerful
and general the interface for Grid program generation really
is.

The atomic operator is divided into several steps. The idea
of atomicity is implemented under the paradigm of all or
nothing execution. Meaning that if the operator fails, at one of
the steps, no partial result will be available to the workflow.

Inside the workflow there exist a list of operators allowing
the user to generate a sequence of images representing a given
time interval.

Java Wrappers

1 #!/bin/sf
2 % dummy_lecation.tar.gz
-zxf dummy_location.tar.gz

Grass Script

directory ./GRASS/
SBASE=$EWD

BASE

PATH=$EATH: $GISBASE/bin: $GISBASE/scripta
LD_LIBRARY_PATH=$GISBASE/1ib:4LD_LIBRARY_BATH
rocess id as lock file number

S _LOCK=§%

up path to GRASS settings file

ile named nothing

ning

SRC=$EWD/nothing

echo "GRASS dome.."
else
echo "GRASS skipped”

et=GISDBASE=5PWD
et=LOCATION_NAME=dummy_location
& t=MAPSET=FERMENENT
et=GRASS_GUI-text

Figure 4. GRASS Operator Setup Script

"

Band 1 —nﬁTm
\CORR /™~
ATM CORR= Atmospheric TN
Correction /n,‘ EV/
ATMY - Output
Band 2 \&ORR @ 1P
?JKDVD
Band 3 ATM —
. CorR
(a) Vegetation index selection
—»Q/—D Accuracy
Ouput | /Densiy | AA=Acouracy Assessment
' \Sioing
N@sterth.—> Vector
Qectoy File
(b) Thematic map generation
Figure 5. Workflows representing the Istanbul Thematic Map Use Case

The “Special Mosaic” operator takes multiple multiband
images of various formats and glues them together according
to certain metadata embedded within their corpus, which may
refer to the projection of the individual bands, as well as
the geographic region which they occupy. Such information
provide the operator a way to combine the images.

The operator receives as its arguments the following: a link
to an ftp server, a directory of that server plus username and
password if necessary. The operator then decides which files
to download given a specified algorithm.

The steps of the operator are divided as follows:

1) Download the images via ftp.

2) Split the images in their respective bands.
3) Combine each band from its parts.

4) Merge all results into a single image.

B. Istanbul Thematic Map Generation Use Case

In order to generate a thematic map for the Istanbul area
from a given set of Landsat satellite images a series of
operations needed to be performed.

Since the thematic maps are of land use in urban areas, the
main operators of the workflows are those exposing vegetation
indices, of which the current implementations opted for EVI
and NDVI. Therefore the bands of the Landsat image being
used are 1,3 and 4 corresponding to blue, red and infrared
bands. Bands 3 and 4 are required for NDVI and 1,3 and 4 for
EVI. Both algorithms return an image with values between -1
and 1, where values from -1 to O represent water bodies and
0 to 1 increasing values of vegetation.

Before the vegetation index operations can be performed,
there is the need for atmospheric correction, which is based
on metadata attached to the multi-band image and a series of
mosaic and cropping operations, which are required due to the
fact that the location of Istanbul is spread across 2 distinct
Landsat images. Cropping and mosaicking are removed from
figure 5 due to them not bringing any added value to the use
case outside of solving a technical issue.

56 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

After applying one of the 2 vegetation indexes a density
slicing algorithm is applied reducing the number of possible
values of the resulting image from 256 floating point intervals
to just 3 classes representing water, urban and wooded areas.

The last step of this algorithm is composed of an accuracy
assessment operator and a Raster to Vector image converter,
which guarantee that a sufficiently accurate thematic map
represented by vector file is generated. If the accuracy is
below a given threshold the workflow is executed again using
different intervals for the 3 classes of the density slicing
operator.

It is because of this fact that the implementation of this
logical workflow has been divided into 2 parts so as to remove
redundant work regarding atmospheric correction, mosaicking,
cropping and vegetation index calculation (Figure 5).

VII. CONCLUSION

Due to the high complexity and size of input data satellite
image processing requires high computing power. In order to
be able to meet these requirements gProcess uses the Grid
execution platform.

GreenLand extends the functionalities of gProcess by giv-
ing the user an interface with which he can customize his own
programs from the coarse grained constructs represented by
top level workflows to the most fine grained represented by
operators.

Additionally to submission and management gProcess of-
fers optimized execution and scheduling of multiple workflows
so as to obtain the highest possible throughput.

ACKNOWLEDGMENT

This research is supported by the enviroGRIDS Project
funded by the European Commission, through the Contract
226740.

REFERENCES

[11 D. Gorgan, V. Bacu, D. Mihon, T. Stefanut, D. Rodila, P. Cau, K. Ab-
baspour, G. Giuliani, N. Ray, and A. Lehmann, “Software platform
interoperability throughout envirogrids portal,” International Journal of
Selected Topics in Applied Earth Observations and Remote Sensing —*
JSTARS, vol. 5, no. 6, pp. 1617-1627, 2012.

[2] D. Gorgan, V. Bacu, D. Mihon, D. Rodila, T. Stefanut, A. K., P. Cau,
G. Giuliani, N. Ray, and A. Lehmann, “Spatial data processing tools
and applications for black sea catchment region,” International Journal
of Computing, vol. 11, no. 4, pp. 327-335, 2012.

[31 D. Gorgan, V. Bacu, D. Mihon, D. Rodila, K. Abbaspour, and E. Rouho-
lahnejad, “Grid based calibration of swat hydrological models,” Journal
of Nat. Hazards Earth Syst. Sci., vol. 12, no. 7, pp. 2411-2423, 2012.

[4] P. Cau, C. Meloni, S. Manca, D. Soru, and D. Muroni, “A java
based framework optimized for scientific modeling and analysis,” in
Proceedings of the International MultiConference of Engineers and
Computer Scientists, vol. 1, 2011.

[5] J. Deoliveira, “Geoserver: uniting the geoweb and spatial data infras-
tructures,” in Proceedings of the 10th International Conference for
Spatial Data Infrastructure, St. Augustine, Trinidad, 2008.

[6] M. L. Butterfield, J. S. Pearlman, and S. C. Vickroy, “A system-of-
systems engineering GEOSS: Architectural approach,” Systems Journal,
IEEE, vol. 2, no. 3, pp. 321-332, 2008.

[71 M. Neteler, M.H. Bowman, M. Landa, and M. Metz, GRASS GIS: a
multi-purpose Open Source GIS, Environmental Modelling and Soft-
ware, vol.31, pp.124-130, 2012.

www.ijacsa.thesai.

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

V. Bacu, T. Stefanut, D. Rodila, D. Mihon, and D. Gorgan, Process
Description Graph Composition by gProcess Platform, HiPerGRID,
May 28, Bucharest, vol.2, pp.423-430, 2009.

V. Colceriu and D. Gorgan, “Execution time estimating framework on
distributed platforms,”, 2013, Unpublished.

J.S. Vockler, G. Juve, E. Deelman, M. Rynge, and G.B. Berriman, Expe-
riences Using Cloud Computing for a Scientific Workflow Application,
ScienceCloud’11, pp.15-24, 2011.

W. Tan, P. Missier, I. Foster, R. Madduri, D. De Roure, and C. Goble,
A comparison of using Taverna and BPEL in building scientific work-
Sflows: the case of caGrid, Concurrency and Computation: Practice and
Experience, vol. 22, pp.1098-1117, 2010.

J. Cao, S.A. Jarvis, S. Saini, and G.R. Nudd, GridFlow: Workflow
Management for Grid Computing, In 3rd International Symposium on
Cluster Computing and the Grid (CCGrid), IEEE CS Press, May 12-15,
Tokyo, Japan, pp.198-205, 2003.

V. Olaya, Sextante User’s Manual, 2011.

T. Sutton, O. Dassau, and M. Sutton, Geographical Information System
User Guide, Open Source Geospatial Foundation Project, 2011.

P. Kacsuk, P-GRADE Portal Family for Grid Infrastructures, Concur-
rency and Computation: Practice and Experience, vol.23, pp.235-245,
2011.

N. Cerezo, and J. Montagnat, Scientifc Workflows Reuse through Con-
ceptual Workflows on the Virtual Imaging Platform, Proceedings of 6th
WORKS2011, Seattle, pp.1-10, 2011.

J.T. Moscicki, F. Brochu, J. Ebke, U. Egede, J. Elmsheuser, K. Harrison,
R.W.L. Jones, H.C. Lee, D. Liko, A. Maier, A. Muraru, G.N. Patrick,
K. Pajchel, W. Reece, B.H. Samset, M.W. Slater, A. Soroko, C.L. Tan,
D.C. van der Ster, and M. Williams, Ganga: A tool for Computational-
task Management and Easy Access to Grid Resources, Computer
Physics Communications, vol. 180, pp.2303-2316, 2009.

J.T. Moscicki, DIANE - Distributed Analysis Environment for GRID-
enabled Simulation and Analysis of Physics Data, Nuclear Science
Symposium, vol. 3, pp.1617-1620, 2004.

V. Bacu, D. Rodila, D. Mihon, T. Stefanut, and D. Gorgan, Error
prevention and recovery mechanisms in the ESIP platform, IEEE 6th
International Conference on Intelligent Computer Communication and
Processing, ICCP2010, pp.411-417, 2010.

A. Padberg, and K. Greve, Gridification of the OGC Web Processing
Service: Challenges and Potential, AGILE Workshop, pp.5-11, 2009.

V. Colceriu and D. Mihon, Operator Editor, 2012. [Online]. Available:
http://cgis.utcluj.ro/documents/OperatorEditor_user_manual.pdf

P. Kacsuk, T. Fahringer, Z. Nemeth. Distributed and Parallel Systems.
Cluster and Grid Computing , 2nd edition, 223 pages, Springer Verlag,
ISBN: 0387698574 (2007)

E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, D. S.
Katz, Pegasus: a Framework for Mapping Complex Scientific Workflows
onto Distributed Systems, Scientific Programming Journal, Vol 13(3),
2005, Pages 219-237

D. Mihon, A. Minculescu, V. Colceriu, and D. Gorgan, “Diagramatic
description of distributed spatial data processing,” Romanian Journal of
Human - Computer Interaction,pp. 129-134, 2013.

Pop F., A Fault Tolerant Decentralized Scheduling in Large Scale
Distributed Systems, chapter in Handbook of Research on P2P and
Grid Systems for Service-Oriented Computing: Models, Methodologies,
and Applications, N. Antonoupoulos, G. Exarchakos, M. Li, A. Liotta
(Eds.), Ed. Information Science Reference (IGI Global), ISBN: 978-
161-520-686-5, pp. 566-588, February 2010

Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based
Satellite Image Processing Platform for Earth Observation Applications
Development. IDAACS’2009 - IEEE Fifth International Workshop
on "Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications”, 21-23 September, Cosenza, Italy, IEEE,
Computer Press, ISBN: 978-1-4244-4901-9, 247-252 (2009).

F. B. Balcik, C. Goksel, K. Allenbach, M. Gvilava, K. Rahman,
D. Gorgan, and V. Mihon, Building Capacity for a Black Sea Catch-
ment Observation and Assessment supporting Sustainable Development,
2012.

57 |Page
org

