
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

213 | P a g e

www.ijacsa.thesai.org

JsonToOnto: Building Owl2 Ontologies from Json

Documents

Sara Sbai
1
, Mohammed Reda Chbihi Louhdi

2
, Hicham Behja

3
, Rabab Chakhmoune

4

LRI – Laboratory, ENSEM, Hassan II University, Casablanca, Morocco
1, 3, 4

Research Laboratory on computer science innovation, Faculty of Sciences Ain Chock

Hassan II University, Casablanca, Morocco
2

Abstract—The amount of data circulating through the web

has grown rapidly recently. This data is available as semi-

structured or unstructured documents, especially JSON

documents. However, these documents lack semantic description.

In this paper, we present a method to automatically extract an

OWL2 ontology from a JSON document. We propose a set of

transformation rules to transform JSON elements to ontology

components. Our approach also allows analyzing the content of

JSON documents to discover categorization in order to generate

class hierarchy. Finally, we evaluate our approach by conducting

experiments on several JSON documents. The results show that

the obtained ontologies are rich in terms of taxonomic

relationships.

Keywords—JSON documents; OWL2 ontologies; ontology

generation; transformation rules; information theory;

classification; decision trees

I. INTRODUCTION

A tremendous amount of documents exists on the web,
especially semi-structured and unstructured documents, and it
is continuously increasing which makes analyzing and
retrieving these documents difficult. To overcome these
difficulties, we need to consider their semantics.

Semi-structured documents on the web are available in
different formats, such as XML, HTML and JSON.

JSON (JavaScript Object Notation) [1] is a lightweight
data interchange format that was first specified and
popularized by Douglas Crockford. It is based on a subset of
the JavaScript Programming Language.

JSON has been widely used due to its simplicity and
ability to be processed by both humans and machines easily.
However, it lacks semantics due to the fact that it is schema
less.

This work is supported by OCP group, Morocco.

Ontologies are essentially used to express semantics and
integrate them in web applications.

Tom Gruber [2] defined an ontology as “an explicit
specification of a conceptualization of a domain of interest”,
as for Swartout and colleagues [3], they defined an ontology
as “a hierarchically structured set of terms for describing a
domain that can be used as a skeletal foundation for a
knowledge base”. Most existing methods in ontology
extraction from semi-structured data use XML documents as
an information source.

In this work, we propose an automatic approach to build
OWL2 ontology from a JSON document. We propose a set of
transformation rules to translate JSON elements to ontology
constructs. We also use data mining techniques to analyze the
documents „content in order to discover class hierarchy.

The remainder of this paper is organized as follows.
Section II discusses related works in ontology extraction from
semi-structured documents. Section III describes the proposed
method for extracting OWL2 ontology from JSON document.
Section IV presents the experimentations and the results. And
finally, Section V concludes this paper, and discusses the
perspectives of this work.

II. RELATED WORKS

For semi-structured data, we find different formats such as
XML and JSON. In this section we will present a few existing
methods in ontology extraction from JSON documents.

In [4], the authors propose an automatic approach to
convert web data into OWL ontology. This method takes as
input related JSON data objects transmitted from web services
to applications. It builds semantic models for data instances.

The process of extracting and constructing semantics is
divided into four steps: (1) JSON parsing: The authors parse
the data according to key-value pairs in JSON objects and
transform them into sets of triplets, (2) Semantic mapping:
The data is stored as triplets similar to the description of RDF
turtle [5]. During this step, triplet sets are analyzed to
construct ontologies and their instances, (3) Semantic
enrichment: The authors deploy automatic learning methods to
improve the use of semantic data, they also take advantage of
ontology reasoning to provide additional information on
ontology (axioms definition, constraints definition, comments
and labels addition) and finally, (4) Ontology merging: During
this step, the authors align several ontologies according to the
relations and concepts between them and refine the
descriptions to build a unified ontology. The authors compare
ontology constructs by using domain dictionaries and
thesaurus and then merge ontologies according to semantic
correspondences between them.

In [6], the authors proposed a protégé plugin named
OWLET to assist the experts during the refinement phase of
the ontology construction process. This plugin offers an
approach to transform real world (image) objects to instances
in order to import them to the existing ontology model for
semi-automated classification. The image objects are first

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

214 | P a g e

www.ijacsa.thesai.org

transformed to GeoJSON files and then converted to instances
to be imported to the existing ontology.

In [7], the authors proposed a method to build ontology
knowledge base from semi-structured datasets (e.g.
spreadsheet, JSON, XML…). The first step is extracting target
columns from the semi-structured datasets. Then, the authors
proposed a transformation table generator (TTG) and a cell
value importer (CVI) to import values from semi-structured
data sets. Next, the authors defined a Property expression
(ProperyExp) to describe mapping information to map the
extracted columns to properties. And finally, the ontology
knowledge base is constructed.

In another approach [8], the authors propose KESeDa to
extract knowledge from heterogeneous semi-structured data
sources. The approach has several processing steps. Before the
processing the authors detect the file format first. If the file is
an XML or HTML document, the authors use existing tools to
extract knowledge. However, if the file is a JSON document,
the authors apply their own approach. The first step is
preparing the source file for later annotations. Therefore, all
values contained in a JSON object are encapsulated in a
separate object. This object also contains a table structure as a
placeholder to store all identified properties that can be
assigned to predicates during the following processes. Then,
the values are analyzed using a set of dictionaries. The
collected results are stored in the reserved table structure. The
approach also offers the possibility to combine several
dictionaries to map compound predicates. The next step is
analyzing the values according to their data type and format.
Then, the keys of the JSON objects are analyzed. If the name
of a key exactly matches a predicate, it will be stored in the
table. Otherwise, synonyms for the key are searched in a
dictionary and evaluated based on a possible mapping.
Another step is to transform the extended JSON object source
into a JSON-LD [9] representation by selecting an appropriate
RDF predicate for each property. Finally, the authors try to
find an appropriate RDF class for each object according to its
set of predicates.

We tried to find other approaches that link ontologies to
JSON documents. We found three existing research works that
use document oriented databases for ontology learning.
Document oriented databases store documents in JSON
format.

NoSQL (Not Only SQL) [10] are databases that are not
built on tables and do not use SQL to manipulate data. They
are used to manage large amounts of data or big data. NoSQL
databases do not support ACID transactions across multiple
data partitions for scalability reasons. The NoSQL databases
also respond to the CAP theorem which is more suitable for
distributed systems.

NoSQL databases are generally classified into four
categories:

 Key / Value: The data is simply represented by a key /
value pair. The value can be a simple string of
characters or a serialized object.

 Key / value databases are simple and allow quick
retrieval of values required for application tasks such as

managing user profiles or sessions or retrieving product
names.

 Example: Dynamo (Amazon), Voldemort (LinkedIn),
Redis, BerkleyDB, Riak.

 Column Oriented: Employ a distributed, column-
oriented data structure that hosts multiple attributes per
key. They are useful for distributed data storage, large
scale and batch data processing, and exploratory and
predictive analysis by statisticians and programmers.

 Example: Bigtable (Google), Cassandra (Facebook),
HBase (Apache).

 Document oriented: They were designed to manage and
store documents. These documents are in XML, JSON
or BSON format. Document-oriented databases are
useful for managing Big Data-sized document
collections such as text documents, emails and XML
documents.

 Example: CouchDB (JSON), MongoDB (BSON).

 Graph oriented: They are based on graph theory. It is
based on the notion of nodes, relationships and
properties attached to them. They are useful when one
is interested in the relations between the data.

 Example: Neo4j, InfoGrid, GraphDB, AllegroGraph,
InfiniteGraph.

In the first approach [11], the authors propose a framework
for data integration. They use two NoSQL databases, namely
MongoDB as document-oriented database and Cassandra as
column-oriented database as a source of information an OWL
ontology as a target. The approach is divided into three steps.
First, the authors create a local ontology that matches each
data source. They consider that each container defines a DL
concept and each key label defines an object property or a data
property. To organize the concepts in a hierarchy, methods of
formal concept analysis (FCA) [12] were used.

In the second step, the authors align the local ontologies to
create a global ontology. First they enrich each ontology using
the IDDL reasoner [13], then they detect simple and complex
correspondences between the two ontologies.

Finally, the authors propose a query language to translate
SPARQL to the query language of each source.

In the second approach [14], the authors use MongoDB as
a data source and an OWL ontology as a result. The authors
define a set of transformation rules to create the ontology
concepts and properties. This approach is divided into four
stages: (1) Creating the ontology skeleton, (2) Identifying
object properties and data type properties, (3) Identifying
individuals and finally (4) Deducting axioms and constraints.

In the next section, we propose an automatic approach to
build ontology from JSON documents.

III. PROPOSED METHOD

The process of building ontology from scratch is tedious
and error prone, therefore, we propose an automatic approach
to extract an OWL2 ontology from a single JSON document.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

215 | P a g e

www.ijacsa.thesai.org

First, we analyze the data in these documents to discover
categorization patterns in order to identify class hierarchy.
This will eventually enable us to generate ontology with a
deep taxonomy. Then we propose a set of transformation rules
to convert JSON elements to OWL2 components.

A. Class Hierarchy Identification

1) Inheritance identification using key labels: In this step,

we analyze key labels in nested JSON object to identify class

hierarchy. First we extract all keys from every object, then we

compare them. If we find keys that exist in an object and don‟t

exist in another, we create a super class corresponding to the

JSON array of objects. A dataProperty corresponding to the

common keys is then extracted where the domain is the super

class and the range is the type of the JSON value (i.e. String,

Integer…). Then sub classes are created where the label is a

concatenation of the word “SubClassOf” plus the label of the

super class plus a number, this number ranges from 1 to the

number of the obtained subclasses. In the example presented

in Fig. 1, we have two common keys “ExternalID” and

“Type”. We will have a super class “Party”, which will be the

domain of two Data Properties “hasExternalID” and

“hasType”. Then we will create two sub classes,

“SubClassOfParty1” and “SubClassOfParty2”. We then

extract four Data Properties, “hasFirstName” and

“hasLastName” where the domain is “SubClassOfParty1”, and

“hasOrganizationName” and “hasListingName” where the

domain is “SubClassOfParty2”.

2) Inheritance identification using Data Mining

techniques: Data mining techniques look for patterns in large

data. One of the techniques that are widely used is

classification. Classification is used to gather data instances

with similar traits in categories or classes.
Classification methods include decision trees, Bayesian

networks, and k-nearest neighbor. Decision trees aim to split a
dataset into homogenous classes.

Our decision tree induction is a recursive algorithm. It is
based on C4.5 algorithm (see Fig. 2).

C4.5 algorithm [15] was proposed by Ross Quinlan in
1993. It is the successor to ID3 (Iterative Dichotomiser 3), it
takes into account continuous attributes. Decision trees have a
leaf which indicates a class, or a decision node that specifies
the test to be carried out. The outcome of the test can either be
a leaf or a subtree. The nodes and leafs are connected with
branches.

The decision node is chosen by using information theory
[16]. Entropy and information gain are calculated. Shannon's
entropy is a measure of uncertainty of a random variable.
Entropy is defined by:





n

i

ibi ppXH
1

log)((1)

Where:

: The set of examples

n: the number of values

b: The number of distinct values

pi where i Є [1, n]: the probability of occurrence of an element

The information gain of a set of examples with respect
to a given attribute aj is the entropy reduction caused by the

partition of according to aj. It is defined by:

)()(),(
)(

va

va

XH
X

X
XHaXGain

avaleurv








 (2)

{

"customer": {
"details": {

"party": [{

"type": "individual",
"externalID": "ABC123",

"firstname": "John",

"lastname": "Smith"
},

 {

 "type": "organization",
 "externalID": "Apple",

 "organizationName": "AppleInc",

 "listingName": "APPLE"
 }]

}

}
}

<owl:Class rdf:about="http://www.JsonToOnto.com#SubClassparty1">

<rdfs:subClassOf rdf:resource="http://www.JsonToOnto.com#party"/>

</owl:Class>

<owl:Class rdf:about="http://www.JsonToOnto.com#SubClassparty2">

<rdfs:subClassOf rdf:about="http://www.JsonToOnto.com#party"/>

</owl:Class>

Fig. 1. An Example of a JSON Object with the Proposed Transformation.

Fig. 2. Decision Tree Construction Algorithm. X

X

X

DecisionTreeConstruction {Decision Tree Construction
Algorithm}

Input:
- A class C
- Attributes {A1, ..., An}

- A set of data N

Output:
- The decision tree

IF all the examples of N are in the same class CTHEN

 Create a leaf and assign the the current value of C to it

ELSE

 Select the attribute A the largest information gain as the

 best attribute
 Assign the label of the attribute A to the current node

 Split the data set N according to the values of the attribute

 A v1...vn to sub data sets N1, ..., Nn
 FORi = 1 to n

 DecisionTreeConstruction (C, Ai, Ni)

 END FOR

END IF

Return the decision tree

END

https://mariuszprzydatek.com/2014/11/11/iterative-dichotomiser-3-id3-algorithm-decision-trees-machine-learning/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

216 | P a g e

www.ijacsa.thesai.org

Where:

X
aj = v

 X is the set of examples where the attribute aj takes

the value v and


 indicates the cardinal of X .

The attribute with the highest information gain is used as a
decision node.

In our approach, the predefined class is unknown,
therefore we consider every attribute as a predefined class and
we construct a decision tree for each one. Next, we determine
the depth of each tree and choose the tree with the least depth
since it leads to homogenous categories the fastest. Finally, we
consider its leafs as our categories. The next figure describes
our algorithm (Fig. 3).

To illustrate our algorithm, we use the JSON object
presented in Fig. 4 as example.

First we construct our decision tree. We obtain the result
presented in Fig. 5.

We consider the leafs of our trees as our sub classes. We
have the presented in Fig. 6.

As presented in our results, the names of our sub classes
are a concatenation of “SubClass” and the name of the super
class followed by a number.

B. Transformation Rules

In this paragraph, we present the proposed transformation
rules. We illustrate these rules through the example presented
in Fig. 7.

Rule 1: Every JSON object is transformed to a simple class
in the ontology. Example:

<owl:Class rdf:ID="Class1"/>

<owl:Class rdf:ID="director"/>

“Class1” corresponds to the main JSON object.

Fig. 3. Inheritance Detection Algorithm.

Rule 2: We analyze the key-value pairs. If the value is a
simple type (string, number (integer, double) or boolean (true,
false)), then we have a dataProperty where the domain is the
class corresponding to the object containing the key and the
range is the type of the value into the ontology. The
dataProperty name is the concatenation of the “has”, the key
label and the label of the domain class. For example, see
Fig. 8.

Rule 3: If an object B is integrated into an object A, we
transform this integration into an ObjectProperty where the
domain is the class corresponding to object A and the range is
the class corresponding to object B. The name of the object
property relationship is the concatenation of the word “has”
with the name of the object B. For example, see Fig. 9.

Fig. 4. Inheritance Detection Algorithm.

Fig. 5. Obtained Decision Tree with the Least Depth.

[{

"id": "0001",
 "type": "donut",

 "name": "Cake",

 "ppu": 0.55,
 "batters": {

 "batter": [

 { "id": "1001", "type": "Regular" },
 { "id": "1002", "type": "Chocolate" },

 { "id": "1003", "type": "Blueberry" },

 { "id": "1004", "type": "Devil's Food" }]
},

 "topping": [
 { "id": "5001", "type": "None" },

 { "id": "5002", "type": "Glazed" },

 { "id": "5005", "type": "Sugar" },
 { "id": "5007", "type": "Powdered Sugar" },

 { "id": "5006", "type": "Chocolate with Sprinkles" },

 { "id": "5003", "type": "Chocolate" },
 { "id": "5004", "type": "Maple" }]

 },

 {
"id": "0002",

"type": "donut",

"name": "Raised",
"ppu": 0.55,

 "batters": {

 "batter": [{ "id": "1001", "type": "Regular" }]
 },

 "topping": [

 { "id": "5001", "type": "None" },
 { "id": "5002", "type": "Glazed" },

 { "id": "5005", "type": "Sugar" },

 { "id": "5003", "type": "Chocolate" },
 { "id": "5004", "type": "Maple" }]

 },

 …………..

]

Inheritance detection {Inheritance detection Algorithm}

Input:
- Attributes {A1, ..., An}
- A set of data N

Output:
- List V designating the categories

Let d: Positive integer designating the tree‟s depth

Let C: A class

FOR each attribute Ai
C <- Ai

DecisionTreeConstruction(C, Ai, Ni)

d <- The tree‟s depth

END FOR

Choose the tree with the least depth

Select the leafs of the tree and add them to the list V
Remove duplicates from the list V

Return V

END

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

217 | P a g e

www.ijacsa.thesai.org

Fig. 6. Theresult OWL from the JSON Object in Fig. 4.

Fig. 7. Anexample of a JSON Object.

IV. EXPERIMENTS AND RESULTS

To evaluate the efficiency of our approach, we
implemented it with java and jena api. Our application allows
building an OWL2 ontology from a JSON document. We use
as an illustrative example the JSON object presented in Fig. 4.
We obtained as a result the ontology presented in Fig. 10.

First, we used the inheritance identification using key
labels to extract sub classes but we didn‟t find any results.
Next, we applied our inheritance detection algorithm using
decision trees. We were able to identify four sub classes.
Finally, we applied our transformation rules to generate the
final ontology. In total, we obtained seven data properties and
three object properties.

Fig. 8. The Result OWL from the JSON Object in Fig. 7 by Applying Rule 2.

<owl:DatatypeProperty rdf:about=http://www.JsonToOnto.com#hasfirst_name_director>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#director"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#haslast_name_ director">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#director"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#hasyear_Class1">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#hassummary_Classe1">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#hastitle_Class1">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/>

</owl:DatatypeProperty>

{

 "title": "The Social network",

 "summary": "On a fall night in 2003, Harvard undergrad
and

programming genius Mark Zuckerberg sits

 down at his computer and heatedly begins
working (...)",

 "year": 2010,

 "director": { "last_name": "Fincher",
 "first_name": "David"}

}

<owl:Class

rdf:about="http://www.JsonToOnto.com#SubClassClass11">

<rdfs:subClassOf

rdf:resource="http://www.JsonToOnto.com#Class1"/>

</owl:Class>

<owl:Class

rdf:about="http://www.JsonToOnto.com#SubClassClass12">

<rdfs:subClassOf

rdf:about="http://www.JsonToOnto.com#Class1"/>

</owl:Class>

<owl:Class

rdf:about="http://www.JsonToOnto.com#SubClassClass13">

<rdfs:subClassOf

rdf:about="http://www.JsonToOnto.com#Class1"/>

</owl:Class>

<owl:Class

rdf:about="http://www.JsonToOnto.com#SubClassClass14">

<rdfs:subClassOf

rdf:about="http://www.JsonToOnto.com#Class1"/>

</owl:Class>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

218 | P a g e

www.ijacsa.thesai.org

Fig. 9. Theresult OWL from the JSON Object in Fig. 7 by Applying Rule 3.

Fig. 10. The Result OWL 2 Ontology.

We also conducted our approach on five different data
sets. The sets are all various JSON objects with different sizes.
The results of our experiments are presented in the technical
report available at http://apps.ensam-umi.ac.ma/jsontoonto/.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an automatic approach to
extract an OWL2 ontology from a JSON document. We were
able to extract deep taxonomies from JSON documents using
the key labels and data mining techniques. We also were able
to transform the JSON document elements to OWL
components by proposing a set of transformation rules. In
order to give the obtained ontology classes a meaningful
name, we add the intervention of a domain expert to
semantically validate the generated schema and rename the
ontology classes.

We developed a prototype that implements our proposal
and we tested it using various JSON documents. The obtained
results were satisfactory. However, this is still the first version
of our prototype and there is still plenty of room for
improvement. We are currently working on converting larger
JSON documents.

As we mentioned before, we used a single JSON document
to extract an OWL2 ontology. We intend to improve our
approach to handle multiple documents as an information
source.

ACKNOWLEDGMENT

This work is supported by the project “Knowledge
Management for Development in the Context of OCP Group
(KM4Dev – OCP Group)” granted by OCP Group, Morocco.

REFERENCES

[1] Crockford, D. JSON: The fat-free alternative to XML. Proc. OfXML.
Vol. 2006.

[2] T.Gruber, “Ontology”, in the Encyclopedia of Database Systems, Ling
Liu and M. Tamer Özsu (Eds), Springer-Verlag, 2009.

[3] B.Swartout, R. Patil, K. Knight and T. Russ, "Towards Distributed Use
of Large-Scale Ontologies" Spring Symposium Series on Ontological
Engineering. Stanford University, CA. 1997, Pages:138-148.

[4] Y. Yao, H. Liu, J. Yi, H. Chen, X. Zhao & X. Ma, “An automatic
semantic extraction method for web data interchange”,The 6th
International Conference on CSIT. ISBN: 987-1-4799-3999-2, 2014.

[5] RDF 1.1 Turle, W3C Recommendation–25 February 2014:
https://www.w3.org/TR/2014/REC-turtle-20140225/.

[6] T.J. Lampoltshammer and T. Heinstracher, “Ontology Evaluation with
Protégé using OWLET”, Infocommunications Journal, 2014.

[7] G.H. Baek, S.K. Kim & K.H. Ahn, “Framework for automatically
construct ontology knowledge base from semi-structured datasets”, the
10th International Conference for Internet Technology and Secured
Transactions (ICITST), 2015.

[8] M. Seidel, M. Krug, F. Burian & M. Gaedke,“KESeDa: Knowledge
extraction from heterogeneous semi-structured data sources”, In
Proceedings of the 12th International Conference on Semantic Systems,
pages 129-136, 2016.

[9] JSON-LD 1.0, A JSON-based Serialization for Linked Data. W3C
Recommendation – 16 January 2014: https://www.w3.org/TR/json-ld/.

[10] A. Nayak, A. Poriya & D. Poojary, “Types of NoSQL Databses and its
comparison with Relational Databases”, International Journal of Applied
Information Systems (IJAIS)–ISSN: 2249-0868 Volume 5– No.4, March
2013.

[11] O. Curé, M Lamolle & C Le Duc,”Ontology Based Data Integration
Over Document and Column Family Oriented NOSQL”. SSWS 2011.

[12] O. Curé and R. Jeansoulin,“An fca-based solution for ontology
mediation”. JCSE, 3(2):90-108, 2009.

[13] A. Zimmermann and C. Le Duc,“Reasoning with a network of aligned
ontologies”.In Proceedings of the 2nd International Conference on Web
Reasoning and RuleSystems (ICWRRS), pages 43-57, 2008.

[14] H. Abbes, S. Boukettaya & F. Gargouri, “Learning Ontology from Big
Data through MongoDB Database”. In: the 12th ACS/IEEE
InternationalConference on Computer Systems and Applications
(AICCSA); 2015.

[15] J. Ross Quinlan, “C4.5. Programs for Machine Learning”, Elsevier Inc,
1993.

[16] T.M. Cover & J.A. Thomas, “Elements of Information Theory”, Second
Edition, 2006.

<owl:ObjectProperty rdf:about="http://www.JsonToOnto.com#hasdirector">

<rdfs:range rdf:resource="http://www.JsonToOnto.com#director"/>

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/>

</owl:ObjectProperty>

http://apps.ensam-umi.ac.ma/jsontoonto/

