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Abstract—Hydration tracking technologies are a promising 

tool for improving health outcomes across a variety of 

populations. As a non-wearable solution that is reconfigurable 

across containers, bottle-attachable inertial measurement unit 

(IMU) sensors offer numerous advantages versus alternative 

tracking approaches. This paper proposes a novel dynamic 

temporal partitioning and classification algorithm for spotting 

drinks within the streaming data generated by such sensors. By 

exploiting the distinguishing characteristics of the container’s 

estimated inclination during drinking, the algorithm identifies 

candidate drink intervals for subsequent classification using a 

Threshold-Merge-Discard framework. The proposed approach is 

benchmarked against a slight variation of a previously 

introduced sliding window classifier for a series of experiments 

replicating the intended use case of the device. The new 

algorithm is shown to increase the true-positive detection rate by 

23.7%, while reducing the number of required classification 

operations by more than an order of magnitude. 

Keywords—Hydration management; online activity 

classification; dynamic time windowing; inertial measurement unit 

sensors 

I. INTRODUCTION 

Susceptibility to dehydration increases considerably with 
age due to a variety of factors [1]. Fluid consumption may be 
decreased due to reduced osmoreceptor sensitivity, dysphagia, 
cognitive impairment, as well as mobility restrictions. Reduced 
capacity of the kidneys to concentrate urine, polypharmacy, 
along with voluntary reductions in consumption due to 
incontinence further exacerbate the problem [2]. Estimates 
suggest that 20% to 30% of older adults are dehydrated, 
significantly increasing their risk of mortality, morbidity, and 
disability [3]. Deterioration of regulatory mechanisms may also 
result in hyponatremia, which has been associated with 
negative health outcomes such as falls  [4]. Further 
complicating the issue, dehydration amongst the elderly is 
often misdiagnosed in clinical settings [5]. 

The large-scale ramifications of elderly dehydration are 
substantial, especially in developed countries with aging 
populations [6]. In the United States, Medicaid expenditures 
associated with hospital admissions for dehydration were 
estimated at $5.5 billion in 2004 [7]. Recent evidence suggests 
that participants dehydrated at hospital admission have a six 
times greater chance of dying during their stay versus fully-
hydrated individuals [8]. Dehydration is especially prevalent 
amongst residents of long-term care (LTC) facilities, thereby 
increasing the burden on limited caregiver resources [9]. 

Various interventions aimed at improving hydration 
amongst elderly individuals have been explored within in-
patient settings. While most report positive outcomes [10], 
reliance upon manual monitoring and documentation of intake 
greatly impacts scalability and extension outside of a clinical 
environment. This latter limitation is especially concerning, as 
dehydration-related hospital readmissions are common [11], 
[12]. Moreover, visual estimates of consumption have been 
shown to overstate fluid intake [13]. 

Multiple technologies have been demonstrated for 
automated fluid consumption tracking. Approaches include 
containers with embedded sensing functionality (often denoted 
as smart-containers) [14], wearable [15], and video-based 
solutions [16]. Unfortunately, each class of approach is 
characterized by some limitation with respect to deployment 
amongst elderly individuals, especially in LTC facilities. 
Namely, economic constraints and market availability may 
limit the ability to procure a sufficient number and variety of 
augmented drinking containers. Furthermore, limited dexterity 
amongst the target population may prohibit the utilization of 
wearable solutions, while video approaches may be opposed on 
the basis of intrusiveness. 

We have previously introduced an alternative solution for 
real-time hydration tracking using an attachable inertial 
measurement unit (IMU) sensor as shown in Fig. 1 [17]. This 
architecture offers similar advantages to traditional smart 
bottles with respect to privacy and usability, while providing 
reconfigurability across multiple drinking containers. 
Preliminary experiments demonstrated the ability of the sensor 
to identify drink events using a static sliding window (SSW) 
classifier. For a 30 second window duration with 50% overlap, 
an online classification accuracy of 99% was achieved for the 
previously gathered data set. 

While promising as an initial proof-of-concept, the 
excessive sliding window duration considered in [17] 
inherently limits the ability to resolve drinks which are closely-
separated in time, thereby limiting pragmatic viability without 
additional post-processing modifications. While such concerns 
may be partially addressed through reduction of window 
duration, SSW paradigms are still characterized by many 
known disadvantages, including inherent processing 
inefficiencies for sporadically occurring events, edge effects at 
event boundaries, and limited spotting precision for variable-
duration events. 

The research proposed herein addresses these deficiencies 
through the development and verification of a dynamic 
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temporal partitioning strategy. Namely, we perform pre-
classification segmentation of the sensor data stream to identify 
candidate drink event intervals according to their unique 
inclination morphology. Candidate intervals are identified 
using a Threshold-Merge-Discard (TMD) algorithm. As the 
partitioning algorithm inherently discriminates against most 
confounding activities occurring during daily use (i.e.: 
transport, maintenance, etc.), the classification layer may be 
targeted for distinguishing drink events against actions with 
similar kinematics (i.e.: discharging of excess water, etc.). We 
verify our proposed algorithm using a newly collected data set 
intended to assess spotting performance for closely spaced 
drinks interleaved amongst typical daily living activities. 

The primary contribution of this manuscript is the 
development and verification of the aforementioned two-stage 
temporal partitioning and classification algorithm. The 
algorithm is demonstrated to improve true-positive detection 
rate while dramatically reducing the number of required 
classifier operations versus an SSW classifier. Moreover, 
preliminary analysis suggests that localization error is also 
reduced. The effect of improved spotting localization on sip 
volume estimation will be explored in future work. 

While the proposed bottle-attachable sensor offers a unique 
value proposition for the aging population as previously 
discussed, many core advantages (i.e.: reconfigurability across 
multiple containers, etc.) are broadly appealing.  Moreover, the 
general strategies described in this manuscript for spotting 
sporadically occurring events of variable duration are of 
interest in a variety of online activity classification 
applications. 

The remainder of the manuscript begins by providing a 
limited review of relevant work in the literature. Namely, we 
describe alternative hydration sensing architectures, as well as 
existing techniques for spotting variable-duration events within 
streaming sensor data. Next, details regarding experimental 
methods, including the employed hardware architecture, 
experimental script design, and analysis techniques are 
presented. The Results section provides benchmarking versus a 
slight variation of our previously considered SSW classifier. 
The manuscript concludes with a summary of our findings, 
along with a discussion of future research objectives. 

II. RELATED WORK 

A. Smart Hydration Tracking Solutions 

Numerous hydration management technologies have been 
proposed in both the literature and commercial marketplace. 
While complete solutions are inherently complex cyber-
physical systems, which must be cognizant of individual 
hydration needs, provide appropriate reminders, etc., this 
review focuses solely on the enabling sensing mechanisms for 
drink detection and volume estimation. As shown in the 
remainder of this section, many different sensing modalities 
have been considered for this application. 

Solutions embedding sensing functionality within a 
drinking container are typically referred to as augmented or 
smart-containers. Various sensors have been proposed to 
enable sip detection and volume estimation in these products. 
Classic approaches perform direct measurement of the current 

fluid amount using either pressure [18] or level sensors [19]. 
Alternatively, bottles with embedded devices for measuring the 
exiting flow rate have also been proposed [20]. More recent 
approaches place IMU sensors in either the structure or cap of 
the drinking vessel, and estimate sip volume as a function of 
bottle inclination. Suggestions for extending the utility of IMU-
embedded bottles for alternative applications of benefit, such 
as activity tracking, have been documented [21]. With respect 
to our proposed approach, smart bottle solutions limit tracking 
to a single container. Moreover, by attaching a sensor to the 
exterior of the bottle, our approach offers a dry solution, 
thereby relieving potential durability concerns. 

To address the restrictiveness imposed by augmented 
containers, various alternative techniques have been explored. 
For purposes of this review, these are organized as wearable, 
nearable, and contactless solutions. Amongst wearables, Amft 
and Tröster identified drinking events using a body sensor 
network consisting of IMUs placed on the upper limbs, an ear 
microphone, and an EMG and microphone combination 
configured in a throat collar [22]. Additional networks utilizing 
a variety of wearable inertial and acoustic sensors have also 
been demonstrated [23], [24]. While multi-sensor collection 
systems may be feasible for research applications, their 
complexity and restrictiveness limit practical viability versus 
our single sensor solution. 

Subsequent work has alleviated the restrictiveness of 
multiple sensors, isolating functionality within a single 
wearable device. For example, Amft et al. used a single wrist-
mounted IMU to spot drink events amongst daily living 
activities. This work also demonstrated the ability to 
discriminate between container types and fluid levels [25]. 
Most recently, Hamatani et al. [15] utilized the IMU sensors 
embedded within a Microsoft smart watch to spot and partition 
drink events into so-called microevents (lifting, drinking from, 
and releasing the bottle), and estimate drink volume. While 
wearable approaches are appropriate for many users, they may 
be excessively cumbersome for some individuals, including 
persons with limited dexterity and other physical limitations. 

 

Fig. 1. Side and Back View of Sensor Attached to Bottle. 
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Amongst contactless solutions, Chua et al. used a Haar-like 
feature set to identify drinking events by identifying the 
gripping posture of the hand through image processing [26]. 
Ienaga et al. used features related to joint position estimated 
using a Kinect sensor to demonstrate sip recognition for service 
robotic applications [27].  Both approaches are characterized 
by the typical privacy concerns associated with deploying 
video sensors in daily living environments. Chiu et al. 
proposed estimating fill level using a phone camera placed 
adjacent to a drink container in a custom attachment, with 
temporal partitioning performed by fusing information from 
the embedded accelerometer [28]. In addition to the general 
privacy concerns associated with video collection, this method 
is also disadvantaged through its requirement of an optically 
transparent container, along with utilization of a custom 
apparatus to configure the phone in the required position. 

Numerous nearable sensors have also been explored for 
hydration tracking. Proposals include integrating sensing 
functionality into areas where drinking containers are placed, 
such as coasters [29], [30]. Alternatively, container-attachable 
sensors, including the current work, have been demonstrated. 
While alternative attachable sensing modalities have been 
considered, such as RFID [31], the direct kinematic 
measurements afforded through IMU-based sensing allows for 
more accurate modeling of the governing fluid dynamics, 
thereby potentially aiding in sip volume estimation. 

B. Temporal Partitioning of Streaming Sensor Data for 

Activity Recognition 

While the literature applying IMU sensors for human 
activity recognition (AR) is well-established [32], the problem 
of spotting activities within streaming sensor data remains an 
area of active interest. This problem is distinguished from more 
fundamental work where classification is performed on pre-
segmented data [33]. As even this subset of work is of 
considerable breadth, this section attempts only to provide a 
broad taxonomy of temporal partitioning approaches 
previously considered in the literature. 

Static sliding window (SSW) techniques, in which 
streaming data is partitioned into fixed length intervals (W) of 
pre-defined overlap (p), have been heavily explored for online 
AR [34-36]. This approach offers simplicity on both a 
conceptual and implementation level. Algorithm parameters 
are typically chosen using application-specific empirical data. 
For example, Tapia et al. set the static window duration at half 
the average of the shortest event duration observed, thereby 
ensuring sufficient temporal spotting resolution [37]. Beyond 
application-specific considerations, windowing parameters 
should also be considered in conjunction with classifier design 
decisions, especially for methodologies employing hand-
engineered feature spaces. 

SSW temporal partitioning suffers from many 
disadvantages, including 1) inherent inefficiencies for 
scenarios requiring the spotting of sporadically occurring short-
duration events, such as drinks, 2) performance challenges for 
situations where the window encompasses signals from 
multiple activities of interest, which may occur at both event 
boundaries, along with cases where the window duration 
exceeds the event duration, and 3) challenges for scenarios 

where the window duration is less than the event duration. 
Visualizations of the segmentation cases described in 2) and 
3) are shown in Fig. 2. 

With respect to 2), the influence of window length on 
classification errors for fixed partitioning frameworks has been 
explored in the literature [38]. The coupling between the 
construction of the feature space and window parameters was 
investigated in [39], with adaptive selection of features and 
window parameters on a per-activity basis yielding optimal 
performance. As our work is targeted for the spotting of drinks, 
which may be highly sporadic and of variable duration, static 
windowing is disadvantaged relative to the dynamic 
partitioning approach proposed within this manuscript. 

To address the limitations of SSW segmentation, a variety 
of adaptive approaches have been explored. For example, 
Laguna et al. identified window boundaries using sensor state 
changes (RFID and reed switches), thereby yielding event-
specific dynamic window durations for in-home daily living 
activities [40]. As this approach requires discrete state-based 
sensor outputs to trigger event boundaries, it is not directly 
applicable for our application. 

Various other techniques which dynamically segment 
streaming data according to some event-specific rule have been 
explored. For example, Junker et al. [41] used the sliding 
window and bottom-up algorithm, originally proposed by 
Keogh et al. [42], to partition estimates of the pitch and roll of 
the lower arm approximated by IMU sensors. While such 
complexity in partitioning may be mandated for wearable 
applications where multiple activities of interest exhibit similar 
signatures, the differentiation in morphology between the 
majority of our events of interest, as emphasized in Fig. 3., 
renders such complexity unnecessary for the current 
application. More simplistic threshold-based partitioning 
approaches have been suggested for both wearable [43], and 
vision-based [44] AR frameworks. Our work is distinguished 
from these in both sensor placement and application, along 
with the utilization of multiple post-thresholding qualifiers to 
further improve the efficiency and specificity of the 
partitioning process. 

 

Fig. 2. Disadvantages of Static Sliding Window Architecture. 
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Alternative partitioning approaches have employed 
domain-specific sensor fusion. For example, Luckowicz et al. 
used acoustic intensities to segment accelerometer outputs for 
tracking assembly-related activities in a wood shop [45]. In 
relation to the current application, utilization of additional 
devices, such as a light sensor to indicate opening of a lid, have 
been proposed for providing temporal drink event markers 
[14]. As these and similar techniques require additional 
hardware, they are not suitable for integration within our 
proposed lightweight and retrofittable solution. 

III. METHODS 

A. Hardware and Pre-Processing 

A wireless sensor network containing three six degree-of-
freedom IMU sensors was used in all data collections. Each 
IMU node contains both a triaxial accelerometer (Analog 
Devices ADXL345), gyroscope (InvenSense IMU-3000), and 
IRIS Mote module. The specific configuration of each node 
during the various collections performed is provided in the 
appropriate forthcoming subsections. Only the accelerometer 
signal is used in the current work, with processing of the 
gyroscope signal targeted for future research. 

Data is transmitted from each node to a MEMSIC IRIS 
base station through an 802.15.4 wireless link, which is 
interfaced to a PC through USB for subsequent data storage. 
Data was polled from the sensor nodes in a round-robin fashion 

at a target sampling interval of 50 ms per node. All processing 
was performed using MATLAB. For all configurations in 
which a node was connected to the bottle, the relationship 
between the local sensor coordinate frame and bottle geometry 
is as follows: 1) the positive x-component of the sensor was 
aligned vertically along the bottle’s surface, yielding a static 
output value corresponding to the Earth’s gravitational constant 
when placed vertically on a surface (i.e.:      ̂ ,  and 2) the 
y and z-components were oriented parallel and normal to the 
bottle’s surface, with sign convention defined according to a 
traditional right-handed framework. A visualization of the 
sensor coordinate axes was provided in Fig. 1. It should be 
noted that while care was taken to maintain the stated 
orientation during all trials, variations may have occurred 
during the experiments as part of the handling process. 

Each accelerometer output was initially smoothed using a 
2-sample moving average filter, and subsequently resampled 
using MATLAB’s resample function to account for variability 
in the base station polling interval. After conditioning, the 
inclination angle of the bottle was estimated under the 
commonly employed assumption of minimal dynamic 

acceleration as specified in (1), where    denotes the     

component of the accelerometer output. 

 ̂  
√  

    
 

  
              (1) 

 

Fig. 3. Sample Realizations of Various Activities Considered. 
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B. Data Collecitons 

1) Overview: Experiments were designed to mimic the 

intended use case of the device. The following general activity 

classes were identified for consideration: 1) maintenance 

activities (i.e.: discharging excess fluid, washing, etc.), 

2) transport activities (i.e.: carrying in-hand, etc.), 3) use-base 

handling (drinking, fidgeting, etc.), and 4) stationary 

placement. While the detachable nature of the sensor would 

ideally result in the removal of the device during maintenance 

activities, these were included for all current analysis. 

Experiments were conducted by multiple participants to 
assess inter-individual variability in both handling and 
drinking style. Participants were directed to perform each 
action according to their own personal preferences. The data 
collection was divided into three separate sessions denoted as 
follows: i) Training Set (TS) Collection, ii) Temporal 
Resolution Testing Collection (TR), and iii) Interleaved Daily 
Living Testing Collection (DL). A brief description of each 
collection is provided below. The TS collection was completed 
by seven individuals, while the testing collections were 
completed by only five of the original seven. 

2) Training set (TS) collection: To support rapid 

acquisition of high-quality training data, individual collections 

were conducted for each activity described in Table 1. For all 

events other than drinking and discharging excess water, 35 

minutes of data (5 mins./participant) was collected. For 

drinking and discharge, 84 events (12/participant) were 

recorded for each activity. Two sensors were attached to the 

bottle during all activities in a position intended to minimize 

interference with handling and drinking. The first node, 

hereby denoted as the bottom sensor, was placed below the 

hinge at the bottom of the bottle as shown in Fig. 1. The 

second sensor was placed midway up the bottle opposite the 

drinking hand of each participant. The third sensor was used 

only for marking the initiation and termination of drink events 

as described in Section III.B.5. Training was performed using 

only bottom sensor data, with the exploration of middle sensor 

data reserved for future work exploring performance 

robustness with respect to position. 

Conducting dedicated training collections where 
participants perform only a single activity of interest at a time 
offers notable advantages, including simplifying the 
assignment of ground-truth (GT) labels (versus data containing 
multiple interleaving activities). Moreover, single-activity trials 
simplify participant instruction, thereby ensuring data quality. 
Isolated training collections have also been employed in related 
work for similar motivations (i.e.: [25]).  This strategy is not 
without disadvantage, as it eliminates the direct deployment of 
models exploiting temporal variations within the activity 
sequence (i.e.: HMMs, LSTMs, etc.). Sample waveforms of 
each activity are depicted in Fig. 3. 

3) Temporal resolution (TR) testing collection: A 

dedicated testing collection was conducted to assess the 

capacity of the algorithm to resolve closely spaced drinks. 

TABLE I. DAILY USE ACTIVITIES CONSIDERED 

Activity ID Description 

Walking: Bottle 

In-Hand 

(W-IH) 

Participants walked on both flat ground and stairs in a 

repeated loop to remain in range of base station with bottle 

held in hand at an unspecified orientation/grip 

Walking: Bottle 

In-Bag 
(W-IB) 

Participants walked in same loop at W-IH, but with 
bottle placed in a bag supporting vibrational, rotational, 

and translational degrees of freedom. Instructions for 

holding the bag were not specified to participants 

Walking: Bottle 

In-Hand 
(W-IB-R) 

Same as W-IB-L, but with additional objects placed in 

the bag to restrict rotational and translational degrees of 
freedom 

Stationary 
Placement (S) 

Bottle placed stationary in various orientations 

Transport: In-Car 
(T-IC) 

Bottle placed in various locations (floorboard, seats, etc.) 

in vehicle traveling in various environments (highway, 

city, etc.) 

Fidgeting 

 (F) 

Participants held bottle in hand and were instructed to 

mimic activities which may occur while seated (i.e.: 
daydreaming, fidgeting, engaging in conversation, etc.) 

Mimic Washing 
(MW) 

Participants mimicked washing the bottle in a sink 

Drinking:  

(D) 

Participants completed 12 drinks each while standing, 

with the bottle retained in-hand between drinks 

Discharge Excess 
Water (DEW) 

Participants discharged excess water 12 times from 

various initial fill levels (full, half, and quarter filled) 

into a sink 

Four target inter-drink spacings                were 
considered. To avoid spilling, participants retained the bottle 
in-hand between drinking commands, which were provided 
verbally by the experimental proctor. Data was collected in a 
series of four trials containing six drinks each (two trials 
containing spacings of two and 10 s, and the other two 
containing 5 and 20 s spacings), corresponding to 120 total 
drinks across the TR set. This information is summarized in 
Table 2. 

TR collections utilized a bottom sensor as previously 
described, a sensor placed on the wrist of the drinking hand of 
the participant (to be explored in future work), along with a 
sensor held in the hand of the proctor. Similar to the TS 
collection, this latter sensor was shaken to mark the initiation 
and termination of the drinking event for GT labeling. A 
visualization of the wrist and sensor outputs for a 2/10 s 
spacing trial is provided in Fig. 4. 

4) Interleaved daily living (DL) testing collection: Further 

experiments were conducted to ensure algorithm viability for 

truncated daily living scenarios consisting of interleaved 

activities considered in the training collection. A series of four 

experiments were conducted–two employing transport in-

hand, and two employing in-bag transport at two different 

orientations (vertical and horizontal). Each experiment 

contained 8 drinks with varying inter-drink separation. 
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Summary information for the DL collection is also provided in 

Table 2. The experiment utilized an identical hardware 

configuration as described for TR testing. A visualization of 

the estimated bottle inclination over the experiment is shown 

later in the manuscript (Fig. 6), after introduction of the 

proposed dynamic partitioning strategy in Section III.C.2. 

5) Ground-truth labeling: The proctor was instructed to 

shake a hand-held sensor at the initiation and termination of 

the lifting motion for each drink. Labels were then assigned by 

applying an empirically determined threshold to the 

magnitude of the acceleration signal,   , with the static 

acceleration due to gravity removed as shown in (2). 

 [ ]  |    |                (2) 

For all samples exceeding the threshold in the local 

neighborhood of the     drink event (determined visually), GT 

values for the beginning (  
 
  and end (  

 
  of the drink were 

assigned as specified in (3) and (4), respectively. 

  
 
       |   [ ]                 (3) 

  
 
       |   [ ]                 (4) 

The consistency of GT estimates across drinks is inherently 
limited by the subjectivity of the proctor marking. Due to this 
limitation, the inference which may be drawn from subsequent 
measurements of localization error is restricted. 

C. Algorithm Development 

1) Overview: Binary event detection schemes employing 

temporal partitioning with subsequent classification may be 

conceptualized as a three-phase processing workflow. The 

preliminary step involves temporal partitioning of streaming 

data, hereby denoted as     , where   is a time index 

corresponding to the sensor timestamp, by some mapping 

function   as denoted in (5). 

                           (5) 

 

Fig. 4. Bottle and Wrist Signals for Temporal Resolution Testing Trial. 

TABLE II. SUMMARY OF TESTING DATA COLLECTIONS 

Collection 

ID  

Interleaving 

Activities Considered 

Inter-Drink  

Spacings 

Considered   

Total Drinks  

Per 

Subject/Total 

TR ● In-Hand Holding {2,5,10,20} s 24 / 120 

DL 

● In-Hand Holding 
● W-IH 

● W-IB 

● DEW 
● MW 

{2, 10} s 

 

32/160 

 

where                
  is the     data partition, and 

  
  and   

  are the starting and ending data points. For SSW 
approaches,    is a buffering process which groups input data 
into fixed duration intervals of specified overlap (i.e.:    is 
constant    ). For dynamic partitioning strategies,    exploits 
some characteristic of either the sensor or activity space of 
interest to produce variable duration partitions. Classification is 
performed by some learned function  , which performs the 
mapping denoted in (6) 

                          (6) 

where           is a binary indicator of the presence of 

the event in the     partition, and   is a function computed on 
each data partition. For end-to-end architectures,   is the 
identity function (i.e.: data is fed directly into the classifier). 
For traditional classifiers employing hand-engineered feature 
spaces,   is a mapping of the raw data to the designed feature 
space. The detection process may require potential post-
processing, especially for schemes employing SSW 
segmentation with considerable overlap. 

2) Proposed dynamic partitioning strategy: As exhibited 

in Fig. 3, the inclination signal follows a convex morphology 

during drinking events. Our proposed dynamic partitioning 

strategy seeks to identify time intervals containing candidate 

drink signals by exploiting this distinguished inclination 

signature. This process is described in the subsequent 

paragraph, and presented in pseudocode in Fig. 5. 

To begin partitioning of the input stream, an amplitude 
threshold is applied to the inclination signal on a per-sample 

basis (         ) Next, adjacent intervals of samples 
exceeding the threshold which are separated by less than a 
merge parameter (  3 samples) are combined. Merging is 
conducted to ensure capturing of the entire drink motion. The 

merging process yields candidate data partitions  ̂ , with 

beginning and ending timestamps denoted as  ̂ 
 
 and  ̂ 

 
. 

Partitions with a maximum inclination value or inclination 

range falling below a threshold (         and         , 
respectively), or duration falling outside of a specified range 
(0.5–6 s) are discarded. This qualifying process is intended to 
discard events not exhibiting the desired inclination signature 
(i.e.: stationary placements at non-vertical orientations, etc.), 
which is mandated due to the collection of data even when the 
lid is closed. The result of applying the algorithm to a DL data 
trial is shown in Fig. 6, which shows both the data partition 
outputs of the TMD algorithm, along with the GT intervals. 
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Temporal Partitioning Pseudocode 

Input:             Accelerometer-Based Inclination Estimate,  

                        ̂[ ],                   
Output:          Ordered pairs estimating the start/stop of candidate drink 

intervals,    ̂   ̂  
    

Parameters:   Point Amplitude Threshold,     ,  
                       Merge Parameter,  , 
                       Duration Criteria,     ,     , 
                       Amplitude Criteria,     , 
                       Range Criteria,     , 

Threshold    ̂[ ],      {  | ̂[ ]      } 

Merge resultant thresholded subset,     to form candidate output set   
  

Initialize      
     

Set  ̂ 
         ),   =1 

for    ̂ 
      |  | 

if (  [k] -   [k-1] >  ) 

  ̂ 
 
  [   ] 

  
 =   

    ̂   ̂  
  

       

   
 
  [ ] 

end if 

end for 

Discard events of insufficient maximum amplitude  

or duration range in   
  to form output set    

Set        [         ] 

for j = 1 : |  
 | 

if { ( ̂ 
 
  ̂ 

 
          &    ( ̂ )       

&      ( ̂ )        }  

  =      ̂   ̂  
  

end if 

end for 

Return candidate drinking events,       ̂   ̂  
   

Fig. 5. Threshold-Merge-Discard (TMD) Dynamic Partitioning Pseudocode. 

3) Classification architecture: As the TMD algorithm was 

designed to discard most confounding daily living activities, 

the subsequent classification process was targeted to 

differentiate solely between drinks and other events exhibiting 

a convex inclination (i.e. excess discharges, etc.). Data 

visualization and domain knowledge were used to develop a 

candidate feature set suitable for distinguishing these events 

under normal operation (i.e. users not attempting to spoof the 

device). As drinking is subject to somatosensory feedback and 

involves careful handling to avoid spills, it was hypothesized 

that the motion should be more controlled versus discharge 

and other pouring events away from the mouth. To reflect this 

hypothesis, features describing the maximum inclination 

angle, mean inclination rate through the maximum angle, and 

residual energy after smoothing were used as defined in (7)–

(9) 

 ̂ 
           ̂   

 
   

 
               (7) 

 

  
 ̂ 

          ̂   
 
     

 
              (8) 

    ∑  
  
 

  
  ̂[ ]     ̂[ ]                (9) 

where      is a smoothing operation implemented as a 
third-order Savitzky-Golay filter with a nine-sample frame 

length, and     
 

 is the time index of the maximum inclination 
angle. A scatter plot showing the clustering of drink and 
discharge training instances in this feature space is depicted in 
Fig. 7. 

Training data (D and DEW only) was partitioned using 
five-fold cross-validation to avoid overfitting. A variety of 
classifier models were evaluated using MATLAB’s 
Classification Learner Application. Cross-validation accuracy 
exhibited minimal variation across the various models 
considered (K-NNs: 98.2% for fine clustering, SVMs: 98.2% 
for various kernels (linear, quadratic, etc.), etc.). A linear SVM 
was used for all subsequent analysis. 

The proposed algorithm was benchmarked against a slight 
variation of our previously considered technique [17]. 
Partitioning was performed using an SSW scheme (   
         ). A slightly modified version of the four-element 
feature space used in [17] was employed as specified in (10)-
(13). 

 ̂ 
              ̂[  

    
 ]           (10) 

         ̂[  
    

 ]                 (11) 

 ̂ 
           ̂ [[  

    
 ]]           (12) 

   
        ̂[[  

    
 ]]  

           ̂[[  
    

 ]] 
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where     is a function counting the number of non-zero 

samples satisfying the threshold criteria, and   
 and   

  are the 

initial and final timestamps in the    window. Slight 
modifications of the feature space were necessary to reflect 
utilization of the inclination estimate in the current work 
(versus the axial component of acceleration in the prior). 
Moreover, window duration was reduced (to the mean duration 
of training instances) and percent overlap was increased to 
improve the temporal resolving capacity of the algorithm 
versus previously considered settings. 

 

Fig. 6. Scattering of Drink and Discharge Training Instances. 
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Fig. 7. Example DL Output with TMD and GT Drink Interval Labels.

Features were computed across all activity classes 
excluding drink and discharge events by sliding a window 
using the specified SSW parameters across the training data. 
For pour and drink events, the window was centered at the 
midpoint of the GT interval label. A cubic SVM classifier 
(chosen to maximize cross-validation accuracy) was trained 
using five-fold cross validation, yielding an average accuracy 
of 97.5%.  Adjacent windows classified as containing drinks 
were merged into a single observation interval in post-
processing. 

4) Analysis metrics: Performance was quantified by first 

mapping the midpoint of each estimated drink interval to the 

nearest GT interval. Sets representing the underlap (    and 

overlap (    between the estimates were defined using the 

non-commutative set difference operator. Localization error 

was then computed as specified in (16), where |  | denotes the 

set cardinality operator. 

   
(|  | |  |)

|   
 
     

 
    

 
 |
            (14) 

To account for the expected variability in GT marking, 
successful detection was declared when the normalized 
intersection between the estimate and GT interval exceeded 
    of a single drink. It should be noted that both the SSW 
and TMD algorithms were anticipated to produce some error 
for the ideal GT marking protocol used herein. For the prior, 
the post-classification merging of adjacent windows is 
expected to produce overestimations. In contrast, thresholding 
to the minimum inclination angle in TMD does not necessarily 
allow for capturing of transport to and from the mouth, thereby 
resulting in potential underestimations. As consistency in GT 
estimates is limited, potential inference regarding the estimated 
localization error is restricted. 

IV. RESULTS 

1) TR testing: Both the TMD and SSW algorithms 

detected each of the 120 drinks in the TR experiments. Total 

localization error for TMD was           (mean   

standard deviation), versus            for SSW. Error 

sources were consistent with those hypothesized based upon 

the mechanism of each algorithm as described in the prior 

section (average overlap of SSW: 58.9%, average underlap of 

TMD: 36.3%). The total number of classifications performed 

for TMD processing was 120, versus 1,749 for SSW. 

2) DL testing: The TMD algorithm detected 162 drinks 

through 172 classification operations across the DL 

experiments. Of these detections, 160 corresponded to true 

positives, with two false positives produced (True-Positive 

Rate (TPR): 98.8%). Total observed localization error was 

          .Consistent with TR experiments, localization 

errors largely resulted from underestimates of the GT interval 

(29.2% average). 

In contrast, the SSW algorithm detected 197 drinks through 
4,310 classification operations. Of these, 148 were true 
positives, 43 were false positives, and six contained unresolved 
adjacent drinks (i.e.: two drinks in one interval), corresponding 
to a TPR of 75.1%. Total observed localization error was 
          , with distributions for both testing trials shown 
in Fig. 8. 

SSW error was again dominated by overestimation (63.5% 
avg.). Performance statistics for the DL experiments are 
consolidated in Table 3. Examples of error modes associated 
with SSW classification are depicted in Fig. 9. 

 

Fig. 8. Localization Error Distributions. 
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Fig. 9. Example Error Modes, DL Experiments, SSW Algorithm. 

TABLE III. SUMMARY OF DL TESTING PERFORMANCE 

Algorithm 

ID 

True Positive 

Detection Rate 

Mean Localization 

Error 

Total # of 

Classifications 

TMD 98.8% 31.4% 172 

SSW 75.1% 65.3%  
4,310 
 

V. CONCLUSIONS AND FUTURE WORK 

A novel dynamic temporal partitioning and classification 
algorithm for drink spotting was proposed herein. This 
approach is designed for implementation on streaming 
accelerometer data generated from a bottle-attachable IMU 
sensor. Benchmarked against a slightly modified version of our 
previously introduced static sliding window classifier, the 
algorithm was demonstrated to improve sip detection 
performance while reducing computational overhead. Namely, 
for a series of simulated daily living activities containing 160 
intermixed drinks, true-positive detection rate was improved 
from 72.9% to 98.8%, while the total number of required 
classification operations was decreased from 4,310 to 172. 
Preliminary analysis also suggests improved spotting precision, 
although inference is limited by the subjectivity of the 
employed GT labeling process. 

Further investigation should be conducted to assess 
potential trade-offs between the design of the individual stages 
of the proposed algorithm. Namely, the current implementation 
imposes several qualifying criteria on the inclination signal in 
the discard stage of partitioning. These could be relaxed in 
alternative implementations, with discrimination against the 
target activities for which the criteria were implemented 
instead performed through classification. While this approach 
would increase computational overhead, it would likely 

improve generalization for larger data sets including more 
diverse drinks. 

In addition to exploring these trade-offs, future work will 
investigate the relationship between the employed drink 
spotting technique and the resulting volume estimations. 
Moreover, exploration of performance robustness with respect 
to sensor position, along with comparisons with wrist-worn 
IMU data will be conducted using the data gathered within 
these experiments. Finally, the utilization of training data 
obtained from daily-use scenarios will be investigated to 
support the deployment of models exploiting temporal 
dependencies within the event sequence. 
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