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Abstract—The amount of data circulating through the web 

has grown rapidly recently. This data is available as semi-

structured or unstructured documents, especially JSON 

documents. However, these documents lack semantic description. 

In this paper, we present a method to automatically extract an 

OWL2 ontology from a JSON document. We propose a set of 

transformation rules to transform JSON elements to ontology 

components. Our approach also allows analyzing the content of 

JSON documents to discover categorization in order to generate 

class hierarchy. Finally, we evaluate our approach by conducting 

experiments on several JSON documents. The results show that 

the obtained ontologies are rich in terms of taxonomic 

relationships. 
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I. INTRODUCTION 

A tremendous amount of documents exists on the web, 
especially semi-structured and unstructured documents, and it 
is continuously increasing which makes analyzing and 
retrieving these documents difficult. To overcome these 
difficulties, we need to consider their semantics. 

Semi-structured documents on the web are available in 
different formats, such as XML, HTML and JSON. 

JSON (JavaScript Object Notation) [1] is a lightweight 
data interchange format that was first specified and 
popularized by Douglas Crockford. It is based on a subset of 
the JavaScript Programming Language. 

JSON has been widely used due to its simplicity and 
ability to be processed by both humans and machines easily. 
However, it lacks semantics due to the fact that it is schema 
less. 

This work is supported by OCP group, Morocco. 

Ontologies are essentially used to express semantics and 
integrate them in web applications. 

Tom Gruber [2] defined an ontology as “an explicit 
specification of a conceptualization of a domain of interest”, 
as for Swartout and colleagues [3], they defined an ontology 
as “a hierarchically structured set of terms for describing a 
domain that can be used as a skeletal foundation for a 
knowledge base”. Most existing methods in ontology 
extraction from semi-structured data use XML documents as 
an information source. 

In this work, we propose an automatic approach to build 
OWL2 ontology from a JSON document. We propose a set of 
transformation rules to translate JSON elements to ontology 
constructs. We also use data mining techniques to analyze the 
documents „content in order to discover class hierarchy. 

The remainder of this paper is organized as follows. 
Section II discusses related works in ontology extraction from 
semi-structured documents. Section III describes the proposed 
method for extracting OWL2 ontology from JSON document. 
Section IV presents the experimentations and the results. And 
finally, Section V concludes this paper, and discusses the 
perspectives of this work. 

II. RELATED WORKS 

For semi-structured data, we find different formats such as 
XML and JSON. In this section we will present a few existing 
methods in ontology extraction from JSON documents. 

In [4], the authors propose an automatic approach to 
convert web data into OWL ontology. This method takes as 
input related JSON data objects transmitted from web services 
to applications. It builds semantic models for data instances. 

The process of extracting and constructing semantics is 
divided into four steps: (1) JSON parsing: The authors parse 
the data according to key-value pairs in JSON objects and 
transform them into sets of triplets, (2) Semantic mapping: 
The data is stored as triplets similar to the description of RDF 
turtle [5]. During this step, triplet sets are analyzed to 
construct ontologies and their instances, (3) Semantic 
enrichment: The authors deploy automatic learning methods to 
improve the use of semantic data, they also take advantage of 
ontology reasoning to provide additional information on 
ontology (axioms definition, constraints definition, comments 
and labels addition) and finally, (4) Ontology merging: During 
this step, the authors align several ontologies according to the 
relations and concepts between them and refine the 
descriptions to build a unified ontology. The authors compare 
ontology constructs by using domain dictionaries and 
thesaurus and then merge ontologies according to semantic 
correspondences between them. 

In [6], the authors proposed a protégé plugin named 
OWLET to assist the experts during the refinement phase of 
the ontology construction process. This plugin offers an 
approach to transform real world (image) objects to instances 
in order to import them to the existing ontology model for 
semi-automated classification. The image objects are first 
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transformed to GeoJSON files and then converted to instances 
to be imported to the existing ontology. 

In [7], the authors proposed a method to build ontology 
knowledge base from semi-structured datasets (e.g. 
spreadsheet, JSON, XML…). The first step is extracting target 
columns from the semi-structured datasets. Then, the authors 
proposed a transformation table generator (TTG) and a cell 
value importer (CVI) to import values from semi-structured 
data sets. Next, the authors defined a Property expression 
(ProperyExp) to describe mapping information to map the 
extracted columns to properties. And finally, the ontology 
knowledge base is constructed. 

In another approach [8], the authors propose KESeDa to 
extract knowledge from heterogeneous semi-structured data 
sources. The approach has several processing steps. Before the 
processing the authors detect the file format first. If the file is 
an XML or HTML document, the authors use existing tools to 
extract knowledge. However, if the file is a JSON document, 
the authors apply their own approach. The first step is 
preparing the source file for later annotations. Therefore, all 
values contained in a JSON object are encapsulated in a 
separate object. This object also contains a table structure as a 
placeholder to store all identified properties that can be 
assigned to predicates during the following processes. Then, 
the values are analyzed using a set of dictionaries. The 
collected results are stored in the reserved table structure. The 
approach also offers the possibility to combine several 
dictionaries to map compound predicates. The next step is 
analyzing the values according to their data type and format. 
Then, the keys of the JSON objects are analyzed. If the name 
of a key exactly matches a predicate, it will be stored in the 
table. Otherwise, synonyms for the key are searched in a 
dictionary and evaluated based on a possible mapping. 
Another step is to transform the extended JSON object source 
into a JSON-LD [9] representation by selecting an appropriate 
RDF predicate for each property. Finally, the authors try to 
find an appropriate RDF class for each object according to its 
set of predicates. 

We tried to find other approaches that link ontologies to 
JSON documents. We found three existing research works that 
use document oriented databases for ontology learning. 
Document oriented databases store documents in JSON 
format. 

NoSQL (Not Only SQL) [10] are databases that are not 
built on tables and do not use SQL to manipulate data. They 
are used to manage large amounts of data or big data. NoSQL 
databases do not support ACID transactions across multiple 
data partitions for scalability reasons. The NoSQL databases 
also respond to the CAP theorem which is more suitable for 
distributed systems. 

NoSQL databases are generally classified into four 
categories: 

 Key / Value: The data is simply represented by a key / 
value pair. The value can be a simple string of 
characters or a serialized object. 

 Key / value databases are simple and allow quick 
retrieval of values required for application tasks such as 

managing user profiles or sessions or retrieving product 
names. 

 Example: Dynamo (Amazon), Voldemort (LinkedIn), 
Redis, BerkleyDB, Riak. 

 Column Oriented: Employ a distributed, column-
oriented data structure that hosts multiple attributes per 
key. They are useful for distributed data storage, large 
scale and batch data processing, and exploratory and 
predictive analysis by statisticians and programmers. 

 Example: Bigtable (Google), Cassandra (Facebook), 
HBase (Apache). 

 Document oriented: They were designed to manage and 
store documents. These documents are in XML, JSON 
or BSON format. Document-oriented databases are 
useful for managing Big Data-sized document 
collections such as text documents, emails and XML 
documents. 

 Example: CouchDB (JSON), MongoDB (BSON). 

 Graph oriented: They are based on graph theory. It is 
based on the notion of nodes, relationships and 
properties attached to them. They are useful when one 
is interested in the relations between the data. 

 Example: Neo4j, InfoGrid, GraphDB, AllegroGraph, 
InfiniteGraph. 

In the first approach [11], the authors propose a framework 
for data integration. They use two NoSQL databases, namely 
MongoDB as document-oriented database and Cassandra as 
column-oriented database as a source of information an OWL 
ontology as a target. The approach is divided into three steps. 
First, the authors create a local ontology that matches each 
data source. They consider that each container defines a DL 
concept and each key label defines an object property or a data 
property. To organize the concepts in a hierarchy, methods of 
formal concept analysis (FCA) [12] were used. 

In the second step, the authors align the local ontologies to 
create a global ontology. First they enrich each ontology using 
the IDDL reasoner [13], then they detect simple and complex 
correspondences between the two ontologies. 

Finally, the authors propose a query language to translate 
SPARQL to the query language of each source. 

In the second approach [14], the authors use MongoDB as 
a data source and an OWL ontology as a result. The authors 
define a set of transformation rules to create the ontology 
concepts and properties. This approach is divided into four 
stages: (1) Creating the ontology skeleton, (2) Identifying 
object properties and data type properties, (3) Identifying 
individuals and finally (4) Deducting axioms and constraints. 

In the next section, we propose an automatic approach to 
build ontology from JSON documents. 

III. PROPOSED METHOD 

The process of building ontology from scratch is tedious 
and error prone, therefore, we propose an automatic approach 
to extract an OWL2 ontology from a single JSON document. 
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First, we analyze the data in these documents to discover 
categorization patterns in order to identify class hierarchy. 
This will eventually enable us to generate ontology with a 
deep taxonomy. Then we propose a set of transformation rules 
to convert JSON elements to OWL2 components. 

A. Class Hierarchy Identification 

1) Inheritance identification using key labels: In this step, 

we analyze key labels in nested JSON object to identify class 

hierarchy. First we extract all keys from every object, then we 

compare them. If we find keys that exist in an object and don‟t 

exist in another, we create a super class corresponding to the 

JSON array of objects. A dataProperty corresponding to the 

common keys is then extracted where the domain is the super 

class and the range is the type of the JSON value (i.e. String, 

Integer…). Then sub classes are created where the label is a 

concatenation of the word “SubClassOf” plus the label of the 

super class plus a number, this number ranges from 1 to the 

number of the obtained subclasses. In the example presented 

in Fig. 1, we have two common keys “ExternalID” and 

“Type”. We will have a super class “Party”, which will be the 

domain of two Data Properties “hasExternalID” and 

“hasType”. Then we will create two sub classes, 

“SubClassOfParty1” and “SubClassOfParty2”. We then 

extract four Data Properties, “hasFirstName” and 

“hasLastName” where the domain is “SubClassOfParty1”, and 

“hasOrganizationName” and “hasListingName” where the 

domain is “SubClassOfParty2”. 

2) Inheritance identification using Data Mining 

techniques: Data mining techniques look for patterns in large 

data. One of the techniques that are widely used is 

classification. Classification is used to gather data instances 

with similar traits in categories or classes. 
Classification methods include decision trees, Bayesian 

networks, and k-nearest neighbor. Decision trees aim to split a 
dataset into homogenous classes. 

Our decision tree induction is a recursive algorithm. It is 
based on C4.5 algorithm (see Fig. 2). 

C4.5 algorithm [15] was proposed by Ross Quinlan in 
1993. It is the successor to ID3 (Iterative Dichotomiser 3), it 
takes into account continuous attributes. Decision trees have a 
leaf which indicates a class, or a decision node that specifies 
the test to be carried out. The outcome of the test can either be 
a leaf or a subtree. The nodes and leafs are connected with 
branches. 

The decision node is chosen by using information theory 
[16]. Entropy and information gain are calculated. Shannon's 
entropy is a measure of uncertainty of a random variable. 
Entropy is defined by: 
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{  

"customer": {  
"details": {  

"party": [{  

"type": "individual",  
"externalID": "ABC123",  

"firstname": "John",  

"lastname": "Smith"  
}, 

                  { 

       "type": "organization", 
      "externalID": "Apple", 

  "organizationName": "AppleInc", 

      "listingName": "APPLE" 
                  }] 

} 

} 
} 

<owl:Class rdf:about="http://www.JsonToOnto.com#SubClassparty1"> 

<rdfs:subClassOf   rdf:resource="http://www.JsonToOnto.com#party"/> 

</owl:Class> 

<owl:Class  rdf:about="http://www.JsonToOnto.com#SubClassparty2"> 

<rdfs:subClassOf rdf:about="http://www.JsonToOnto.com#party"/> 

</owl:Class> 

Fig. 1. An Example of a JSON Object with the Proposed Transformation. 

 
Fig. 2. Decision Tree Construction Algorithm. X

X

X

DecisionTreeConstruction {Decision Tree Construction 
Algorithm} 

Input: 
- A class C 
- Attributes {A1, ..., An} 

- A set of data N 

Output: 
- The decision tree 

IF all the examples of N are in the same class CTHEN 

    Create a leaf and assign the the current value of C to it 

ELSE 

    Select the attribute A the largest information gain as the  

     best attribute  
    Assign the label of the attribute A to the current node 

    Split the data set N according to the values of the attribute  

    A v1...vn to sub data sets N1, ..., Nn 
    FORi = 1 to n  

      DecisionTreeConstruction (C, Ai, Ni) 

    END FOR 

END IF 

Return the decision tree 

END 

https://mariuszprzydatek.com/2014/11/11/iterative-dichotomiser-3-id3-algorithm-decision-trees-machine-learning/
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Where: 

X
aj = v

 X  is the set of examples where the attribute aj takes 

the value v and  


 indicates the cardinal of X . 

The attribute with the highest information gain is used as a 
decision node. 

In our approach, the predefined class is unknown, 
therefore we consider every attribute as a predefined class and 
we construct a decision tree for each one. Next, we determine 
the depth of each tree and choose the tree with the least depth 
since it leads to homogenous categories the fastest. Finally, we 
consider its leafs as our categories. The next figure describes 
our algorithm (Fig. 3). 

To illustrate our algorithm, we use the JSON object 
presented in Fig. 4 as example. 

First we construct our decision tree. We obtain the result 
presented in Fig. 5. 

We consider the leafs of our trees as our sub classes. We 
have the presented in Fig. 6. 

As presented in our results, the names of our sub classes 
are a concatenation of “SubClass” and the name of the super 
class followed by a number. 

B. Transformation Rules 

In this paragraph, we present the proposed transformation 
rules. We illustrate these rules through the example presented 
in Fig. 7. 

Rule 1: Every JSON object is transformed to a simple class 
in the ontology. Example: 

<owl:Class rdf:ID="Class1"/> 

<owl:Class rdf:ID="director"/> 

“Class1” corresponds to the main JSON object. 

 

Fig. 3. Inheritance Detection Algorithm. 

Rule 2: We analyze the key-value pairs. If the value is a 
simple type (string, number (integer, double) or boolean (true, 
false)), then we have a dataProperty where the domain is the 
class corresponding to the object containing the key and the 
range is the type of the value into the ontology. The 
dataProperty name is the concatenation of the “has”, the key 
label and the label of the domain class. For example, see 
Fig. 8. 

Rule 3: If an object B is integrated into an object A, we 
transform this integration into an ObjectProperty where the 
domain is the class corresponding to object A and the range is 
the class corresponding to object B. The name of the object 
property relationship is the concatenation of the word “has” 
with the name of the object B. For example, see Fig. 9. 

 
Fig. 4. Inheritance Detection Algorithm. 

 

Fig. 5. Obtained Decision Tree with the Least Depth. 

[ {  

"id": "0001",  
     "type": "donut",  

     "name": "Cake",   

     "ppu": 0.55,  
     "batters":  {  

            "batter": [  

 { "id": "1001", "type": "Regular" },  
 { "id": "1002", "type": "Chocolate" },  

 { "id": "1003", "type": "Blueberry" },  

 { "id": "1004", "type": "Devil's Food" } ]  
},  

     "topping": [  
 { "id": "5001", "type": "None" },  

 { "id": "5002", "type": "Glazed" },  

 { "id": "5005", "type": "Sugar" },  
 { "id": "5007", "type": "Powdered Sugar" },  

 { "id": "5006", "type": "Chocolate with Sprinkles" },  

 { "id": "5003", "type": "Chocolate" },  
 { "id": "5004", "type": "Maple" }   ] 

      },  

     {  
"id": "0002", 

"type": "donut", 

"name": "Raised", 
"ppu": 0.55, 

      "batters": { 

             "batter": [ { "id": "1001", "type": "Regular" }] 
 }, 

      "topping": [ 

 { "id": "5001", "type": "None" }, 
 { "id": "5002", "type": "Glazed" }, 

 { "id": "5005", "type": "Sugar" }, 

 { "id": "5003", "type": "Chocolate" }, 
 { "id": "5004", "type": "Maple" }] 

     }, 

     ………….. 

] 

Inheritance detection {Inheritance detection Algorithm} 

Input: 
- Attributes {A1, ..., An} 
- A set of data N 

Output: 
- List V designating the categories 

Let d: Positive integer designating the tree‟s depth 

Let C: A class 

FOR each attribute Ai 
C <- Ai 

DecisionTreeConstruction(C, Ai, Ni) 

d <- The tree‟s depth 

END FOR 

Choose the tree with the least depth 

Select the leafs of the tree and add them to the list V 
Remove duplicates from the list V 

Return V 

END 
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Fig. 6. Theresult OWL from the JSON Object in Fig. 4. 

 

Fig. 7. Anexample of a JSON Object. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the efficiency of our approach, we 
implemented it with java and jena api. Our application allows 
building an OWL2 ontology from a JSON document. We use 
as an illustrative example the JSON object presented in Fig. 4. 
We obtained as a result the ontology presented in Fig. 10. 

First, we used the inheritance identification using key 
labels to extract sub classes but we didn‟t find any results. 
Next, we applied our inheritance detection algorithm using 
decision trees. We were able to identify four sub classes. 
Finally, we applied our transformation rules to generate the 
final ontology. In total, we obtained seven data properties and 
three object properties. 

 

Fig. 8. The Result OWL from the JSON Object in Fig. 7 by Applying Rule 2. 

<owl:DatatypeProperty rdf:about=http://www.JsonToOnto.com#hasfirst_name_director> 

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#director"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#haslast_name_ director"> 

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#director"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#hasyear_Class1"> 

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/> 

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#hassummary_Classe1"> 

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:about="http://www.JsonToOnto.com#hastitle_Class1"> 

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

<rdfs:domain rdf:resource="http://www.JsonToOnto.com#Class1"/> 

</owl:DatatypeProperty> 

{  

       "title": "The Social network",  

       "summary": "On a fall night in 2003, Harvard undergrad 
and   

programming genius Mark Zuckerberg sits  

                             down at his computer and heatedly begins  
working (...)",  

       "year": 2010,  

       "director":   {    "last_name": "Fincher",  
                                "first_name": "David"} 

} 

<owl:Class 

rdf:about="http://www.JsonToOnto.com#SubClassClass11"> 

<rdfs:subClassOf 

rdf:resource="http://www.JsonToOnto.com#Class1"/> 

</owl:Class> 

<owl:Class 

rdf:about="http://www.JsonToOnto.com#SubClassClass12"> 

<rdfs:subClassOf 

rdf:about="http://www.JsonToOnto.com#Class1"/> 

</owl:Class> 

<owl:Class 

rdf:about="http://www.JsonToOnto.com#SubClassClass13"> 

<rdfs:subClassOf 

rdf:about="http://www.JsonToOnto.com#Class1"/> 

</owl:Class>  

<owl:Class 

rdf:about="http://www.JsonToOnto.com#SubClassClass14"> 

<rdfs:subClassOf 

rdf:about="http://www.JsonToOnto.com#Class1"/> 

</owl:Class>  
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Fig. 9. Theresult OWL from the JSON Object in Fig. 7 by Applying Rule 3. 

 

Fig. 10. The Result OWL 2 Ontology. 

We also conducted our approach on five different data 
sets. The sets are all various JSON objects with different sizes. 
The results of our experiments are presented in the technical 
report available at http://apps.ensam-umi.ac.ma/jsontoonto/. 

V. CONCLUSION AND PERSPECTIVES 

In this paper, we have proposed an automatic approach to 
extract an OWL2 ontology from a JSON document. We were 
able to extract deep taxonomies from JSON documents using 
the key labels and data mining techniques. We also were able 
to transform the JSON document elements to OWL 
components by proposing a set of transformation rules. In 
order to give the obtained ontology classes a meaningful 
name, we add the intervention of a domain expert to 
semantically validate the generated schema and rename the 
ontology classes. 

We developed a prototype that implements our proposal 
and we tested it using various JSON documents. The obtained 
results were satisfactory. However, this is still the first version 
of our prototype and there is still plenty of room for 
improvement. We are currently working on converting larger 
JSON documents. 

As we mentioned before, we used a single JSON document 
to extract an OWL2 ontology. We intend to improve our 
approach to handle multiple documents as an information 
source. 
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