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Abstract—This paper presents the Internal Multi-Model 

Control IMMC for a multivariable discrete-time system with 

variable multiple delays. This work focus on the Greenhouse 

climate model as a multivariable time-delay system. In fact, the 

Greenhouse technology is an interesting subject for sustainable 

crop production in the regions of disadvantageous climatic 

conditions. In addition, high summer temperature is an 

important setback for successful greenhouse crop production 

throughout year. The main intent of this work is to present a new 

control of Greenhouse during summer months using the Internal 

Multi-Model approach. First, the plant and the model are 

discredited with the bilinear approximation and then they will be 

controlled with an Internal Multi-Model Control. The chosen 

system is modeled only in the summer season case. The 

simulation results prove the robustness of this Internal Multi-

Model Control to preserve stability system despite the incertitude 
of the chosen model and the extern disturbances. 
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I. INTRODUCTION 

Renewable energy sources are expected to find more 
applications in the daily life the next years. Among then their 
use in heating greenhouses is going to increase since many of 
renewable energies technologies are cost effective and 
environmentally friendly. Several studies for using 
greenhouses [1], [2] have been implemented and various 
commercial applications already exist [3]. In fact controllers 
are increasingly giving way to evolve this type of industrial 
processes. Therefore, the big problem that can present the 
greenhouses systems is the insufficient precision with its 
chosen model. The dilemma lies then in the fidelity of the 
model to the process. 

To implement such control structures that ensure the 
desired objectives [4], modeling in the discrete time of analog 
systems is often required [5]. Indeed, it is found that the 
phenomena of delay appear naturally in the physical processes. 
And even if one of them doesn’t contain intrinsic delays, they 
often appear in the control loop. Time-delay systems [6], [7] 
have an infinite dimensional system class frequently used for 
process modeling, which are systems that do not depend only 

on its current state but also on its previous state. This type of 
dynamic system is often present in practice as an example: 
renewable energy, hydraulic networks (the phenomenon of 
water transport), heat exchangers (distributed delay due to 
conduction in a tube) ... indeed the delay can cause instability 
[8], poor performance and difficulties [9] in process control 
design. 

The diversity of control structures [10], [11], is linked in 
one hand to the objectives set and to the constraints on quality 
of the process and model on the other hand. In order to make a 
contribution to this axis of research, this work focuses on the 
Internal Multi-Model Control IMMC as a command structure 
known as a robust control [12]. The encouraging results of this 
control law in the mono variable continuous case encourage us 
to extend its application to multivariable discrete-time systems 
with the same number of inputs and outputs MIMO. 

The realization of this control is based on a library of many 
local models describing the overall behavior of the system. 
Indeed, the Multi-model techniques are used to reduce the 
complexity of the system through its study in several operating 
points; in order to find several mathematical representations 
faithful to the dynamics of the system. These models [13] are 
called "Library", which will be used in a multi-model control 
use a certain metric that evaluates the degree of fidelity of each 
model and its influence in the control. 

This metric is computed using several techniques to 
evaluate the degree of fidelity of each model to the actual 
behavior of the process to obtain a set of validities that will be 
used in a merge algorithm. This merge algorithm will use all 
the validities for the computation of the command thus making 
it possible to use the information coming from the library of 
the models and allows each model to intervene in the control of 
processes according to its degree of validity. 

The objective of this work is the contribution to the 
application of the switching control technique in the validity of 
models in the development of the IMMC structure at discrete 
time, applied in order to ensure stability and maintenance of 
the physical system performances the “Greenhouse Climate 
Model”, during the summer season, considered as a 
multivariable system with variable and multiple-time delays. 
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II. INTERNAL MULTI-MODEL CONTROL FOR 

MULTIVARIABLE DISCRETE SYSTEM WITH MULTIPLE 

TIME-DELAYS 

The Internal Model Control IMC introduced by Garcia and 
Morari in the 1982 [22] and then in the 1985s [23], is a robust 
control structure [11], [12], currently used in several works 
[13], and [24]. It is presented as an alternative to the classic 
closed loop; it’s useful at once to the process and its model. 
Their response is used to exact the difference on the set point. 
The error signal includes the influence of external disturbances 
as well as the modeling errors of the controlled system. 

A. IMC Structure of Multivariable Systems with Time Delays: 

the Discrete Case 

In the IMC structure (described in Fig. 1), the controller is 
assumed to be the inverse of the model of the system to be 
controlled. Hence the need to study the problems related to this 
inversion since it is physically unfeasible in the majority of 
cases (problems of delays, non-minimal phase shift, or non-
relative non-zero degree…). 

C(z) is the IMC controller, G(z) the process and M(z) the 
process model which is an approximation of the plant G(z). 
The transfer matrix of the process G(z) with 'n' inputs and 'n' 
outputs (square system case) is given as follow: 

 

     

     

     
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G z G z G z
G z

G z G z G z

 
 
 
 
 
  

            (1) 

The transfer function G(z)
 
is strictly proper and stable from 

the 
thi  input to 

thj  output. 

Where : 

   .ij

ij ijG z z F z



          

   (2) 

, 1, ,2i j 
 
and ij  is the corresponding time delay. 

 
Fig 1. IMC Structure for Multivariable Discrete-Time System. 

The structure of this approach is based on the elaboration of 
a corrector C(z)

 
obtained by inversion of the chosen model and 

whose product control signal u(z)
 
is applied both to the system 

and its model such that the error of their responses d(z)
 
will be 

compared to the signal of reference. The signal v(z)
 
is the 

disturbance which attacks the output directly and r(z) is the 
references that are compared to the outputs signal y(z) to 
reduce the error: 

   

        
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n: the number of inputs and outputs of the system 

nI : the identity matrix of order n. 

B. Stability Analysis 

The IMC controller is obtained by applying the proposed 
inversion method [24]. The generalized controller design 
regulator gives the matrix transfer C(z)   as following: 

    
1

r n rC z A I A M z


                (7) 

rA  is a square matrix gain, which coefficients are chosen 

to ensure the inversion of model to ensure the realization of the 
regulator and the stability of the closed loop system. 

The stability of the proposed structure depends on the 
stability of the process to be controlled, the model and the 
proposed regulator which must be stable in open loop. 

To simplify our study, rA  is chosen as the following form: 

r nA I                                                                               (8) 

with  . For such choice of rA  and if α is sufficiently 

high, 
1

rA 
become sufficiently low which makes possible: 

    
1

1 1

n r nI A M z I M z


              (8.a) 

 1( )C z M z             (8.b) 

The expression of the command become as follows: 

         

       

1 1

1

n n r r

n r r

u z I I A M z A G z M z

I A M z A r z z

 



   

 
            (9) 

         r vy z y z r z y z v z          (10.a) 

Such that: 
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       (10.c) 

If the process isn’t submitted to any disturbance v(z)=0 and 
in the perfect modeling case M(z)=G(z) , so the expression of 
the output is reduced to the following equation: 

       
1

n r ry z G z I A G z A r z


              (11) 

C. Precesion Analysis 

The matrix of the static gains of the regulator C(z=1) can 
be expressed according to the static gain matrix M(z=1)  of the 
system. It’s defined with the following expression: 

    
1

1 1r n rC z A I A M z


             (12.a) 

In order to ensure the precision of the system, it is 
necessary to check that: 

   -11 1nC I M 
       

 (12.b) 

In this case, we can affirm the regulator stability to ensure a 
perfect continuation of the set points independently of any 
external disturbance. The general controller design with gain 
for precision Ap provides the following matrix: 

     
1

1 1p n r rA I A M A M


               (13) 

pA  a matrix, whose coefficients are chosen to ensure 

precision in the certain case of dynamical systems as which 
contained time delays. 

pA is used to intended to compensate static errors in the 

multivariable system, while rA  is chosen to ensure the stability 

to reach the inverse model. 

III. MULTI-MODEL COMMAND FOR TIME-DELAY SYSTEM: 
COMMUTATION OF PARTIAL CONTROLS 

The rule of this technique is based on the selection of the 
model that is nearer to the process. The selection of the model 
is the result obtained by calculating the errors between the 
answers of the models and those of the system. After validating 
the model, the answer corresponding corrector is applied for 
process control and applied models. 

The association of the Internal Model Controller design 
[24] and [25] and Multi-Model approach [13], [14], [15], [16], 
[17] and [27] resume the IMMC design; the implementation of 
this technique requires the application of the control signal for 
the system having variable and/or multiple time-delays chosen 

models    1 qM z M z . 

The validity coefficient i , to evaluate the command, 

permits the selection of one of the associated controllers 

   1 qC z C z
 
which receives the difference between the 

reference and the outputs of the used models to minimize the 
errors. In fact, the validity coefficient is calculated by realizing 

the difference between the process outputs  y z
 
and its models 

   1 qy z y z
 
then the model that has the minimum 

difference is applied to the command admitting its index to the 
coefficient’s validity [14], [18]. 

 
Fig 2. IMMC Structure for Multivariable Time-Delay System. 
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After validate the perfect model [16], [17], (the nearest 
model to the system), the output of the corresponding regulator 
assumed as the inverse of the chosen model is applied as the 
control of the process and its different models [21] and [26]. 

The minimum difference ijd corresponding to validate the best 

model used in the calculation of the control law: 

     , 1, ,ij id z y z y z i n              (14) 

To validate the model that describes the best dynamic 

behavior, we define coefficients  ijf z that express the lowest 

error between the process and the chosen models: 

 
1

1...
n

i i ij

j

y k y i n


               (15) 

Once the best model, is validated, the next step is to 
calculate the switching control law applied to the system. 
Partial commands for each model are calculated by applying 
the methods of inversion of the linear models detailed in the 
previous section. They constitute the library of inverted 
models. The Proposed structure IMMC for multivariable time-
delays system is described in Fig. 2. 

IV. CASE STUDY 

Greenhouse technology is an interesting process in the 
agriculture production technology that integrates market driven 
quality parameters with production system profits. In fact 
cultivation of crops in greenhouse is increasing from high 
altitude and temperate regions to the warmer regions of tropics 
and subtropics. Although, greenhouse protects crops from 
external bad weather, high temperature and humidity during 
summer months cause adverse effect on crop production in 
tropical region [2], [3]. The input/output scheme of the 
greenhouse model is presented by Fig. 3. 

Therefore, in such regions, reduction of air temperature 
inside the greenhouse or the regulation of temperature closer to 
the ambient temperature during summer is necessary for 
successful crop production [1], [2], and [3]. 

It can be summarized by the functional block diagram 
presented in the following design. 

 
Fig 3. Inputs–Outputs Scheme of Climate Dynamic Greenhouse Models. 

 

Fig 4. Greenhouse Climate Dynamic Model (Summer Operations). 

TABLE I.  GREENHOUSE CLIMATE MODEL PARAMETERS 

( )Tin t
 the indoor air temperature (

◦
C) 

Tout(t) the outdoor temperature (
◦
C) 

ρ the air density (kgm
-3

) 

C
 the specific heat of air (J/(kgK)) 

V  the greenhouse volume (m3) 

Win the interior humidity ratios (water vapor mass of dry air, in gm
-3

) 

S the intercepted solar radiant energy (Wm
-2

) 


 the latent heat of vaporization (Jg

-1
) 

( )V t  the ventilation rate (m
-1

s) 

Oh 
the overall heat transfer coefficient 

(W/(m2K)) 

qfog 
the water capacity of the fog system (water vapor mass per 

second, in gs
-1

) 

Ah the heat transfer surface area (m
2
), 

E(Si(t), 

Win(t)) 
the evaporate transpiration rate of the plants (gs

-1
) 

This simplified model, based on energy and mass balance 
inside the greenhouse, contains two linear differential 
equations describing the latent and sensible heat, and the water 
vapor balance that are the controlled variables. To simplify the 
model, only primary disturbances are considered: outside 
temperature and humidity, and solar radiation. The greenhouse 
climate model can be used as a multi-season model, in this 
work, we interested only to the summer operations where the 
heater element is neglected. The greenhouse climate model is 
described by Fig. 4. 

The greenhouse model parameters are cited in Table 1. 

The two manipulated inputs are the ventilation ( )V t and the 

water capacity of the fog system qfog. The differential equations 
that govern sensible heat and water vapor balances inside the 
greenhouse volume are given by: 

 
   

 

       

1

in out in out

dTin t V t
S t qfog t

dt C V V

OhAh
T t T t T t T t

C V










    

        

         (16) 

 
      

 
   

1 1
,

in

in

in out

dW t
qfog t E S t W t

dt V V

V t
W t W t

V

 



 

   

        (17) 
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    
 

 , in in

S t
E S t W t W t 


           (18) 

β=0.1249 ; α=0 

β is the coefficient accounting for shading and leaf area 
index, and α is the coefficient accounting for thermodynamic 
constants and other factors affecting evaporate transpiration. 

A. Greenhouse’s Modeling and Identification 

At first time the equations (16) and (17) are derivated to 
determine the equilibrium point, and the constants 

environmental conditions are  , , ,S Tout V qfog , the initial 

values are expressed by the following equations: 

 
1

0in outT S qfog T
C V OhAh


 

    
         (19) 

 
1

0in out

S
W qfog W V

V


 

 
   

  
             (20) 

The greenhouse system considered in this work have 

different delays, these delays are considered as 100qT s 

(dead time between qfog and inT ), 180qW s  (dead time 

between qfog  and Win ), s90T   (dead time between 

 V t  and Tin ), and s220wT  (dead time between  V t  

and Win ), The values considered in the simulation test are 
shown in Table 2. 

TABLE II.  VARIABLE VALUES 

Variable Value Variable Value 

V 4000 m3 Cρ 1006 J/(kgK) 

OhAh  25,000 W/K V˙t 10 m3/s 

ρ 1.2 kg/m3   2257 J/g 

qfog 18 g/s qfogMAX 150 g/s 

S 300 W/m2 Tout 25 ◦C 

Wout 4 g/m3 V MAX 23 m3/s 

In this work, we present the results obtained by simulations 
of a linear process and with an uncertain delay; controlled by 
the IMMC approach by applying the partial command 
switching in the calculation of the global command [19], [24] 
and [20], the considered process is presented by the transfer 
matrix as follows: 

  11 12

21 22

G G
G s

G G

 
 
  

           (21) 

with  

 
 

12

0.05705

140 1

s
G s e

s

  



          (22) 

   is uncertain and bounded delay as  104s    

such as 101s   and   unknown. 

This unknown delay   will be estimated by four 

delays i  such that i i   
 for the following delays: 

1 101s 
; 2 160s 

; 3 200s 
 and 4 250s 

 which gives 
us the following four delay models for the transfer function 

 12G s : 

1

12

0.05705 101

140 1

sG e
s

 


 2

12

0.05705 150

140 1

sG e
s

 


 

3

12

0.05705 200

140 1

sG e
s

 


    4

12

0.05705 250

140 1

sG e
s

 


 

0.1806 89.5
11 150 1

sG e
s

 


 
0.8357 220

21 580 1

sG e
s

 


0.134 180
22 610 1

sG e
s

 


 

The calculation of the IMC regulators according to the 
structure of the corrector detailed in Section II from the models 
given above will be developed based on the partial commands. 

B. IMMC for the Greenhouse: Commutation Technique 

The transfer matrix of the discrete-time system is sampled 
with the bilinear approximation for a sampling period 

s20T  and the desired reference vectors Tindes=25 C°, 
Windes=8gm-3; initial conditions Tin(0)=39 C°, and 

Win(0)=2gm-3. Each sampled model 41 ,,i,iM   is defined 

as follow: 

4 5

1

11 9

0.0012 0.0012 0.0004 0.0004

0.9987 0.9986

0.0014 0.0014 0.0002 0.0002

0.9997 0.9997

z z
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         (23) 

4 8
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0.9997 0.9997
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  

  
    
   

         (24) 
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3
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0.9987 0.9986

0.0014 0.0014 0.0002 0.0002

0.9997 0.9997

z z
z z

z z
M

z z
z z

z z

 

 
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        (25) 

4 13

4

11 9

0.0012 0.0012 0.0004 0.0004

0.9987 0.9986

0.0014 0.0014 0.0002 0.0002

0.9997 0.9997

z z
z z

z z
M

z z
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 

 
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  
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          (26) 

The gain’s matrix are given as: 20.01rA I   and 

5 6

6 6

6.8022*10 1.262*10

4.4636*10 3.7282*10
pA

 
  

 

          (27) 

C. Simulations and Results 

The step response of the system is figured in Fig. 5. 
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Fig 5. Step Response of the Discrete-Time System G(z), Win(0)=8 gm-3, 

Tin(0)=39 C°, T=20s. 

The IMMC is considered in the commutation of partial 
controls case for different scenarios, are shown in Fig. 6, 7, 8 
and 9. 

a) Nominal Case 

The results of simulations of the looped system illustrated 
in Fig. 5 and Fig. 6 show stable, fast and sufficiently precise 

responses of the indoor air temperature  inT C   and the 

interior humidity ratios  3

inW gm . 

The MIMO system responses obtained by applying the 
switching technique to models with multiple delays confirm 
the properties of stability, speed and accuracy despite 
modelling uncertainties, sampled approximations and delay 

variations. 

 
Fig 6. Responses Ti

 
and Tides=25 C° of closed loop system’s regulator 

Tin(0)=39 C°, T=20s. 

 

Fig 7. Responses Win and 
38indesW gm  of closed loop, system’s regulator

  30 2.2inW gm ; T=20s. 

b) Regulator's Robustness: External Disturbances 

In a position to test the effectiveness of our approach is 
envisaged in this scenario to study the rejection of external 
perturbations property applied to the system considering two 
vectors disturbances. 

The disturbances envisaged are applied as well to the 
temperature as to the humidity signal produced respectively at t 
= 1400s and t = 1000s and constant amplitude 5(°C) and -
1(gm-3). The indoor air temperature Tin and the interior 
humidity ratios Win of Greenhouse obtained by the partial 
switching approach are illustrated respectively in Fig. 7 and 8. 
In the face of these disturbances applied directly to the 
responses of the system, we obtain a continuation of the 
references for the looped system. 

 
Fig 8. Temperature System’s Outputs with External Disturbance at t=1400s. 
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Fig 9. Interior Humidity Ratios System’s Outputs with External 

Disturbance at t=1000s. 

It is clear that the models outputs are close to the system 
output, leading to the control signal variation. It can be seen 
also that the plant outputs reach perfectly the reference inputs 
as compared to other models outputs. So we can see clearly 
that the proposed controller which combines Multi-Model and 
internal model control presents satisfactory results. The 
simulation results prove the effectiveness of this approach to 
preserve the performances of the system. 

V. CONCLUSION 

This paper addresses a Multi-model control for multiple 
time-delay system modelled in the discrete case.  The process 
was, firstly, designed then sampled with the bilinear method 
and secondly, implemented into internal multi-model control 
IMMC. An application of a greenhouse at summer case as a 
MIMO (two inputs – two outputs) time-delays system is 
proposed to test the effectiveness of the control. The simulation 
results show the proposed approach capability to preserve the 
system stability and performances although the chosen model, 
varying time-delay indeed the preserving of the rejection of the 
external disturbances. Future work focuses on internal multi-
model control for nonlinear systems to preserve again the 
effectiveness of this approach. 
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