
(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

53 | P a g e

www.ijacsa.thesai.org

Lightweight Symmetric Encryption Algorithm for

Secure Database

Hanan A. Al-Souly, Abeer S. Al-Sheddi, Heba A. Kurdi

Computer Science Department, Computer and Information Sciences College

Imam Muhammad Ibn Saud Islamic University

Riyadh, Saudi Arabia

Abstract—Virtually all of today’s organizations store their

data in huge databases to retrieve, manipulate and share them in

an efficient way. Due to the popularity of databases for storing

important and critical data, they are becoming subject to an

overwhelming range of threats, such as unauthorized access.

Such a threat can result in severe financial or privacy problems,

as well as other corruptions. To tackle possible threats, numerous

security mechanisms have emerged to protect data housed in

databases. Among the most successful database security

mechanisms is database encryption. This has the potential to

secure the data at rest by converting the data into a form that

cannot be easily understood by unauthorized persons. Many

encryption algorithms have been proposed, such as

Transposition-Substitution-Folding-Shifting encryption

algorithm (TSFS), Data Encryption Standard (DES), and

Advanced Encryption Standard (AES) algorithms. Each

algorithm has advantages and disadvantages, leaving room for

optimization in different ways. This paper proposes enhancing

the TSFS algorithm by extending its data set to special

characters, as well as correcting its substitution and shifting steps

to avoid the errors occurring during the decryption process.

Experimental results demonstrate the superiority of the proposed

algorithm, as it has outperformed the well-established

benchmark algorithms, DES and AES, in terms of query

execution time and database added size.

Keywords—Encryption; Security; Protection; Transposition;

Substitution; Folding; Shifting

I. INTRODUCTION

The tremendous development of technology and data
storage leads organizations to depend on database systems.
Organizations store huge amounts of data in secured databases
in order to retrieve them in a fast and secure way. Some of the
stored data is considered sensitive and has to be protected.

In the presence of security threats, database security is
becoming one of the most urgent challenges because much
damage to data can happen if it suffers from attacks and
unauthorized access. With databases in complex, multi-tiered
applications, attackers may reach the information inside the
database. Damage and misuse of sensitive data that is stored in
a database does not only affect a single user; but possibly an
entire organization [1]. We can categorize the attackers into
three types: intruder, insider, and administrator. Intruders are
external people who infiltrate a database server to steal or
tamper with data. Insiders are authorized users in a database
system, who conduct some malicious works. Administrators
can be database administrators (DBA) or system administrators

(SA), and both have absolute rights to database systems.
However, if they are malicious, the security of the database
may be damaged [2]. Insider and administrator attackers have
gathered more attention in recent years because they can access
a database without any effort, and they use important data in a
wrong way. Database encryption has the potential to secure
data at rest by providing data encryption, especially for
sensitive data, avoiding the risks such as misuse of the data [1].
In order to achieve a high level of security, the complexity of
encryption algorithms should be increased with minimal
damage to database efficiency, ensuring performance is not
affected.

There are many research studies in the database security
field. Some of them have efficient implementations. Also,
many encryption algorithms have been proposed, some of
which have appealing features but still need further
development, one such algorithm is the Transposition,
Substitution, Folding and Shifting TSFS algorithm, known as
the TSFS algorithm [1]. The TSFS algorithm provides a high
degree of security, using a number of features. However, it
supports only numbers and alphabetic characters that are not
enough to protect different types of sensitive data. Another
deficit of the TSFS algorithm is during the substitution and
shifting processes where some errors occur during the
decryption process.

This paper provides a secure and efficient encryption
method that encrypts only sensitive data without using special
hardware. It enhances TSFS algorithm by extending its data set
to special characters, and corrects substitution and shifting
processes, by providing more than one modulo factor and four
16-arrays respectively in order to avoid the error that occurs
during the decryption steps. Moreover, this paper draws a
comparison between the enhanced TSFS algorithm (ETSFS)
and two other famous encryption algorithms, namely Data
Encryption Standard (DES) and Advanced Encryption
Standard (AES) algorithms, and evaluates their performance in
terms of query execution time and database added size.

The remaining parts of this paper are organized as follows:
section 2 reviews existing work on database encryption
techniques. Section 3 introduces the ETSFS algorithm and
explains its procedure, while section 4 introduces the
implementation of the ETSFS algorithm and suggested
structure. Section 5 presents a comparative study between the
algorithms, evaluates performance, reports results and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

54 | P a g e

www.ijacsa.thesai.org

discusses them. Finally, section 6 concludes with a summary of
contributions and makes suggestions for future research work.

II. RELATED WORK

Due to the important role that encryption techniques play in
securing database systems, numerous algorithms have emerged
with different techniques and performance. Bouganim and
Pucheral proposed a smart card solution to protect data privacy;
the owners of databases can access the data using a client
terminal that is supported by smart card devices [3]. This
proposed solution is considered as a secure and an effective
solution, but it is complicated and expensive [1]. Database
encryption greatly affects database performance because each
time a query runs, a large amount of data must be decrypted.
Therefore, [4] suggests that encrypting sensitive data only can
provide the needed security without affecting the performance.

In [1] [5] [6] encryption algorithms were proposed
depending on encryption of sensitive data only. Kaur et al.
proposed a technique to encrypt numeric data only using a
fixed data field type and length [5]. However, this algorithm
does not support encryption of character data. Agrawal et al [6]
also, proposed an encryption scheme for numeric data with an
important feature that allows queries or any comparison
operations to be applied directly on encrypted data sets without
decrypting them. The scheme uses indexes of database over
encrypted tables, but it is only applied to numeric data,
additionally, it has not investigated key management. In some
application, where the data is backed up frequently, we need to
control the access to data and support multilevel access. So,
Hwang and Yangb proposed a multilevel database encryption
system with subkeys, which can encrypt/decrypt the whole
table, column or row. Also, this system can encrypt each row
with different subkeys according to a security class of the data
element. This system is based on the Chinese Remainder
Theorem [7].

The DES algorithm is one of the famous encryption
algorithms that uses a symmetric-key to change 64-bit of a
plain text into 64-bit of a cipher text, using 56-bit of the key
and 16 rounds. [8]. It is, now, considered as insecure for many
applications; this is mainly due to the size of key, which is too
small [9]. The work in [10] presents the AES algorithm as a
replacement for the DES algorithm as a standard for data
encryption. It is a symmetric-key algorithm that takes 128-bit
for the plain text and 128, 192, or 256-bit for the key, the
length of the key specifies the number of rounds in the
algorithm.

Finally, Manivannan and Sujarani [1] proposed efficient
database encryption techniques using the TSFS algorithm,
which is a symmetric-key algorithm. Its main features include
using transposition and substitution ciphers techniques that are
important in modern symmetric algorithms as they have
diffusion and confusion.

Also, it encrypts only the sensitive data, so, it limits the
added time for encryption and decryption operations. The
algorithm utilizes three keys and expands them into twelve sub-
keys using the key expansion technique to provide effective
security for the database. In order to improve the security, this

algorithm uses twelve rounds and two different keys in each
round.

However, TSFS algorithm applies only to alphanumeric
characters; it does not accept special characters or symbols.
More details about the TSFS algorithm is provided in [11],
which builds a system that generates different numbers of
secret keys based on the TSFS algorithm along with other
algorithms to ensure a high security level of encrypted data.

III. PROPSED ALGORITHM (ETSFS)

The main objective of this paper is to enhance the TSFS
algorithm [1] and accordingly to provide a high security to the
databases whilst limiting the added time cost for encryption
and decryption by encrypting sensitive data only. The ETSFS
algorithm can encrypt the data that consists of alphabetic
characters from A to Z, all numbers and the following symbols:
(*, -, ., /, :, @ and _). The ETSFS algorithm is a symmetric
encryption algorithm, meaning each transformation or process
must be invertible and have inverse operation that can cancel
its effect. The key also must be used in inverse order.

ETSFS algorithm uses four techniques of transformations,
which are transposition, substitution, folding and shifting. Fig.
1 presents the encryption algorithm, where the decryption
algorithm reverses the encryption algorithm. The following
sections describe the four techniques and contain the
algorithms in pseudo-code format to be easy to understand:

A. Transposition

Transposition transformation changes the location of the
data matrix elements by using diagonal transposition that reads
the data matrix in the route of zigzag diagonal starting from the
upper left corner after getting the data and pads it with *s if it is
less than 16 digits [1]. Fig. 2 shows the transposition process
when the entered data was: 6923@domain.Sa, where Fig. 3
shows the transposition algorithm in encryption side, then, Fig.
4 shows the transposition algorithm in decryption side.

Fig. 1. Encryption algorithm.

Algorithm encryption (String data,

 Array[12] keys)

Pre: data is plain text.

 keys is array that contains 12 4x4-key matrices.

Post: encryptedData is data after encrypting.

 Matrix[4,4] dataMatrix;

 String encryptedData;

 if (data length < 16)

 padd data by adding *'s;

 else if (data length > 16)

 cut the data after 16;

 end if
 dataMatrix = data;

key = expandKeys (keys);

 for (int i=0; i<12; i++)

 dataMatrix = transposition (dataMatrix);

 dataMatrix = substitution (dataMatrix, keys(i),

keys((i+1)mod 12));

 dataMatrix = folding (dataMatrix);
 dataMatrix = shifting (dataMatrix);

 end for

 encryptedData = dataMatrix;

 return encryptedData

End encryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

55 | P a g e

www.ijacsa.thesai.org

Fig. 2. Transposition example.

Fig. 3. Transposition algorithm.

Fig. 4. Inverse transposition algorithm.

B. Substitution

The second algorithm is substitution transformation. It
replaces one data matrix element with another by applying
certain function [1]. If the element represents an alphabetic
character, it then will be replaced with another character. If the
element represents a number, it will be replaced with a number,

and if it represents a symbol, it will be replaced with a symbol.
The encryption function [1] E for any given letter x is

 E(x) = (((k1+p) mod M +k2) mod M (1)

Where p is the plain matrix element, k1 and k2 are the keys
elements that have the same position of p, and M represents the
size of modulo operation. The ETSFS algorithm takes three
values for the modulus size instead of one value as in the TSFS
algorithm. The described substitution process in [1] has
confusion. Confusion happens if the data is composed of
alphabetic and numeric digits, and the modulus size (M) will be
26 for any digit, as illustrated in the next example. If one
element in the data was 4, k1=5, k2=5, M = 26, then the result
of substitution process is 14 as the paper presents. This result
causes two problems. The first problem, is that the length of the
data will be changed and increased; for example, when the plan
text size is 16 digits, the cipher text size will be 17 digits if one
element only changes, and that contradicts the TSFS
algorithm's feature. The second problem, since the inverse
operation decrypts the data digit by digit also, is that then it will
deal with each element in the cipher text individually (1 then
4). As a result, the decrypted data will be different from the
data that have been encrypted. Therefore, the ETSFS algorithm
gives M the following values: 26 if p is aliphatic, 10 if p is
numerical and 7 if p is symbolic. The decryption function [1] D
is:

 D(E(x)) = (((E(x) – k2) mod M) – k1) mod M (2)

Since most of the programming languages such as Java and
C++ deal with the modulus as the remainder of an integer
division, some of the results may have minus sign, and this will
create a problem because there is no data that have minus sign
representation. So, one more step has been added to the ETSFS
algorithm implementation to check if the result includes the
minus sign, and then apply:

 D(E(x)) = M - |D(E(x))| (3)

The following Fig. 5 shows the result of substitution. From
the same example in fig. 5, if we implemented the decryption
operation (2) on the first element, the result would be -4, so the
ETSFS algorithm applies function (3) to get the correct result,
which is 6. Fig. 6 and 7 show the substitution encryption
algorithm and its inverse respectively.

Fig. 5. Substitution example.

Key1 Key2

Algorithm inverseTransposition (Matrix data)

Pre: data is 4x4 matrix, which contains the data should be decrypted.

Post: data is data after retrieving symbols location.

 Matrix temp;

 temp[0,0] = data[0,0];

 temp[0,1] = data[0,1];

 temp[0,2] = data[1,1];

 temp[0,3] = data[1,2];

 temp[1,0] = data[0,2];

 temp[1,1] = data[1,0];
 temp[1,2] = data[1,3];

 temp[1,3] = data[3,0];

 temp[2,0] = data[0,3];

 temp[2,1] = data[2,0];

 temp[2,2] = data[2,3];

 temp[2,3] = data[3,1];

 temp[3,0] = data[2,1];

 temp[3,1] = data[2,2];
 temp[3,2] = data[3,2];

 temp[3,3] = data[3,3];

 data = temp;

return data;

End inverseTransposition

Algorithm transposition (Matrix data)

Pre: data is 4x4 matrix that contains the data should be encrypted.

Post: data is data after changing symbols location.

 Matrix temp;

 temp[0,0] = data[0,0];

 temp[0,1] = data[0,1];

 temp[0,2] = data[1,0];

 temp[0,3] = data[2,0];

 temp[1,0] = data[1,1];

 temp[1,1] = data[0,2];
 temp[1,2] = data[0,3];

 temp[1,3] = data[1,2];

 temp[2,0] = data[2,1];

 temp[2,1] = data[3,0];

 temp[2,2] = data[3,1];

 temp[2,3] = data[2,2];

 temp[3,0] = data[1,3];
 temp[3,1] = data[2,3];

 temp[3,2] = data[3,2];

 temp[3,3] = data[3,3];

data = temp;

 return data;

End transposition

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

56 | P a g e

www.ijacsa.thesai.org

Fig. 6. Substitution algorithm.

Fig. 7. Inverse substitution algorithm.

C. Folding

The third algorithm is folding transformation. It shuffles
one of the data matrix elements with another in the same
entered data, like a paper fold. The data matrix is folded
horizontally, vertically and diagonally [1]. The horizontal
folding is done by exchanging the first row with the last row.
The vertical one is done by exchanging the first column with
the last column. The diagonal fold is done by exchanging the
inner cells, the upper-left cell with the down-right cell and the
upper-right cell with the down-left cell. Fig. 8 shows the
example after folding, while Fig. 9 shows the folding
encryption algorithm. Next, Fig. 10 shows the folding
decryption algorithm.

Fig. 8. Folding example.

Fig. 9. Folding algorithm.

Fig. 10. Inverse folding algorithm.

D. Shifting

The last part of the algorithm is the shifting transformation,
which provides a simple way to encrypt using a 16-array
element of numeric digits to exchange a letter with another.
Each element of the array must contain the numeric
representation of the data. Each digit must appear only once in

Algorithm inverseFolding (Matrix data)

Pre: data is 4x4 matrix of data get from inverse substitution technique.

Post: data is data matrix after applying inverse folding technique.

 Matrix temp;

 temp [0,0] = data[3,3];

 temp [0,1] = data[3,1];
 temp [0,2] = data[3,2];

 temp [0,3] = data[3,0];

 temp [1,0] = data[1,3];

 temp [1,1] = data[2,2];

 temp [1,2] = data[2,1];

 temp [1,3] = data[1,0];

 temp [2,0] = data[2,3];
 temp [2,1] = data[1,2];

 temp [2,2] = data[1,1];

 temp [2,3] = data[2,0];

 temp [3,0] = data[0,3];

 temp [3,1] = data[0,1];

 temp [3,2] = data[0,2];

 temp [3,3] = data[0,0];

 data = temp;
 return data;

End inverseFolding

Algorithm folding (Matrix data)

Pre: data is 4x4 matrix of data get from substitution technique.

Post: data is data matrix after applying folding technique.

 Matrix temp;

 temp[0,0] = data[3,3];

 temp[0,1] = data[3,1];

 temp[0,2] = data[3,2];

 temp[0,3] = data[3,0];

 temp[1,0] = data[1,3];

 temp[1,1] = data[2,2];
 temp[1,2] = data[2,1];

 temp[1,3] = data[1,0];

 temp[2,0] = data[2,3];

 temp[2,1] = data[1,2];

 temp[2,2] = data[1,1];

 temp[2,3] = data[2,0];

 temp[3,0] = data[0,3];

 temp[3,1] = data[0,1];
 temp[3,2] = data[0,2];

 temp[3,3] = data[0,0];

 data = temp;

 return data;

End folding

Algorithm inverseSubstitution (Matrix data,

 Matrix key1,

 Matrix key2)

Pre: data is 4x4 matrix of data get from inverse Transposition technique.
 key1 and key2 4x4 matrix used to decrypt data.

Post: data is data after retrieving changes.

 Matrix temp;

 int M;

 for (int i=0; i<4; i++)

 for (int j=0; j<4; j++)
 if (data[i,j] is alphabet)

 M=26;

 else if (data[i,j] is number)

 M=10;

 else if (data[i,j] is symbol)

 M=7;

 end if

 num=(numric(data[i,j])-k2[i,j]-k1[i,j]) mod M
 if (num<0)

 num = M - |num|

 end if

 end for

 end for

 data = temp;

 return data;

End inverseSubstitution

Algorithm substitution (Matrix data,

 Matrix key1,

 Matrix key2)

Pre: data is 4x4 matrix.

 key1 and key2 are 4x4 matrix used to encrypt data.

Post: data is data after applying substitution encryption method.

 Matrix temp;

 int M;
 for (int i=0; i<4; i++)

 for (int j=0; j<4; j++)

 if (data[i,j] is alphabet)

 M=26;

 else if (data[i,j] is number)

 M=10;

 else if (data[i,j] is symbol)
 M=7;

 end if

 temp[i,j]= (((k1[i,j]+ numric(data[i,j]) mod M)+k2[i,j]) mod M;

 end for

 end for

 data = temp;

 return data;

End substitution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

57 | P a g e

www.ijacsa.thesai.org

each element of the array. The digits can appear in any order
[1]. In shifting process, the algorithm replaces each element in
the data matrix by its position within its array element. The
ETSFS algorithm uses four 16-arrays instead of one array as
the TSFS algorithm uses, because the described shifting
process in [1] has confusion. For example, if an element in the
plain text is 4 and its position within the array is 15, then the
shifting process in [1] returns 15, which is causing the same
two problems that were described in substitution
transformation. So, the ETSFS algorithm separates each type
from other. The ETSFS algorithm uses four 16-arrays, one for
numeric, one for symbols, but because it is difficult to
enumerate all symbols in this project; the suggested ETSFS
algorithm considers only two types of symbols. Symbols that
are used in emails (-, ., @, _) and symbols that are used in IP
addresses (/, :). The last two 16-arrays are used for alphabetic,
where one for capital letters and the other for small letters. We
used that to enhance TSFS algorithm and make it is sensitive
for the type of letter. The process illustrated in Fig. 11. Fig. 12
and 13 show the shifting encryption algorithm and its inverse
respectively.

The previous encryption process is considered as the result
of the first round of the ETSFS algorithm. The output of the
first round goes as an input to the second round and the output
the second round goes as an input to the third round. This
process continues up to the 12th round and the output of this
round is the cipher text of the given plain text and that cipher
text is stored in the database. For keys, in each round, it selects
two keys for encryption. In encryption, each round (i) selects
the key (i) and the key (i+1), at round 12 it selects key (12) and
key (1). In decryption, the keys are selected in reverse order.
The Fig. 14 shows the steps of expand keys as [1] suggested.

IV. IMPLEMENTATION

A Java-based project has been built to test the ETSFS
algorithm correctness and performance. The implementation
uses three-tier architecture, as represented in Fig. 15. The three-
tier separate the functions into interface, processing and data
management functions. The multi-tier architecture allows
developers to create flexible and reusable applications. In
addition, this architecture provides "encryption as a service” to
facilitate the interaction between the interface and the
encryption/decryption model, and makes the process of
encryption or decryption transparent to application [2]. In this
paper, the interface-tire is used to enter and retrieve data from
the database. The processing-tier is used to garner the data or
query from the interface-tier and then to complete the
encryption or decryption processes to apply the query over the
secure database. It stores the keys in a separate file instead of
storing them in the database to increase the security. Finally, a
data management-tire stores the data.

Depending on the suggested architecture, the
implementation structure was developed as shown in Fig. 16.
This Figure illustrates all classes and their connections with
each other. It shows the attributes of each class and functions
headers. The classes include:

A. Maic Class

In general, at the beginning, the user can enter the
information that will be encrypted. In this implementation, the
main class reads data from a file to obtain equivalent results
when measuring the performance. The interface part is
responsible for taking the data from file and sending it to the
translator part to save it in the database. Another function for
the interface is to retrieve the data form the database by using
the translator part.

I/P Array Element O/P

/ 0 1 2 3 4 5 6 /

: 1 2 3 4 5 6 0 /

* 2 3 4 5 6 0 1 @

v 3 4 5 6 7 8 9 10 11 12 13 14 15 … 23 24 25 0 1 2 s

d 4 5 6 7 8 9 10 11 12 13 14 15 16 … 24 25 0 1 2 3 z

b 5 6 7 8 9 10 11 12 13 14 15 16 … 24 25 0 1 2 3 4 w

U 6 7 8 9 10 11 12 13 14 15 16 … 24 25 0 1 2 3 4 5 O

. . .

. . .

4 1 5 4 6 0 7 2 8 3 9 2

Fig. 11. Shifting example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

58 | P a g e

www.ijacsa.thesai.org

Fig. 12. Shifting algorithm.

Fig. 13. Inverse shifting algorithm.

Fig. 14. Expand keys algorithm.

Fig. 15. Implementation architecture.

Algorithm expandKeys (String [3] initialKeys)

Pre: initialKeys contains of Key1, Key2 and Key3 as initial keys.

Post: expandedKeys is array of size 12, contains 12 expanded keys Matrcis.

 Matrix[12] expandedKeys;

 Matrix[4,4] tempKey;

 for (int i=0; i<3; i++)

 if (initialKeys[i] length < 16)

 padd data by adding 0's;

 else if (initialKeys[i] length > 16)

 cut the data after 16;
 end if

 change initialKeys to number based on the position in alphabets a-z;

 tempKey = initialKeys[i];

 for (int j=0; j<4; i++)

 for (int h=0; h<4; i++)

 expandedKeys [j+ix4].row(h) = tempKey.row(h) after

shifting by (j+h)%4 times;
 end for

 end for

 end for

 return expandedKeys;

End expandKeys

Algorithm inverseShifting (Matrix data,

 Matrix arrayNumber,

 Matrix arrayAlpha,

 Matrix arraySymbol)

Pre: data is 4x4 matrix of data get from inverse folding technique.
 arrayNumber is 16x10 dimension array used for numeric data.

 arrayAlpha is 16x26 dimension array used for alphabetic data.

 arraySymbol is 16x7 dimension array used for symbol data.

Post: data is data matrix after applying inverse shifting technique.

 Matrix temp;

 char charOfData;

 int index;
 loop from i=0 to i=4 do

 loop from j=0 to j=4 do

 charOfData = data[i,j];

 if (charOfData is number)

 index = the order of charOfData number in number order;

 temp [i,j] = arrayNumber[(3xi)+i+j][index];

 elseIf (charOfData is alphabet)
 index = the order of charOfData alphabet in alphabetical

order;

 temp [i,j] = arrayAlpha[(3xi)+i+j][index];

 else

 index = the order of charOfData symbol in symbol order;

 temp [i,j] = arraySymbol[(3xi)+i+j][index];

 end if

 end loop
 end loop

 data = temp;

 return data;

End inverseShifting

Algorithm shifting (Matrix data,

 MAtrix arrayNumber,

 Matrix arrayAlpha,

 Matrix arraySymbol)

Pre: data is 4x4 matrix of data gets from folding technique.
 arrayNumber is 16x10 dimension array used for numeric data.

 arrayAlpha is 16x26 dimension array used for alphabetic data.

 arraySymbol is 16x7 dimension array used for symbol data.

Post: data is data matrix after applying shifting technique.

 Matrix temp;

 char charOfData;

 loop from i=0 to i=3 do
 loop from j=0 to j=3 do

 charOfData = data[i,j];

 if (charOfData is number)

 loop from k=0 to k=9 do

 if (arrayNumber[(3xi)+i+j][k]== charOfData)

 temp[i,j] = k;

 break;
 end if

 end loop

 elseIf (charOfData is alphabet)

 loop from k=0 to k=25 do

 if (arrayAlpha[(3xi)+i+j][k]== charOfData)

 temp[i,j] = Alpha that have order (k);

 end if
 end loop

 else

 loop from k=0 to k=6 do

 if (arraySymbol[(3xi)+i+j][k]== charOfData)

 temp[i,j] = Symbol that have order (k);

 end if

 end loop
 end if

 end loop

 end loop

 data = temp;

 return data;

End shifting

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

59 | P a g e

www.ijacsa.thesai.org

Fig. 16. Implementation UML diagram.

B. Translator Class

The middle part contains three parts. One part is used for
keys; the other one, which is the translator, is used to deal with
the database, and the last part is used for encryption/decryption
operations. During the experiment, the translator class receives
the data from the interface part by the SaveInDatabase()
method, and draws a connection with the database so as to
apply insert query in the database after encrypting the received
data. Here the function depended on the application and the
table used in the database. We used one table named "person".
It contains four columns: name, phone, mail and job. The first
three columns contained sensitive data. So, SaveInDatabase()
method receives four data and encrypts the first three data by
using the encryption/decryption (ED) class, then applies the
insert query to add this data into the database.

Also, the translator has another method used to apply the
select query from the database. In this project, we focused only
on the encryption/decryption algorithms rather than how the
query should be translated or mapped to a query that can be
applied on the encrypted database. So, we just used two direct
specific select queries for selecting the data, one for retrieving
the complete table and the other for selecting a query
depending on a condition which is the information of a person
how has specific name. After retrieving the data from the
database, the translator class decrypts it by using the ED class,
and then printed it in the screen. In the second query, before the
method does select operation from the database, this method
must encrypt the data that is used in the condition by using the
ED class to do the comparison operations over encrypted data.

C. Encryption/Decryption Class

This class is the most important class for this work. After
the ED class receives the data from the translator class, it
checks on some of points. It checks the length. The length must
be equal to 16; if it is less than 16, the ED class pads the data

with (*) symbol up to 16 digits. In this project, we choose the
(*) symbol for padding because it is not used in the data. If it is
more than 16, the ED class deducts of the excess. After that,
the ED class changes the data form to 4x4 array form to apply
the algorithm on an array form. Then the ED class applies the
same following scenario twelve times. First, it applies
transposition transformation and changes the location of the
elements in 4x4 data array by using diagonal transposition, and
the result array of this step considers as input to the second
step. In the second step, the ED class applies substitution
transformation and replaces one data with another by using two
keys in each round. Each element in the data array is one of
three types: number, alphabet or symbol, and each of them has
different modulo. If the element is alphabet or symbol, first it
changes to a number based on the position in the alphabets a-z
(a-0, b-1, ... z-25), then the ED class applies the equation of
encryption on this number. We selected the symbols’ positions
as following (*, -, ., /, :, @, _) depended on precedence in
ASCII codes. The result array of this step considers as input for
the third step. In the third step, the ED class applies folding
transformation and shuffles each element in 4x4 data array with
another one in the same array, and the result array of this step
considers as input for the fourth step. Fourth step, the ED class
applies shifting transformation and replaces each digit of data
array by its position within its array element. Each element in
the data array is one of three types: number, alphabet or
symbol, and each of them have different arrays set. There are
four defined 16-arrays, one for numeric, two for alphabetic
where one for capital letter and other one for small letter and
last array for symbols. If the element in the data array is
alphabet or symbol, first the ED class changes the element into
a number based on the position in the alphabets a-z (a-0, b-1,
... z-25), then the ED class replaces the number with its
position within its array set. The result array of this step
considers as input for the first step again in the next round.
After the twelve rounds finish and the data encrypted, the ED
class sends the result to the translator part to store it in the
database.

Also, the ED class has other function is responsible of
decryption operations. This function receives the encrypted
data from the translator part. The ED class first prepares the
data into 4x4 array form to apply the algorithm on array form.
After that, it sends the data array to the decryption methods in
reverse sequence, started with inverse shifting, inverse folding,
inverse substitution then inverse transposition. All of these
methods follow the same scenario that applies in encrypted part
but with inverse operations. This scenario also applies twelve
times, the output of the each round considered as input to the
second round. After the twelve rounds finish and the data
decrypted, the ED class sends the result to the translator class.

D. Key Class

Key class reads three initial keys from the file. Then it
checks on some points. Checking on the length, the length must
be equal to 16. If it is less than 16, key class pads the key with
0s. If it is more than 16, key class deducts off excess. Then key
class converts all digit of the keys to numbers based on position
in the alphabets a-z (a-0, b-1, ... z-25). After that, it changes
the keys form to 4x4 array form to apply the operations on
array form.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

60 | P a g e

www.ijacsa.thesai.org

After that, the keys are expanded based on shifting the rows
into twelve keys, where each key is expanded into four keys.
Each output key is stored in 4x4 array form, and the expanding
technique implements as the following: the first output key has
four rows where row 0 is not shifted, row 1 is shifted by one
time, row 2 is shifted two times and row 3 is shifted three
times. In the second output key, row 0 is shifted one time, row
1 is shifted 2 times, row 2 is shifted three times, and row 3 is
not shifted. In third output key, are row 0 is shifted two times,
row 1 is shifted three times, row 2 is not shifted and row 3 is
shifted one time. In the last output key, row 0 is shifted three
times, row 1 is not shifted, row 2 is shifted one time and row 3
is shifted two times.

V. COMPARATIVE STUDY

This section presents a comparative study between the DES
algorithm, the AES algorithm and the ETSFS algorithms. It
explains the experiment in order to evaluate their performance
to establish the best algorithm amongst all possible algorithms.
It then reports the results and discusses them.

The DES algorithm uses too short key length. Within the
rapid advances, DES is breakable, for example in 1998 the
Electronic Frontier Foundation built a DES Cracker for less
than $250,000 that can decode DES messages in less than a
week [12]. The AES algorithm is used as a standard for data
encryption. It is stronger and faster than the DES algorithm
[13]. DES and AES algorithms have open source code, and
they are supported by Java libraries.

A. Experiment Setup

 The experiment compared the ETSFS algorithm with
the DES and AES algorithms, which have open source code.
To test the algorithms, the following materials were used:

 Programming language: Java.

 Application platform: NetBeans IDE 6.9.1.

 Development: Java Development Kit (JDK) 1.6.

 Database management system: MySQL Server 5.6.

 Java external Library: Connector-java 5.1.23-bin.jar to
connect the java with MySQL server.

 Visual database design tool: MySQL Workbench 5.2
CE used for database design, modeling and SQL
development.

 Operating system: Windows Vista Home Premium, 32-
bit.

 Hardware computer: Dell XPS M1330 laptop, Intel(R)
Core(TM)2 Duo CPU T7300 2.00GHz and 3.00 GB for
RAM.

In the experiment, to obtain fixed and fair comparison
between the algorithms, same entered data and same functions
that are responsible for accessing the database were used in all
algorithms. Furthermore, each algorithm was tested with the
following data size: 100, 500, 1000, 1500 and 2000 rows. For
each size, the experiment was repeated three times and then the
average value for each timer was calculated to eliminate the

effect of the computer processing issues and insure near fair
real value.

B. Evaluation Metrics

Execution time (Second): The evaluation performance of
encryption/decryption processes conducted in terms of the
execution time of insert and select SQL queries. In this project,
we followed the same approach presented in [14] to calculate
the execution time. We used a timer to calculate the execution
time of the query from the beginning of its work until it
finishes successfully. Three timers were used in each algorithm
to calculate the execution times for three types of quires:

 Insert: We calculated the insertion execution time to
know how much time does the insertion operation
consumes with encryption processes. Insert query
example: INSERT INTO person VALUES (encrypted
name, encrypted phone, encrypted mail, job).

 Select all: To know how much time does the query take
to select all the rows and decrypt the encrypted fields
with decryption processes. Select all query example:
SELECT name, phone, mail, job FROM person.

 Select with condition: To know how much time the
query takes to encrypt the data in the condition, then
compare this data with the encrypted data inside the
database to retrieve the required data, and decrypt the
encrypted selected fields with decryption processes.
Select with condition query example: SELECT name,
phone, mail, job FROM person WHERE name =
encrypted name.

1) Database size (Kilobyte): One of the most important

factors to determine about the database is its overall size [15].

So, we used the database size criterion to compare the database

sizes between the three algorithms after storing the encrypted

data. We used it to know the impact of the encryption process

on the database overall size.

C. Results and Discussion

In this section, we stated the results of our experiments in
terms of execution time and database size aspects. For each
criterion, we presented the average values for each one of the
three different algorithms with different sizes of data. Also, we
interpreted the findings and results, and showed the
relationships among the algorithms.

1) Execution time:

 Insert queries execution time: First, Fig. 17 shows the
relationship between encryption time during insertion
the data in the database and the number of tuples for
each algorithm. In general, when the size of data
increases, the time also increases. From the results, it is
obvious that the AES algorithm consumes the longest
time for encrypting and the ETSFS algorithm consumes
the least time for that. The speed of the AES encryption
depends on the number of rounds and the key
generation in each time it does the encrypt function.
Also, each round in the AES algorithm needs round key
from the key expansion algorithm. So the AES
algorithm depends on the speed of the round key

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

61 | P a g e

www.ijacsa.thesai.org

generation [16]. In contrast, the ETSFS algorithm needs
the key generation only one time before doing the
encrypt function. That is mean the ETSFS algorithm has
the best execution performance when applying insert
queries that include encryption processes.

 Select all query execution time and select with
condition quires execution time: Fig. 18 shows the
relationship between decryption time during searching
in database with using a query to retrieve the complete
table and the number of tuples, and Fig. 19 shows the
relationship between decryption time but with using the
queries that depend on a condition and the number of
tuples for each algorithm. The DES algorithm consumes
least time when applying the select queries. The
instability of the relationship may occur owing to the
time taken in connecting and disconnecting the database
or file operations. Moreover, hardware issues may cause
inconsistent relations. The AES algorithm consumes
more time than the ETSFS algorithm for selecting
queries because in the AES algorithm, the decryption
module depends mainly on the key expansion module
[16]. Also, the execution of the query that retrieves the
complete table consumes little more time than those that
depend on the condition because the former retrieves
more tuples than the latter; this tuples need more
decryption operations.

2) Database Size: In term of storage, Fig. 20 shows the

relationships between the number of tuples and the size of the

database in kilobyte after storing the encrypted data with the

use of the three algorithms with different data sizes. Where the

data size increases, the difference is evident between the

algorithms. The results show that the ETSFS algorithm has

consumed the smallest space among other algorithms. This

happened because the size of the encrypted data in ETSFS

algorithm does not increase more so than the original size;

rather, it keeps the size as it is. However, AES and DES

algorithms extend the data size to multiple of 128-bit and 64-bit

respectively [12]. The AES algorithm needs largest storage

space to store the data, followed by DES algorithm, which

needs larger storage space than the ETSFS algorithm.

Fig. 17. The relationship between the insert operations execution time and the

number of inserted rows for the three algorithms.

The experiment proves that the ETSFS algorithm can
secure the data successfully when the data sets of the ETSFS
algorithm are increased, and also that the substitution and
shifting techniques are corrected. The insert queries execution
time is not affected because the algorithm encrypts the
sensitive data only, and the database size is not affected
because the algorithm does not increase the size of encrypted
data. In general, the improved performance comes without
compromising query processing time or database size.

Fig. 18. The relationship between the execution time of select all rows

operation and the number of rows for the three algorithms.

Fig. 19. The relationship between the execution time of select operations that

depend on condition and the number of rows in the database for the three

algorithms.

Fig. 20. The relationship between the database size after applying encryption

and the number of rows for the three algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

62 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION AND FUTURE WORK

Data-storing and exchanging between computers is growing
fast across the world. The security of this data has become an
important issue for the world. The best solution centred on
securing the data is using cryptography, along with other
methods. This paper proposes the enhancement of the TSFS
algorithm to support the encryption of special characters,
correct substitution process by providing more than one
modulo factor to differentiate between data types and prevent
increasing the data size, as well as correcting the shifting
process for the same reasons by providing four 16-arrays. The
experimental results have shown that the ETSFS algorithm
successfully encrypted important symbols, as well as
alphanumeric data. The improved performance comes without
compromising query processing time or database size. Using
well-established encryption algorithms as benchmarks, such as
DES and AES, the proposed ETSFS algorithm was shown to
have consumed the smallest space and encryption time
compared to the other algorithms.

Due to time constraints, it was difficult to cover all special
symbols in this paper; however, the ETSFS algorithm can be
extended to include other symbols with slight modification to
the encryption/decryption processes. For future work, it is
intended that this algorithm be improved so as to accommodate
any size of data, rather than only 16 digits. Furthermore, it is
intended to further evaluate the security of ETSFS algorithm by
establishing the number of operations and the time attackers
need to recover the keys and accordingly hack the encrypted
data.

REFERENCES

[1] D. Manivannan, R .Sujarani, Light weight and secure database
encryption using TSFS algorithm, Proceedings of the International
Conference on Computing Communication and Networking
Technologies, 2010, pp. 1-7.

[2] L. Liu, J. Gai, A new lightweight database encryption scheme
transparent to applications, Proceedings of the 6th IEEE International
Conference on Industrial Informatics, 2008, pp.135-140.

[3] L. Bouganim, P. Puncheral, Chip-Secured data access: Confidential data
on untrusted servers, Proceedings of the 28th International Conference
on Very Large Databases, 2002, pp. 131-142.

[4] Z. Yang, S. Sesay, J. Chen, D. Xu, A Secure Database Encryption
Scheme, Proceedings of Consumer Communications and Networking
Conference, 2005, pp. 49-53.

[5] K. Kaur, K. Dhindsa, G. Singh, Numeric to numeric encryption: using
3KDEC algorithm, Proceedings of IEEE International Conference on
Advance Computing, 2009, pp. 1501-1505.

[6] A. Rakesh, K. Jerry, S. Ramakrishnan, Order preserving encryption for
numeric data, Proceedings of ACM SIGMOD International Conference
on Management of Data, 2004, pp.563-574.

[7] M. Hwang, W. Yangb, Multilevel secure database encryption with
subkeys, Data and Knowledge Engineering 22 (1997) 117-131.

[8] Z.Yong-Xia, The Technology of Database Encryption, Proceedings of
the 2nd International Conference on MultiMedia and Information
Technology, 2010, pp. 268-270.

[9] S. Bhatnagar, Securing Data-At-Rest, Literature by Tata Consultancy
Services.

[10] I. Widiasari, Combining advanced encryption standard (AES) and one
time pad (OPT) encryption for data security, The International Journal of
Computer Applications 57 (2012) 1-8.

[11] M. Raj, M. Kumar, D. Manivannan, A. Umamakeswari, Design and
development of secret session key generation using embedded crypto
device-ARM-LPC 2148, Journal of Artificial Intelligence 6 (2013) 134-
144.

[12] H. Alanazi, B. Zaidan, A. Zaidan, H. Jalab, M. Shabbir, Y. Al-Nabhani.
New comparative study between DES, 3DES and AES within nine
factors, Journal of Computing 2 (2010) 152-157.

[13] A. Mousa, E. Nigm, S. El-Rabaie, O. Faragallah, Query processing
performance on encrypted databases by using the REA algorithm, The
International Journal of Network Security 14 (2012) 280-288.

[14] A. Sterbenz, P. Lipp, Performance of the AES candidate algorithms in
java, Proceedings of the AES Candidate Conference, 2000, pp.161-165.

[15] Oracle, Siebel Performance Tuning Guide, Available from:
http://docs.oracle.com/cd/E14004_01/books/PDF/PerformTun.pdf 2012.

[16] T. Subashri, R. Arunachalam, B. Kumar, V. Vaidehi, Pipelining
architecture of AES encryption and key generation with search based
memory, The International journal of VLSI design & communication
systems (VLSICS) 1 (2010) 1-13.

