
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

37 | P a g e

www.ijacsa.thesai.org

Categorical Grammars for Processes Modeling

Daniel-Cristian Crăciunean

Computer Science and Electrical Engineering Department

Lucian Blaga University of Sibiu, Romania

Abstract—The diversity and heterogeneity of real-world

systems makes it impossible to naturally model them only with

existing modeling languages. For this reason, models are often

constructed using domain specific modeling languages as

metamodels, which must themselves be specified by meta-

metamodels. In this paper we present a new approach, based on

the category theory, to specify metamodels. A grammar for

modeling processes (PN, CSP, EPC, etc.) syntactically defines

processes and then presents a set of reaction rules that model the

behavior of the system. We will see that the categorical sketch is

sufficiently expressive to be able to support the constructions

needed to visually define the syntax of a graphical modeling

language. The category theory also provides appropriate

structures to model the behavioral rules of a real system.

Keywords—Process modeling; metamodel; modeling

grammars; categorical grammars; category theory; categorical

sketch

I. INTRODUCTION

In the theory of systems, we can distinguish between the
structure of a system and the behavior of the system. The
structure is the internal organization of a system. The
operational aspect of the structure is given by a set of objects
that are invariant to transformations.

An important method of mathematical modeling of the
behavior of a dynamic system is provided by the process
concept [9]. We understand a process as a behavioral model of
a dynamic system at a certain level of abstraction. The
behavior of the system generally consists of processes and
data.

Processes are control mechanisms for data manipulation.
Processes are dynamic and active, data is static and passive.
The data of a process is generally expressed by ontologies that
allow for inference, and processes through directed graphs
whose nodes are states and arcs are actions.

While a sequential system performs a single step at a time
and can therefore be characterized by a single current state,
the different components of a concurrent system may be in
different local states at a time, which together make up the
global state of the system at a time [12]. Furthermore,
intermediate states are as important as the initial state and the
final state, as they determine the behavior of larger systems
that may include the considered system as a component.

The behavior of the system is given by several processes
that are executed simultaneously (parallel and distributed),
where these processes exchange data to influence each other's
evolution.

Due to the different component execution speeds, the way
the components interact with each other, and the programming
policies adopted, the behavior of these competing systems
may present interesting situations such as non-determinism in
the end result or in the actual calculation. Consequently, it is
not appropriate to describe the behavior of these systems by a
function from inputs to outputs, as in the classical theory of
systems [12,13].

A process is a sequence of steps that define behavior.
There are several approaches to the notion of step, which leads
to as many different types of behavior. Most often, the process
models visually describe how real systems work [2,3,4,5].

The grammar of a visual language defines the syntax
generation rules and the semantic interpretation rules of
graphical elements in a process model, as well as the rules of
composition of atomic components to model the behavior of
the real system. It is important that the rules of syntactic
construction be such that any model generated on their basis
allows for a detailed syntactic analysis, that is, to allow the
determination of the sequence of syntactic rules that generated
the model. This succession of syntactic rules allows semantic
interpretation of the model. [4,11,14].

Different modeling grammars tend to emphasize different
aspects of processes, i.e. a Petri Net model of a real problem
looks different from an EPC model of the same real problem.
Consequently, the choice of modeling grammar is an essential
decision when the modeling activity begins [11,14].

Generally, building a model begins with an informal
model, used for discussion and documenting, and ends with an
executable model useful for analyzing, simulating, or actually
executing the process [11,14].

Informal models are easy to understand but suffer from
ambiguity, while executable models are too detailed to be easy
to understand by all the parties involved in building the model.

This conflict between the informal and the executable
model largely reflects a certain incompatibility between the
metamodel and the modeled object, and therefore is mainly
due to the insufficient alignment between the metamodel and
reality.

The diversity and heterogeneity of real-world systems
makes it impossible to naturally model them only with
existing modeling languages [4,14].

The metamodel requires an abstract version of reality,
focuses on the common behavior of the real systems in
question, and therefore the metamodel cannot cover

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

38 | P a g e

www.ijacsa.thesai.org

satisfactorily only a small percentage of the actual cases that
its authors consider to be representative [10].

Of course, these drawbacks can be solved by successive
upgrades of existing metamodels with new structures,
concepts and algorithms, but these additions often exceed the
initial logic of the metamodel. Therefore this method of
solving the drawbacks leads to difficult to master graphical
languages.

On the other hand, a modeling grammar can be specific to
certain aspects of processes, such as flow of activities,
allocation of resources, communication between processes,
etc. Obviously, the solution to this problem, if costs are
acceptable, is given by the languages specific to each
modeling domain that may contain elements representative of
the concepts involved in a particular modeling domain.

This approach requires powerful and flexible
metamodeling tools to support the specification and
generation of domain specific modeling languages with
acceptable costs. The specification of such a metamodel
should contain enough information to allow the automatic
generation of a tool to verify and build models subject to the
syntax of the described formalism.

In this paper we will show that the sketches from the
category theory offer a language with a well-defined syntax
and semantic to describe mathematical objects, that can
rigorously represent the syntax of domain-specific modeling
languages.

We will see that categorical sketches are mathematical
objects with well-defined syntax and semantics that represent
meta-metamodels capable of capturing the basic elements that
can be used to design a metamodeling formalism. In this
context, a metamodel is represented by a mathematical object,
a sketch, and a model is a functor that is also a mathematical
object.

The fact that the sketch is a graphical specification makes
the metamodel specification process intuitive, accessible and
reduces the time to develop a modeling tool.

In section 2 we present the theoretical foundations and
notations in the category theory. Section 3 presents the use of
the categorical sketch of the process model concept. Section 4
defines the metamodel as a functor, and section 5 completes
the model with the execution and simulation part.

II. THEORETICAL FOUNDATIONS AND NOTES

Definition 1. [1,6,7,9] A category 𝓒 consist of a set of
objects, a set of arrows between these objects, and a partial
operation of arrows composition. We will denote the category
objects with uppercase letters A, B, ..., the set of all objects we
will denote with ob(𝓒), the set of arrows between two objects
X and Y with 𝓒(X,Y) and the partial operation of arrows
composition with ∘. The set of arrows of a category 𝓒 along
with the arrows composition operation form a monoid

structure, i.e. it is associative: for all arrows f𝓒(X,Y),

g𝓒(Y,Z) and h𝓒(Z,W)(h∘g)∘f=h∘(g∘f)𝓒(X,W), and for

each object X in ob(𝓒) there is an identity arrow idX:XX

with the property idX∘f=f, g∘idX=g where X,Y,Uob(𝓒),

f𝓒(Y,X) and g𝓒(X,U).

Definition 2. [1,7,8,9] A functor  is an application
between two categories 𝓒 and 𝓓 that maps the objects of
category 𝓒 into objects of category 𝓓 and the arrows of
category 𝓒 in arrows of category 𝓓 with the preservation of

the structure, i.e.: A,B:𝓒(A,B)𝓓((A),(B)) for all objects

A,Bob(𝓒) and (1A)=1(A), (fg)=fg where

X,Y,Zob(𝓒), g𝓒(X,Y), f𝓒(Y,Z).

If we consider each category an object and each functor an
arrow between these objects we get a category that is usually
denoted with Cat.

Definition 3. [1,7,8,9] A natural transformation is an

application between two functors  and  which have the
same domain 𝓒 and the same codomain 𝓓 consisting of a

family of arcs A:AA (A𝓒) such that for each arrow

f:AB in 𝓒, the naturality condition is respected

(f)∘A=B∘(f).

A small category could be defined as a graph 𝓖 to which a
structure is added, i.e. an arc composition operation and an
identity arc for each node. In this way, any graph 𝓖 generates
a category called the free category generated by the graph 𝓖.
This is very important for visual models because they are
generally graphs generated on the basis of the syntactic rules
imposed by the corresponding grammars. Therefore, any
process model generates a free category.

The operation of generating the free categories from
graphs also involves the extension of graph homomorphisms
to the corresponding functors between the free categories
generated by them. Based on this observation, to simplify the
exposure, we will use the functor designation for graphs as
well. However, we must note that if there is always a functor
between two categories (at least one constant functor), there is
not always a homomorphism between two graphs.

Definition 4. [1,7,8] A diagram is a functor D defined on a
graph 𝓖 with values in another graph 𝓟 or with values in a
category 𝓒. The domain of D is called shape graph of diagram
D.

Definition 5. [1,7,8] A commutative cone in category 𝓒

with the vertex C𝓒 and the base a diagram D:𝓖𝓒 is a

natural transformation p:CD where C is the constant

diagram C:𝓖𝓒.

A morphism between two cones p and p' is an arrow

f:CC’ with the property that for any node a of the graph 𝓖
we have pa=

 f. The set of cones together with these
morphisms form the cone category generated by diagram D.

Definition 6. [1,7,8] The limit of a diagram D:𝓟𝓒 is a
terminal object in the cone category generated by diagram D.

Definition 7. [1,7,8] A commutative cocone in the

category 𝓒 with the vertex C𝓒 and the base a diagram

D:𝓖𝓒 is a natural transformation p:DC where C is the

constant diagram C:𝓒.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

39 | P a g e

www.ijacsa.thesai.org

Definition 8. [1,7,8] A morphism between two cocones p

and p' is an arrow f:CC’ with the property that for any node a
of the graph 𝓖 we have

 =fpa. The set of cocones along with
these morphisms form the cocone category generated by
diagram D.

Definition 9. [1,7,8] The colimit of a diagram D:𝓖𝓒 is
an initial object in the cocone category generated by diagram
D.

Definition 10. [1,7,8] A categorical sketch 𝓢 is a tuple (𝓖,
𝓓, 𝓛, 𝓚) where 𝓖 is a graph, 𝓓 is a set of diagrams, 𝓛 is a set
of cones and 𝓚 a set of cocones.

Definition 11. [1,7,8] A model generated by sketch 𝓢=(𝓖,

𝓓, 𝓛, 𝓚) is a functor M:𝓖Set that maps the diagrams D to
commutative diagrams, the cones 𝓛 to cone limits and the
cocones 𝓚 to cocone colimits in Set.

III. CATEGORICAL SKETCH OF THE PROCESS MODEL

Essentially, a visual model of a process defines first the
syntax of the process that represents the virtual and physical
entities of the model and then the semantics of the process
represented by a set of reaction rules that represent the
behavior of these entities [10].

The syntax of a process can be represented by graphs that
have as nodes specific concepts and as arcs the
interdependencies between these concepts. Often the syntax of
the model can be represented by a single graph. When models
of a real systems imply a space concept, an additional graph is
used that has the same nodes as the first, thus reaching the
notion of bigraph [10]. In this paper we will only deal with
processes that can be represented by a graph.

In the Set category, a graph is defined by two sets X,  and

two parallel functions ,  defined as in Fig. 1. To specify the
syntax of a graphical metamodel we will use a categorical
sketch, which in turn is represented in a graphical language
[10].

Sketches are not designed as a notation, but as a
mathematical structure that incorporates an exact formal
syntax and semantics. We will use the same notations for the
arcs of the graph of the sketch and the functions from Set, and
the nodes from the graph of the sketch we will denote with
lowercase letters and the objects from Set we will denote with
upercase letters.

We could therefore consider the starting point in defining a
sketch corresponding to the concept of process a graph with

two nodes x,  and two parallel arcs  and . However, this
sketch is too general and does not in any way account for the
specifics and restrictions of each metamodel.

Therefore, we will need to introduce a series of helper
objects and functions in the Set category to impose the
constraints specific to each metamodel. These helper objects
will be reflected in the sketch components (the graph of the
sketch, commutative diagrams, cones and cocones).

Below we will present some of these possible
constructions and we will also present a relevant example.

Fig. 1. Graph Sketch.

Fig. 2. Commutative Diagram.

Fig. 3. Pullback Diagram.

A. It's a Simple Graph, not a Multigraph

A simple graph is a graph with the property that for any
pair (a, b) of vertices there is no more than one arrow with
source a and target b. In order to impose this condition in the

Set category, we need the Cartesian product XX and the

function  defined as shown in Fig. 2. The functions 1 and 2
are the two projections.

To get a sketch that specifies only simple graphs, we add
an object x×x and the discreet cone needed to convert this
object into a formal product. Then we have a single arc

between any two vertices if and only if :X×X is a

monomorphism. But the function  is a monomorphism in Set

if and only if the pullback of  with  is equal to , i.e. if and
only if the diagram in Fig. 3 is a pullback diagram. The effect

of this is to make the monic arrow  become a pair <s,t> in a
model so that there are no two arrows to have the same pair
source, destination.

B. The Graph must be Connected

In order to constrain the graph corresponding to a model to

be connected, we will define a function :XU that
associates to each object in X the connected component to
which it belongs. So U is the set of connected graph

components. But this  is a coequalizer for the functions  and

.

A coequalizer :XU must satisfy the equality ◦ = ◦.

The pair (, ) determines a relation *X×X which is
obtained by the reflexive, symmetrical and transitive closure

of the relation ={((t), (t))|tX}.

Obviously we have ◦ = ◦ if and only if (t1)=(t2) for

all (t1, t2)*.




X



X



X XX





1



2

 








XX



 



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

40 | P a g e

www.ijacsa.thesai.org

Fig. 4. Coequalizer.

We will define U=  , i.e. the set of equivalence classes

determined by  and :XU is the function that associates to
an element from X its equivalence class, i.e. the connected

component to which it belongs. But the function  is a

coequalizer of  and  (Fig. 4).

Therefore, U is the colimit of a diagram with two nodes ,

x and two arcs ,  and it will supply the connected
components of our graph. But we want the graph to be
connected and therefore to have only one connected
component [7,8].

For this we will put the condition that U is the vertex of a
cone with an empty base. Thus, U will become an object in
our model from Set, i.e. a set with a single element, which
guarantees that our graph will be connected.

Another method to specify that a graph is connected is that
the diagram from Fig. 5 has to be a pushout diagram. That is,

the pushout of  with  is  (a terminal object in Set).

1) The types of objects determine a partition on the set of

the graphs vertices: X=X1X1 and X1X2= . In the model

sketch, the disjoint union X is the colimit of a discrete diagram

(cocone).

2) The types of arcs determine a partition on the set of

arcs of the graph: =1 2

and 1 2=. In the sketch of

the model the disjoint union  is the colimit of a discrete

diagram (cocone).

3) The maximum or minimum number of arcs coming out

of a vertex or entering a restricted vertex. We will denote by

x={ y|(x,y) } and with 
-1

x={ y|(y,x) }.

The sequential routing involves the activation of an
activity in a process, always, after completing another activity
in the same process.

The sequence model is used to model consecutive steps in
a process, whatever the case, and is supported by all available
process management systems. In most cases, two activities
that execute sequentially depend on each other in the sense
that the second one uses the result of the first one. Typical
implementation involves tying two activities with an
unconditional control arrow [12,13,14].

From a syntactical point of view, the sketch corresponding
to the metamodel will require to put a constrain that the first
activity be the source of a single arrow and the second one to
be the target of a single arrow.

That is, if we have two sets of activities X1 and X2 so that,
always, an activity of X1 is followed by a single activity from
X2 and only that, i.e. it complies with the sequential routing,
then in the metamodel sketch we will have a diagram of the

form Fig. 6 with the property that  and  are monomorphism.

Fig. 5. Pushout Diagram.

Fig. 6. Sequential Routing.

Fig. 7. Pullback Diagram.

Fig. 8. Pullback Diagram.

In the metamodel sketch we will have to impose the

condition that  and  are monomorphisms, i.e. an object in
X1 can be followed by a single object and an object in X2 can
be preceded by a single object.

But,  and  are monomorphisms if and only if the

pullback of  with  is 1,2 and the pullback of  with  is

1,2, i.e. the diagrams in Fig. 7 and Fig. 8 have to be pullback
diagrams.

The condition that a concept from the set X1 can be
followed by any number of concepts from X2 and a concept

from X2 can be preceded by a single concept from X1 is that 

be a monomorphism, i.e. the pullback of  with  is 1,2. (Fig.
8).

The condition that a concept from the set X1 can be
followed by a single concept from X2, and a concept from X2

can be preceded by any number of concepts from X1 is that 

be a monomorphism, i.e. the pullback of  with  is 1,2. (Fig.
7).

X 





U


X 

X







1,2

X1

X2





1,2

A


A

1,2

1,2





X1

1,2

A


A

1,2

1,2





X1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

41 | P a g e

www.ijacsa.thesai.org

If we do not put constraints on a subgraph like the one in
Fig. 6 from the graph of the sketch, then an object from X1 can
be followed by any number of objects from X2, and an object
from X2 can be preceded by any number of objects from X1.

Example 1. Medical Laser Manufacturing Systems
(MLMS).

At a medical lasers company, a software tool is required
for modeling and simulating a manufacturing cell that
assembles multiple devices simultaneously. The assembly
process also contains common operations on such devices.

A cell can have a set of input buffers XI (entry station), a
set of output buffers XO (exit station), a set of workstations,
w0, w1, …, wn-1, a set of test stations and a set of buffers to
collect faulty components. These workstations are loaded and
unloaded by a set of specific conveyors.

The manufacture of each device is made in accordance
with its process plan. There are several types of devices with
specified process plans.

The primary components of a device reach an entry
station. Once the primary components reach this point, they
are inserted into the assembly system when possible. They
will be transported and assembled in workstations, in
accordance with the process plan and then leave the system
via an exit station or through a collection station for faulty
components.

Each workstation wi has an input buffer Bi and an output
buffer Bo that have limited capacities. A workstation works
asynchronously if it has raw material in the input buffer and
enough space in the output buffer. If one of these conditions is
not met, the station stops and starts automatically when the
conditions are met. The assembly operation has a certain
duration.

Each test station Xt has an input buffer Bi and an output
buffer Bo with limited capacities. A test station works
asynchronously if it has raw material in the input buffer and
enough space in the output buffer. If one of these conditions is
not met, the station stops and starts automatically when the
conditions are met. The test operation has a certain duration.

Each conveyor  has a limited transport capacity and can
carry several types of components in specified quantities. A
conveyor works asynchronously if it has sufficient
components in the output buffer of the source workstation and
also has enough space in the input buffer of the target
workstation. If one of these conditions is not met the conveyor
stops and starts automatically when the conditions are met.
The transport operation has a certain duration.

Each input buffer Xi has the ability to store several types
of components in limited quantities, and we assume it is
continuously supplied from the outside of the model. Each
output buffer Xo has the ability to store, in limited quantities,
more types of finished products and we assume it is emptied
from the outside of the model. Also, each buffer for collecting
faulty components Xd has the ability to store, in limited
quantities, a number of defective components and we assume
it is emptied from the outside of the model.

The purpose of the model is to evaluate the performance of
the manufacturing cell or to investigate different programming
policies in order to optimize the manufacturing process. For
this purpose, information was included in the model, such as
the duration of operations, the stop time of the actions in order
to locate the process delay points. The model also allows
optimizing the size of the buffers in order to eliminate
stagnation due to downstream or upstream defects.

As a result of the analysis, we find that in order to
graphically specify such processes we need 6 types of
concepts, namely: input buffers with primary components,
output buffers with finished products, faulty components
collection buffers, assembly stations, test stations and
conveyors.

The workflow also includes the following routing rules:

At the beginning of the manufacturing process, the
primary components will pass through a test station.

After each assembly station, a test station will be required.
Components assembled in a workstation will always go to the
same test station.

In the test station the components will be sorted into
accepted and defective. Accepted components will follow the
assembly flow and the defective components will be
transported to a collection buffer for faulty components.

We will define an MLMS as a graph with a set of syntactic
restrictions. The mechanisms used to introduce the syntactic
constraints of the models are those from the sketch definition,
i.e. commutative diagrams, limits and colimits.

Definition 12. A MLMS model is a directed graph

𝓖 = (X, , , ) where

X is a set of objects (concepts in our model) that represent
the nodes of the graph.

 is a set of arcs (conveyors in our model).

And which satisfies the following properties:

1) 𝓖 is a connected graph

2) There is only one arc between any two nodes.

3) On the set of nodes X we have a partition:

X=Xi⊔Xo⊔Xd⊔Xw⊔Xt

Where

Xi is a set of input buffers for the primary components;

Xo is a set of output buffers for finished products;

Xd is a set of collection buffers for faulty components;

Xw is a set of assembly stations;

Xt is a set of testing stations.

4)  and  are functions ,:X which assigns to each

arc r the source and target objects (r), (r)X.

(XiXt)(XtXw)(XwXt)(XtXo)(XtXd)

=it⊔tw⊔wt⊔totd

5) x|=1 for any xXw, i.e. the components assembled in

a workstation will all go to the same test station.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

42 | P a g e

www.ijacsa.thesai.org

As we can see the syntactic definition of an MLMS,
introduces a series of partitions on the set of nodes,
subpartitions on the set of events, connectors, and arcs. Also,
the definition includes connection constraints and number of
arcs between different types of nodes.

So far we have built the sketch of the graph into several
components that can be aggregated in a related graph as in
Fig. 9. As we notice, we have introduced all the nodes and
arcs in the graph of the sketch so that we can define the
components 𝓓, 𝓛 and 𝓚 that introduce the constraints specific
to our metamodel. Any model of the resulting sketch will
comply with these constraints.

Graph 𝓖 has 14 nodes and 27 arrows. These will be
interpreted in a model as follows: (1) x - all object X in a
MLMS model, (2) Xi – is a set of input buffers for the primary
components, (3) Xo is a set of output buffers for finished
products, (4) Xd is a set of collection buffers for faulty
components, (5) Xw is a set of assembly stations, (6) Xt is a set

of testing stations (7) xx - the Cartesian product of the set X

with X, (8)  represents a terminal object in Set, (9)  -

represents all relations  between the objects of the model,

(10) it - represents the subset of relations it that links Xi

objects with Xt objects, (11) tw - represents the subset of

relations tw that links Xt objects with Xw objects, (12) wt -

represents the subset of relations wt that links Xw objects with

Xt objects, (13) to - represents the subset of relations to that

links Xt objects with Xo objects, (14) td - represents the subset

of relations td that links Xt objects with Xo objects. We have
numbered these nodes to refer to them in the shape graph of
the diagrams.

Fig. 9. The Graph of the Sketch.

In the following we will introduce the elements 𝓓, 𝓛 and
𝓚 which impose the constraints specific to our metamodel
[7,8] as follows:

1) G is a connected graph. The pushout of  with 

introduces an equivalence class that defines the set of

connected components of the graph [7]. For the graph to be

connected we must have only one equivalence class, i.e. the

set of equivalence classes is a terminal object in Set.

For this we will introduce into our sketch a cocone K1. The

vertex of this cocone will be  and the shape graph of this
diagram is in Fig. 10. and the functor k1 corresponding to

these diagram is defined as follows: k1(9)=; k1(1)=x;

k1(1’)=x; k1()=; k1()=.

The node denoted with  in the graph will become the
limit of a cone L1, with an empty base, i.e. a terminal object
from Set.

2) There is only one arc between any two nodes. This

entails a monomorphism between the set of relations  and the

set XX. We will have to define this Cartesian product as the

limit of a discrete diagram. We will specify the Cartesian

product through the discrete cone L2.

The graph shape of diagram L2 is defined by the nodes 1
and 1' and the component functor I2 is defined as: I2(1)=x;
I2(1’)=x. The limit of this diagram in Set is the Cartesian

product XX.

The monomorphism :XX is defined by commutative

diagram D1. Defining the function : XX, can be done by
the commutativity of the diagram D1. The shape graph of this
diagram is in Fig. 11. The functor d1 is defined as follows:

d1(9)=; d1(1)=x; d1(7)=xx; d1(1’)=x; d1()=;d1()=;

d1()=; d1(
1
)=

1
; d1(

2
)=

2
.

The condition that is required in this commutative diagram
to have no more than one arc between any two nodes is that

the function  becomes a monomorphism in Set. But  is a

monomorphism if and only if the pullback of  with  exists

and is equal to .

Fig. 10. Shape Graph of Pushout Diagram.

Fig. 11. Shape Graph of Commutative Diagram.



it

it

xt

xi


it


it

x





xx

1


2






xw


tw


wt


to


td

xd

xo


tw


wt


td


to




1’ 9

1





1’

9

1 7





1



2

 

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

43 | P a g e

www.ijacsa.thesai.org

Fig. 12. Shape Graph of Pullback Diagram.

The pullback of  with  is the limit of cone L3. The shape
graph of this diagram is in Fig. 12. and the functor l3

corresponding to this diagram is defined as: l3(9)=; l3(9’)=;

l3(7)=xx; l3()=. The limit of this diagram in the Set

category will have to be .

3) On the set of nodes X we have a partition:

X=Xi⊔Xo⊔Xd⊔Xw⊔Xt. That is, the set of objects X is the

disjoint union of five subsets of objects. This means that X is

the coproduct of a discrete diagram formed by five nodes and

with the vertex X, which in Set will become the colimit of this

discrete diagram.

We will specify the partition introducing in the sketch of
the model the cocone K2. The shape graph of this diagram is
made up of nodes 3 and 2 and the functor k2 corresponding to
this diagram is defined as: k2(2)=xi; k2(3)=xo; k2(4)=xd;
k2(5)=xw; k2(6)=xt. The limit of cone K2 requires that X be the
disjoint union of all objects of a model with all adjacent
constraints imposed by the other constructs.

4) ,:X are functions that associate to an arc, a

source and a target. The additional notations it, tw, wt, to,

td, and it, tw, wt, to, td, will also be reflected in the graph

of the sketch because they are operators of the sketch.

 is a set of arcs divided into five subsets

=it⊔tw⊔wt⊔totd. Therefore, the set of arcs  is the

disjoint union of the five subsets of arcs. This means that  is
the coproduct of a discrete diagram formed by five nodes.

In the sketch we will specify that X is the colimit of the

discrete diagram formed by nodes it, tw, wt, to, and td
through the cocone K3. The shape graph of this diagram is
made up of nodes 10, 11, 12, 13, 14 and the functor k3

corresponding to this diagram is defined as: k3(10)=it;

k3(11)=tw; k3(12)=wt; k3(13)=to; k3(14)=td. Therefore, the

node denoted with  in the graph of the sketch will become in

the Set category the set  which will be the colimit of this
discrete diagram.

|x|=1 for any xXw, i.e. the components assembled in a
workstation will all go to the same test station. For this we

have to make sure that the function wt:wtXw is a

monomorphism, i.e. the pullback of wt with wt has to be wt.
For this we will introduce a cone L4 in the metamodel sketch.
The shape graph of this diagram is in Fig. 13. and the functor

l4 corresponding to this diagram is defined as: l4(12)=wt;

l4(12’)= wt; l4(5)= xw; l4(wt)= wt. The limit of this diagram

in the Set category will have to be .

So we’ve got the sketch of a MLMS, we denote it with
L

1
(MLMS)=(𝓖, 𝓓, 𝓛, 𝓚) where: 𝓖 is the graph from Fig. 9,

𝓓={D1}, 𝓛={L1,L2,L3,L4} and 𝓚={K1,K2,K3}.

Fig. 13. Shape Graph of Pullback Diagram.

IV. THE METAMODEL

A correct model in relation to the sketch L
1
 = (𝓖, 𝓓, 𝓛, 𝓚)

must be the image of a functor defined on the graph 𝓖 in Set
which complies with the conditions imposed by the
components 𝓓, 𝓛 and 𝓚 of the sketch.

From the way we constructed the L
1
 sketch, it follows that

this sketch specifies the same mathematical object that is also
defined by definition 1. An important advantage of the sketch
is that it provides a graphical specification of the metamodel.

We observe two advantages of using the sketch for
specifying metamodels, the first is that they are defined in a
graphical language and the second is that the constraints
imposed by the sketch will be respected by all the models
generated on it. The sketches are not designed as notations,
but as a mathematical structure incorporating a formal syntax
expressed by the semantics of constructions from the category
theory.

We note that all the concepts of a model, both the entities
involved in the model and the associations between them, are
represented by the nodes of the sketch. The arcs of the sketch
are not concepts of the model, they are sketch operators and
are used to interpret the syntax of the models. These operators
will be implemented as algorithms in the metamodel.

The sketch objects that represent the atomic elements of
the models will be part of the modeling tool and will then be
put on PaletteDrawers to visually serve the models definition
procedure.

For this we will define a functor: : Sets that associate
to each visual object of the sketch an instance that will be
hosted by the modeling tool palette.

Example 2. For example 1, the modeling tool palette will
have to host the concepts represented by the nodes of the
subsketch from Fig. 14. Only these concepts will serve to
visually define the models specified by the sketch L

1
.

Fig. 14. Subsketch of basic Concepts.

9’

9 7




 12’

12





5

it

xt

xi


it


it

xw


tw


wt


to


td
 xd

xo


tw


wt


td


to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

44 | P a g e

www.ijacsa.thesai.org

The sketch L
1
 = (𝓖, 𝓓, 𝓛, 𝓚) is the MLMS metamodel,

that is, the syntax of the modeling language. The image of this
sketch through a functor in Set is a model with an imposed
syntax. Therefore, specifying a syntactically correct MLSM is

equivalent to defining a functor : Set that transforms
the sketch nodes into sets of classes that preserve the node
type.

The operators of the sketch will be transformed into
functions with the same role of operators with the same name
and that respect the conditions imposed by the sketch.

Obviously there are models among which we can define a
certain similarity of structures in the sense of homomorphism.
This similarity is defined by a natural transformation

:
 

 which becomes a graph homomorphism between

the models generated by the sketch L
1
.

If we consider each model
 , k0 generated by the L

1

sketch an object and each natural transformation between two

models
 and

 as an arrow we will get a category that we

call the category of models generated by the sketch L
1
 which

we denote with Mod(L
1
, Set). All models in this category are

syntactically correct. The dynamic behavior of a model is
given by a sequence of instances associated with each model
as we will see in the next section.

V. THE DYNAMIC BEHAVIOR OF A PROCESS MODEL

The semantics of a process model represents the dynamic
behavior of the modeled real system. This is accomplished by
performing procedures according to the interaction rules of the
real system components. It is therefore essential that the
procedures associated with the model's activities be as faithful
as possible to the interaction rules of the components of the
real system. The sequence of executed procedures involves the
state sequence of the model [12,13,14].

Simulating a process model involves a collection of
functions that exploit its knowledge base to enable this
information to be treated in such a way as to obtain a similar
behavior to that of the simulated system. These functions
change the state of the system, i.e. it produces a set of events
that in turn determines the execution of other activities [2,3,4].

The basic sketch of a metamodel introduces a series of
invariants of a model such as the fact that we cannot have in a
model only atomic elements of the types specified by the
sketch objects. These invariants make it possible to define the
possible states of the model by attribute values at a given time.
The transition of the model from one state to another will be
done through specific reaction rules called macrotransitions
[7,10,11].

A macrotransition that causes the model to pass from the
state represented by a vector V

1
 to the state represented by a

vector V
2
 through the reaction rules p can be symbolized by a

triplet (V
1
, p, V

2
).

Since states are often values of the attributes distributed
over time, the term event is used instead of the state vector
and as a result a macrotransition is symbolized by (E

1
, p, E

2
)

with a meaning similar to the one above.

In the case of our model we will introduce another
invariant, namely that any instance of a model will contain
only one instance for each object of the model. We can thus
define a transition in the form (𝕴1

, p, 𝕴2
) where 𝕴1

 and 𝕴2
 are

instances and p is a natural transformation as we will see
below.

In a transition system, if we know the state of the system at
one point, we can describe the evolution of the system without
the states through which the system passed until it reached its
current state [10,12].

We will denote with L
2
= H

2
(L

1
) a model generated by the

L
1
 sketch. Each object of the model L

2
 is a set of classes that

have the corresponding node type of the L
1
 sketch. The arcs of

the model L
2
 represent the model operators.

Fig. 15. Example of a MLMS Model.

m1 m2 m3 m4 m5 m6

10 20 10 24 10 30

R BI I O BO

m1 10 1 1 5

m2 20 2 2 10

m3 10 1 1 5

m4 24 2 2 12

m5 10 1 1 5

m6 30 3 3 15

 m10 m11

 88 112

R BI I O BO

m2 10 1

m3 8 2

m7 - - 1 4

 R BI I O BO

m4 14 2

m5 6 1

m8 - - 1 5

R BI I O BO

m8 24 2 2 12

R BI I O BO

m7 10 1 1 8

R BI I O BO

m7 10 1

m8 8 2

m9 - - 1 4

R BI I O BO

m9 12 1 1 10

R BI I O BO
m9 10 1

m6 8 2

m10 - - 1 4

R BI I O BO

m9 10 1

m1 8 2

m11 - - 1 4

R BI I O BO

m11 8 1 1 8

R BI I O BO

m10 6 1 1 8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

45 | P a g e

www.ijacsa.thesai.org

If we denote with M the graph model corresponding to the
model L

2
, then M=J(L

2
) where J is a functor defined on the set

of models generated by the L
1
 sketch with values in the graph

category J:Mod(L
1
,Set)Graph. The functor J maps each

model to the resulting graph by interpreting sketch operators
and natural transformations between models in graph
homomorphisms.

Example 3. In example 1, a model L
2
 limited to the atomic

elements represented in Fig. 14, which are necessary and
sufficient for the visual representation of the model, could be
that generated by the functor defined as follows:

 xi) =Xi={I1} is a set of concepts of type xi;

 xo) =Xo={O1 } is a set of concepts of type x0;

 xd) =Xd={D1 } is a set of concepts of type xd;

 xw) =Xw={W1, W2, W3, W4, W5} is a set of concepts of

type xw;

 xt) =Xt={T1, T2, T3, T4, T5, T6} is a set of concepts of type

xt;

 it)=it={
 } represents the subset of relations of type it;

 tw)=tw={ 
 , 

 , 
 , 

 , 
 , 

 , 
 , 

 }

represents the subset of relations of type tw;

 wt)=wt={
 , 

 , 
 , 

 , 
 } represents the subset

of relations of type wt;

 to)=to={
 , 

 } represents the subset of relations of

type to;

 td)=td={
 , 

 , 
 , 

 , 
 , 

 } represents the

subset of relations of type td;

it:itXi associates to each relation from it the source node

from Xi: it(
)=I1;

it:itXt associates to each relation from it the target node

from Xt: it(
)= T1;

tw:twXt assigns to each relation from tw the source node

in Xt: tw(
)=T1; tw(

)=T1; tw(
)=T1; tw(

)=T1;

tw(
)= T2; tw(

)=T3; tw(
)=T4; tw(

)=T4;

tw:twXw assigns to each relation from tw the target node

in Xw: tw(
)=W1; tw(

)=W2; tw(
)=W4;

tw(
)=W5; tw(

)=W3; tw(
)=W3; tw(

)=W4;

tw(
)=W5;

wt:wtXw assigns to each relation from wt the source node

in Xw: wt(
)=W1; wt(

)=W2; wt(
)=W3;

wt(
)=W4; wt(

)=W5;

wt:wtXt assigns to each relation from wt the target node in

Xt: wt(
)=T2; wt(

)=T3; wt(
)=T4; wt(

)=T5;

wt(
)=T6;

to:toXt assigns to each relation from to the source node in

Xt: to(
)= T5; to(

)= T6;

to:toXo assigns to each relation from to the target node in

Xo: to(
)= O1; to(

)= O1;

td:tdXt assigns to each relation from td the source node in

Xt: td(
)=T1; td(

)=T2; td(
)=T3; td(

)=T4;

td(
)=T5; td(

)=T6;

td:tdXd assigns to each relation from td the target node in

Xd: td(
)=td(

)=td(
)=td(

)=td(
)=td(

)=D1;

Then the MLMS model is like in Fig. 15.

The instantiation of the model L
2
 is represented by a

functor : Sets that maps each set of classes of the model
L

2
 to a set of instances of the same type.

Each instance of the model L
2
 is a configuration that the

process can adopt as a state.

If we now consider every instance of the model L
2
 an

object and every natural transformation between these
instances as an arrow we get a category that we call the CIT
category, that is, the category of instances and natural
transformations of the model L

2
.

The CIT category offers the contextual routes of evolution
of a process model and represents the possible interactions
between the process and its environment. It is often possible to
analyze the dynamics of a process only through the transitions
offered by the CIT category. But the execution of the model
will be based on the reaction rules specific to each process in
the context of admissible routes from the CIT category. The
set of reaction rules determines a reaction relation between the
admissible states that are represented by the instances of the
model [11].

A process configuration is a state of the process and is
characterized by the values of the attributes associated to each
atomic element, as well as by its structure within the
boundaries offered by the natural transformations that
coincide with homomorphisms between the corresponding
graphical models. Thus, the macrotransitions resulting from
this combination represent the actual behavior of the system
modeled in interaction with a given context [10,11,14].

If the configuration 𝕴' is obtained from the configuration 𝕴
by applying the reaction rules of the model, then we say that
between 𝕴 and 𝕴' there is a reaction relation from 𝕴 to 𝕴'

which we denote by 𝕴𝕴'. If the application of the reaction

rules is done in the context of a natural transformation  then

we will denote this with 𝕴


→ 𝕴’.

In this context, the execution of a process becomes a
sequence of reaction rules in the context of natural
transformations, a path in the CIT category.

𝕴0


→ 𝕴1


→ … 𝕴n


→ …

Fig. 16. Execution of a Model.

: CIT

0

1

2

0


1


2

L
2

𝕴
0

𝕴
1

𝕴
2


0


1


2



















(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

46 | P a g e

www.ijacsa.thesai.org

Of course that each model can support a set of different
executions in different contexts. All these executions can be

specified by functors that map the category  defined as
follows:

: 0

→ 1


→ … k


→ …

In the CIT category. Each corresponding functor

:CIT orders a set of model configurations over time and
is defined as follows (Fig. 16)

 (i)= 𝕴i for all i0;  (i)= 
i
 for all i0

Example 4. In example 1 the state of an instance is given
by the values of the attributes representing the current
quantities in input buffers Xi (entry stations), output buffers
XO (exit station), faulty components buffer Xd, and
respectively in the input and output buffers of every
assembling and testing stations Xw and Xt. Natural
transformations between model instances are represented by
macro-transitions triggered by the state of each instance. The
trigger rules are specific to each concept. A transport action,
represented by the arcs of the model, is performed if at the
source buffer there are at least as many parts as the transport
capacity and in the exit buffer there is enough storage space.
An assembly action triggers if all the required parts are in the
input buffer and there is storage capacity in the output buffer.
A test action is triggered if there are necessary parts in the
entry buffer, and there is storage capacity in the output buffer.

In order to optimize the workflow, execution time
proportional to real time was included for each action.

The MLMS metamodel was implemented in MM-DSL
then translated and executed in ADOxx. Also, to demonstrate
the concept, we also implemented the PN grammar.

VI. CONCLUSION

In this paper we presented a new approach based on the
category theory in specifying metamodels. The visual
specification of the model facilitates the involvement of
specific field experts in the metamodel specification and
validation process.

There is a natural link between process models and
category theory. The category theory provides a representation
of a metamodel as a mathematical object, a sketch, and a model
as a functor that is also a mathematical object, thus simplifying
the way to think of a process model. In this way, all theoretical
results in the category theory can help solve some classic
problems in modeling processes.

A modeling tool is more than a programming language, it
can be understood as a modeling method [1]. A modeling tool
usually contains a visual language and a set of mechanisms
and algorithms.

In the categorical model from this paper the grammar of
the language is specified by a categorical sketch. Mechanisms
and algorithms represented by natural transformations.
Universal constructions in the category theory allow for the
implementation of mechanisms and algorithms with a high
degree of generality at the level of the metamodels.

It is not too hard to see that defining models as functors
creates a framework for addressing model migration issues
and multi-paradigm modeling. We will address these issues in
future papers.

The CIT category represents the admissible routes of any
process at the metamodel level. Of course these routes are
then conditioned and thus validated or invalidated by the
execution rules of each model.

The natural transformations from the CIT category are
objects that also have a certain state and can therefore
aggregate information about process progress over time,
execution frequency of each activity, execution times, costs,
etc. Also, these objects can be endowed with artificial
intelligence to make decisions and learn the best performing
routes in relation to various criteria. All these features can be
implemented at the metamodel level.

REFERENCES

[1] Daniel C. Crăciunean, Dimitris Karagiannis, 2018, Categorical
Modeling Method of Intelligent WorkFlow. In: Groza A., Prasath R.
(eds) Mining Intelligence and Knowledge Exploration. MIKE 2018.
Lecture Notes in Computer Science, vol 11308. Springer, Cham.

[2] Dimitris Karagiannis, H. Kühn, 2002. Metamodelling Platforms. Invited
paper in: Bauknecht, K.; Tjoa, A Min.; Quirchmayer, G. (eds.):
Proceedings of the Third International Conference EC- Web 2002 -
Dexa 2002, Aix-en-Provence, France, September 2-6, 2002, LNCS
2455, Springer-Verlag, Berlin, Heidelberg.

[3] Dimitris Karagiannis, N. Visic, 2011. Next Generation of Modelling
Platforms. Perspectives in Business Informatics Research 10th
International Conference, BIR 2011 Riga, Latvia, October 6-8, 2011
Proceedings.

[4] Dimitris Karagiannis, Heinrich C. Mayr, John Mylopoulos, 2016.
Domain-Specific Conceptual Modeling Concepts, Methods and Tools.
Springer International Publishing Switzerland 2016.

[5] Dimitris Karagiannis, Junginger S., Strobl R., 1996. Introduction to
Business Process Management Systems Concepts. In: Scholz-Reiter B.,
Stickel E. (eds) Business Process Modelling. Springer, Berlin,
Heidelberg, 1996

[6] Ernest G. Manes, Michael A. Arbib, 1986. Algebraic Approaches to
program semantics, Springer Verlag New York Berlin Heidelberg
London Paris Tokyo – 1986.

[7] Michael Barr, Charles Wells, 2012. Category Theory For Computing
Science, Reprints in Theory and Applications of Categories, No. 22,
2012.

[8] Michael Barr, Charles Wells, 2002. Toposes, Triples and Theories,
November 2002.

[9] R. F. C. Walters, 2006. Categories and Computer Science, Cambridge
Texts in Computer Science, Edited by D. J. Cooke, Loughborough
University, 2006.

[10] Robin Milner The Space and Motion of Communicating Agents,
Cambridge University Press, 2009. ISBN 978-0-521-73833-0

[11] Weske, Mathias, 2012. Business Process Management - Concepts,
Languages, Architectures, 2nd Edition. Springer 2012, ISBN 978-3-642-
28615-5, pp. I-XV, 1-403.

[12] Winskel Glynn, 2009. Topics in Concurrency, Lecture Notes, April
2009.

[13] Wil M.P. van der Aalst, 2011. Process Mining Discovery, Conformance
and Enhancement of Business Processes, Springer-Verlag Berlin
Heidelberg 2011.

[14] W.M.P. van der Aalst and K.M. van Hee, 2004. Workflow Management:
Models, Methods, and Systems. MIT press, Cambridge, MA, 2004.

https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-73833-0

