
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

225 | P a g e

www.ijacsa.thesai.org

Repository System for Geospatial Software

Development and Integration

Basem Y Alkazemi

Department of Computer Science

Umm Al-Qura University (UQU)

Makkah, Saudi Arabia

Abstract—The integration of geospatial software components

has recently received considerable attention due to the need for

rapid growth of GIS application and development environments.

However, finding appropriate source code components that can

be incorporated into a system under development requires

considerable verification to ensure the source code can work

correctly. This paper therefore describes the design of a

repository system that employs a new specification language,

namely SpecJ2, to address the challenges involved in integrating

and operating software components. SpecJ2 was designed to

represent the architectural attributes of source code components

and to abstract their complexity by applying the notion of

separation of concerns, a key consideration when designing

software systems. The results of the experiment showed that

SpecJ2 is capable of defining the different architectural

attributes of source code components and can facilitate their

integration and interaction at run-time. Thus, SpecJ2 can classify

software components according to their identified types.

Keywords—Open-Source software; geographic information

system; repository system; specification language; components

integration

I. INTRODUCTION

There are many open-source GIS projects now actively
running and most have reached a high level of maturity in
applying their tools to the provision of information that can
feed into decision-making processes [1]. GIS applications have
evolved rapidly by integrating different components to
generate a fully functional system that serves a specific domain
[2]. Business requirements are the key driver in defining the
architecture of any GIS application in terms of identifying the
functional components related to: data collection and remote
sensing components; storage and retrieval components;
semantic analyses and data geoprocessing components; and
presentation and reporting components. Moreover, certain GIS
applications might need to be integrated as a whole into
different types of systems to address certain performance,
usability, and reliability issues. Despite the functional
advantages of open-source GIS-component integration,
ensuring the interoperability of different components is a very
challenging task. In technical terms, a comprehensive
environment is required to define the necessary integration
frameworks and avoid potential mismatches between GIS
components, both syntactically and semantically [3].
Moreover, the diversity of available OSS-GIS solutions might
confuse normal users and complicate the process of identifying
the best GIS tool for users in terms of the functionality,

usability, and integration of applications with other platforms.
This paper therefore aims to establish a general-purpose
repository system that identifies, classifies, integrates, and
develops open-source GIS components to fulfill the
requirements of GIS business applications. Specifically, the
paper addresses the difficulties involved in component
integration as this is the key element underpinning the
development of GIS applications. The terms “source code
components” and “software components” will be used
interchangeably throughout the paper as both refer to source
code fragments.

II. RELATED WORK

The integration of components has been a research topic in
different application domains from early work by Allen et al.
[4] through to the present day, where further investigations into
components or services integration continue to be reported.

For instance, Suri et al. [5] examined modularity and
interoperability aspects for software systems in industry from
an integration perspective. They discriminated between source
code behavior and the execution logic within the systems. They
utilized UML to bridge the gap between behavioral modelling
and the execution of systems. Kaur and Singh [6] developed a
web service called GlueCode to mediate the interaction
between components written in different programming
languages, such as java-based components and .Net
components, and the data source Cloud.IO. Their primary
focus was on the data exchange patterns and signature
matching between components. Farcas et al. [7] developed a
new real-time component model to address the problem of
component integration. They identified the key distinguishing
factors of software components that need to be addressed to
ensure successful integration, such as component behavior and
a logical execution environment. Fatima et al. [8] conducted a
semi-systematic survey to identify risk factors for the
integration of software components. They concluded that a lack
of interoperability standards, glue code, and format variation
are the key reasons for failure to integrate. Schorp and Sommer
[9] defined a new component model in the domain of
automotive ICT architecture. They contended that a successful
integration of software components can be accomplished if
functional interdependencies and non-functional requirements
are clearly addressed. Their component model facilitated
integration based on the discovery of interaction between
features. Dogra et al. [10] investigated the reasons for
component integration failure and concluded that such failure

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

226 | P a g e

www.ijacsa.thesai.org

is primarily attributable to architectural mismatches between
software components. Furthermore, they highlighted the fact
that a lack of knowledge and expertise regarding software
components might also cause problems with integration.

Overall, most of the reported work has thus identified
component architecture as the key hindrance to successful
integration. There have been few studies showing that
functional interdependencies might also case integration failure
which means this area of research requires further
investigation. This work proposes a new methodology to
document and facilitate component interaction by considering
the architectural attributes of source code components. It
reports our ongoing development of a software development
environment that facilitates the identification and integration of
software components to build a GIS functional application.

III. REPOSITORY SYSTEM DESIGN FOR OSS-GIS TOOLS

A repository system is a development environment that is
equipped with the necessary tools for the automatic
identification, classification, and storage of software
components. Users can retrieve components from the
repository in accordance with their functional requirements by
conducting a free-text search, browsing, or providing a detailed
formal system specification. In this section, we describe our
proposed repository solution for open-source GIS software
systems. We also explain the main architecture of the

repository system. The main objectives when designing this
repository system were to:

1) Establish foundations for open-source software within

organizations to support internally run projects

2) Assist in identifying appropriate open-source tools for

projects

3) Eliminate the licensing costs associated with

proprietary software

4) Address the lack of support that hinders many

organizations with respect to utilizing open-source GIS

software systems

5) Provide the necessary awareness and educational

support for open-source GIS software systems

6) Collaborate with different colleges and universities to

embed open-source GIS tools into their course plans.

As illustrated in Fig. 1, the system developed through this
work contains the following five key sub-systems:

 Components Identifier

 Classifier

 Builder

 Meta-data store

 Matcher

Meta-data

Matcher

Builder

Search
Engine

Test Suite

DB

Details

Modifiable
M

a
in

ta
in

Search

Retrieve

Engineer

Tools
Provider

user

Select

Deliver

Try

Deliver

Submit

Test

M
o
d
ify

L
is

t

Analyze

Check Y

Y

N

N Deposit

Discard

R
e
a
d

W
rite

Classify

Identifier

Fig 1. GIS Repository System Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

227 | P a g e

www.ijacsa.thesai.org

The behavior of the repository system is described as
follows. The source code of a GIS component is deposited into
the repository system either manually by uploading code to the
system or by providing a GitHub URL from which to import
the source code. Once the source code is uploaded into the
repository, the identifier sub-system analyzes the code to
identify its architecture. Based on this analysis the component
might be classified under a matching category represented in
the classifier sub-system. If the source code cannot be
categorized under any of the available categories it is discarded
from the repository workflow and stored as an “Undefined
Type” in the repository for further consideration.

From a user’s perspective, the repository system provides
the capability to search for an available source code or sub-
systems by providing an XML description of component types
using the developed specification language described in
Section 5. The matcher sub-system compiles the XML
description provided by the user to identify a match to the
components in the repository. Matching specifications result in
finding either exact matches to the description or partial
matches. If exact matching components are found, they are
listed to users for further investigation. If partially matching
components are found, the repository system refactors the
source code to fulfill the XML description that was provided.
In cases where the available source code in the repository lacks
some of the required interfaces to match the user’s
specification, the repository generates the necessary interfaces
in the form of skeleton code to satisfy these requirements.
However, the code generated by the refactoring process must
be examined by the user to confirm that the new packaged
component works and will provide the expected behavior.

IV. REPOSITORY CLASSIFICATION SCHEME

The GIS system architecture, like many information
systems, commonly conforms to the N-Tier architecture [11],
which is characterized by three main layers: the interaction and
presentation layer, the processing layer, and the management
layer. The overall architecture is depicted in Fig. 2.

These three layers are the building blocks of many GIS
systems, whether they are proprietary GIS software systems or
open-source GIS software systems. Our classification scheme
was primarily built on these layers to identify high-level
functional areas and their facets for the classification of GIS
tools. It is necessary to understand these layers and define their
interfaces in order to facilitate the potential integration of
different components, such as those found in other GIS tools.

As highlighted by Dempsey [12], many OSS-GIS tools are
available to support these three layers. For example, according
to Alkazemi et al. [13], in the information management layer,
common tools include PostGIS and Geodatabase, both of
which serve as a data source and database for other tools.
PostGIS and Geodatabase make it possible to store GIS data in
a central location for easy access and management. Grass,
Sextante, and MapWindow are some of the common tools used
for the human interaction layer; these facilitate communication
between the information system and external users, which are
either people or computer systems such as a web browser.
Hadoop [14] is one of the OSS tools available on the market
and is classified under the processing layer. Ut is an Apache
top-level project that is being built and used by a global
community of contributors and users.

Human Interaction Layer

Processing Layer

Information Management

Layer

Workflow and

Task Services

Communication

Services

Data

Source

Fig 2. N-Tier GIS Application Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

228 | P a g e

www.ijacsa.thesai.org

V. INTEGRATION OF GIS COMPONENTS

Software components can interact with each other as
services if they share common characteristics as a data
exchange model [15]. However, to work correctly, source code
components must comply with standard characteristics. Thus,
source code components might be characterized by:

 Signature

 Programming language

 Behavior

 Sequence of execution

 Dependencies

Signature of methods or functions defines the name of the
method, input and output parameters, and their datatypes.
Programming language adds more filtration to the searching
text to obtain a more accurate result. Certain source codes may
not be used alone and can be incorporated with other codes or
applications. Therefore, it is necessary to understand the
sequence with which a method is executed to run as expected
in the application under development. The attributes of source
code components, especially those related to their architectural
attributes, are always hard to document and represent as they
differ from one programming style to another.

To avoid the complexity of source code matching
characteristics, we developed a specification language, namely
SpecJ2, to summarize and document the necessary attributes of
source code components. SpecJ2 formalizes some of the
architectural characteristics of software components and this
also applies to GIS-component integration. SpecJ2 thus serves
as a verification mechanism that checks whether source-code
conforms to the required properties of a system in the OSS-GIS
repository system. Table 1 describes the syntax of the SpecJ2
language that identifies the key elements which represent the
architectural properties of components. Some of the attributes
may be null values and therefore might be omitted in the
description file. The key attributes are data input and output as
these handle data exchange between the components of the
system. Thus, SpecJ2 can be considered the adapter layer
between any two GIS components designed to interoperate
with each other as it handles component interoperability. Thus,
data are exchanged in a standard manner between the different
types of components. This layer is generated automatically by
the builder component within our repository system to
facilitate the simultaneous integration of tools or components.
The conceptual view of SpecJ2 is presented in Fig. 3.

SpecJ2 represents the intermediate layer (i.e. wrapper)
between source code components and the underlying
framework of the system to be built. It hides the complexity of
the implementation and differences in software components
within the framework. Thus, if a developer compiles the
system under development all the components will be
considered the same because the SpecJ2 layer hides component
types from the underlying system compiler. Furthermore,
SpecJ2 defines the linkage between components that will
exchange messages by connecting the interfaces of methods
together, which facilitates data exchange at run-time. For

example, if the system under development was built using Java
language and a developer needed to incorporate a component
written in another programming language, say PHP class, they
can either treat them as services and handle data exchange at
run-time or use SpecJ2 to handle environmental difference
parameters.

Fig 3. SpecJ2 Conceptual View.

TABLE I. SPECJ2 SYNTAX

Tag Description

<SpecJ2>
Identify a document under SpecJ2

specification

<SpecJ2>\<name> Define the name of the type

<API>
Capture the architectural attribute of
the component type

<API>\< Code_Scope >

<Code_Scope>\<name> Define memory name

<Code_Scope>\< Input_Stream > Define component input data stream

<Code_Scope>\< Output_Stream

>
Define component output data stream

< Code_Scope >\<Failure> Define exception handling mechanism

< Code_Scope >\<File>
Define external file that architectural

type use to operate

< Code_Scope >\<Storage> Define cache memory

<Input_Stream>\<sequence> Identify sequence of input data

<Output_Stream>\<sequence> Identify sequence of output data

<Order>\<type> Define data type

<Failure_Handling>\<type> Define type of exception handling

<Perquisites>\<lib> Define required resources

<File>\<name> Define name of file

<File>\<type> Define type of file

<Memory>\<name> Define memory address

<Memory>\<type> Define memory type

<File_type>\<sub-type> Define specialized generic file type

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

229 | P a g e

www.ijacsa.thesai.org

VI. EXPERIMENTAL SETUP

In SpecJ2 we described the geocoding module of ArcGrid
which is a generic functional model in many forms of
geospatial software as it interprets coordinates (i.e. latitude,
longitude) based on their corresponding addresses, either by
querying the database of stored addresses (e.g. Google API) or
by reading addresses from points on the map. To demonstrate
our approach, in Fig. 4 we provide a description of the logging
component of the geocoding facility in SpecJ2.

Fig 4. Logger SpecJ2 Description.

The SpecJ2 description captures part of the logging
capability which is a generic feature in many GIS applications.
We conducted our experimental work at this stage by
identifying how many components obtained from open source
repositories can fit as a logging module, and hence can be
reused in GIS applications. We therefore obtained 50 codes for
each component type from GitHub; these were defined as
geospatial related components from solutions including uDig,
ArcGrid, and deegree [12]. However, we limited the
experiment to Java based solutions. The selection of the source
code was carried out manually by downloading all the
corresponding JAR files of the solutions then applying the
sampling technique defined by Kamal et al. [16] to ensure we
covered as many of the test samples as possible. We then ran
SpecJ2-compiler to scan through the source code to identify
matching results. The process of compiling source code is
illustrated in Fig. 5.

Source code is first examined using the extraction tool that
identifies the signature of the methods within the JAR file
provided. The extracted methods are then sent to the SpecJ2-
compiler to compile the source code against a generated Junit
test class based on the XML component description provided.
Fig. 6 presents the generated JUnit test class used for
compiling test samples. In cases where the deposited source
code does not match any component types, re-scoping of the
source code fragment was performed to include more attributes
for the next round. Re-scoping was initially set for four rounds.
If components failed to compile after the first round they were
discarded from the system.

Fig 5. SpecJ2 Operation in the Repository.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

230 | P a g e

www.ijacsa.thesai.org

Fig 6. SpecJ2 JUnit Test.

VII. RESULTS AND DISCUSSION

The results obtained for the experiment are summarized in
Table 2. We categorized these results into fully matched,
partially matched, and no match. Fully matched refers to when
all the attributes defined by the source code component
matched the corresponding SpecJ2 description, hence the
component can be used without any modifications. However, if
none of the attributes were identified in the selected source
code, the code fragment is categorized as no match. Midway
between both extremes are partially matched components
which require further investigation. We counted the number of
matching and non-matching attributes to assess the level of
modification needed.

TABLE II. EXPERIMENTAL RESULTS

T
y

p
e

N
u

m
b

er
 o

f S
a

m
p

le
s

F
u

lly
 M

a
tc

h
e
d

Partially Matched N
o

 M
a

tc
h

T
o

ta
l

M
a

tc
h

e
d

 A
ttr

ib
u

te
s %

U
n

m
a

tc
h

e
d

 A
ttr

ib
u

te
s %

vGid 50 26 15 83% 17% 9

deegree 50 39 7 51% 49% 4

ArcGrid 50 43 6 88% 12% 1

OpenJUMP 50 37 13 42% 58% 0

QGIS 50 44 6 61% 39% 0

gvSIG 50 33 8 39% 61% 9

The experiment produced striking outcomes with respect to
the identification of component types. Overall, SpecJ2 yielded
significant results in terms of matching components to the
types defined in the repository. Compared to the matched
samples, the number of unmatched components was minimal
with an overall average ratio of 0.124 (i.e. for each “no match”
there was four matched components on average). We therefore
conclude that SpecJ2 is useful in representing source code
components and can also be used to intermediate the
interaction between various types of component. The results of
the partially matched components were twofold as the overall
percentage of matched attributes counted was more significant
than the percentage of unmatched attributes except in the cases
of openJUMP and gvSIG. We investigated the source code for
these component types by hand and observed that openJUMP
needed to operate in conjunction with the OSGE framework to
provide a complete set of attributes. However, gvSIG was
slightly different as the available components were mainly
plugins, hence the attributes examined were an extension of the
main framework. The other missing attributes were coded in
the main Factory class within the gvSIG package. Thus, the
unmatched percentages indicated that they were missed by
SpecJ2 due to a lack of support for inheritance which will be
included in the new release of the language.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

231 | P a g e

www.ijacsa.thesai.org

VIII. CONCLUSION AND FUTURE WORK

The integration of software components is a key element of
the component-based software development paradigm. The
architectural and the behavioral features represent the
backbone of any integration process and must be described
precisely. The development of GIS applications is no different
as it involves various forms of component integration.

In this work, we developed SpecJ2 as a specification
language to address the complex interoperability and execution
of software components. SpecJ2 complemented the design of
the repository system proposed in this work to examine the
feasibility of identifying component types and classifying them
according to their attributes. The results obtained in this work
supported the design considerations of SpecJ2 and proved that
it was capable of identifying potential mismatches between
software components. Such identification is significant as it
can help developers verify components prior to reusing them in
their systems.

The next step in this work is to automate the refactoring
mechanism of software components to transform those which
are partially matched into fully matched candidates. Moreover,
we plan to consider a wider range of component types in
different programming languages.

ACKNOWLEDGMENT

The Author of this work would like to express his gratitude
to Umm Al-Qura University for supporting the investigation
and development of the different models of this work.

REFERENCES

[1] Steiniger, S. and Weibel, R.. “GIS software: a description in 1000
words”. In Encyclopedia of Geography, B. Warf, Ed. London, UK:
Sage. (Available on-line at: http://dx.doi.org/10.5167/uzh-41354.), pp.
1-4, 2010.

[2] Neteler, M. and Mitasova, H. Open Source GIS: a GRASS GIS
approach (3rd Ed.). New York: Springer. ISBN 978-0-387-35767-6.406,
2008.

[3] Dejan, J. and Radmila, M. “Integration opensource GIS software for
improving decision-making in local community”, Acta Technica
Corvininesis-Bulletin of Engineering, Volume 6 Issue 4, pp. 73-76,
2013.

[4] Allen, R., Garlan, D. and Ivers, J. “Formal Modeling and Analysis of the
HLA Component Integration Standard”, in Proceedings of ACM
SIGSOFT FSE'98, pp. 70-79, 1998.

[5] Suri K., Cuccuru A., Cadavid J., Gerard S., “Gaaloul W. and Tata
S. Model-based Development of Modular Complex Systems for
Accomplishing System Integration for Industry 4.0”. In Proceedings of
the 5th International Conference on Model-Driven Engineering and
Software Development, pp. 487-495, 2017.

[6] Kaur, M., Singh, P. “Integrate the Components with the Help of Glue
Code Using .Net And Java Platform”, International Journal of Advanced
Research in Computer Engineering & Technology, Volume 4, Issue 4,
pp. 1266-1270, 2015.

[7] Farcas, E., Farcas, C., Pree, W. and, Temple, J. “Real-time component
integration based on transparent distribution”. In Proceedings of the
second international workshop on Software engineering for automotive
systems (SEAS '05). ACM, 2005.

[8] Fatima, F., S., Ali, M.U. and Ashraf, M.U. “Risk Reduction Activities
Identification in Software Component Integration for Component Based
Software Development (CBSD)”, International Journal of Modern
Education and Computer Science, Volume 4, pp. 19-31, 2017.

[9] Schorp, K. and Sommer, S. “Component-Based Modeling and
Integration of Automotive Application Architectures”, IEEE
International Electric Vehicle Conference (IEVC), Florence, Italy. 2014.

[10] Dogra, N., Sharma, A. and Singh, H. “Component integration: a
challenge for component-based software development”, International
Journal of Latest Trends in Engineering and Technology, special issue,
pp. 37-40. 2016.

[11] Fowler, M. Patterns of Enterprise Application Architecture. Addison-
Wesley, 560pp.,2002.

[12] Dempsey, C., “Open Source GIS and Freeware GIS Applications”.
(Available on-line at: https://www.gislounge.com/open-source-gis-
applications/), 2017.

[13] Alkazemi, B., Naseer, A., Aldoobi, H. “Towards A Repository System
for Open-Source GIS Software Components”, 5th Open Source GIS
Conference - OSGIS, At Nottingham Geospatial Institute, The
University of Nottingham, UK, 2014.

[14] Shvachko, K., Kuang, H., Radia, S. and Chansler, R. “The Hadoop
Distributed File System”, IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), Incline Village, NV, USA, 2010.

[15] Blay-Fornarino,M., Charfi,A., Emsellem,D., Pinna-Dery,A., and
Riveill,M.” Software interactions”, Journal of Object Technology,
Volume 3, Issue 10, pp 161–180, (Available on-line at:
http://www.jot.fm/issues/issues 2004 11/article4), 2004.

[16] Zamli, K., Alkazemi, B. and Kendall, G. “A tabu search hyper-heuristic
strategy for t-way test suite generation”, Applied Soft Computing,
Elsevier, Volume 44, pp. 57-74, 2016.

https://www.gislounge.com/open-source-gis-applications/
https://www.gislounge.com/open-source-gis-applications/

