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Abstract—Threat actors continue to design exploits that 

specifically target physical weaknesses in processor hardware 

rather than more traditional software vulnerabilities. The now 

infamous attacks, Spector and Meltdown, ushered in a new era of 

hardware-based security vulnerabilities that have caused some 

experts to question whether the potential cybersecurity risks 

associated with simultaneous multithreading (SMT), also known 

as hyperthreading (HT), are potent enough to outweigh its 

computational advantages. A small pool of researchers now touts 

the need to disable SMT completely. However, this appears to be 

an extreme reaction; while a more security focused environment 

might be inclined to disable SMT, environments with a greater 

level of risk tolerance that may need the performance advantages 

offered by SMT to facilitate business operations, should not 

disable it by default and instead evaluate software application-

based patch mitigations. This paper provides insights that can 

help make informed decisions when determining the suitability of 

SMT by exploring key processes related to multithreading, 

reviewing the most common exploits, and describing why Spectre 

and Meltdown do not necessarily warrant disabling HT. 
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I. INTRODUCTION 

Although the news fervor regarding hardware-based 
vulnerabilities has begun to subside, the potential risk to 
unprotected systems remains just as relevant. Threat actors 
continue to design exploits that specifically target physical 
weaknesses in processor‟s hardware. The now infamous 
attacks, Spector and Meltdown ushered a new era of 
hardware-based security exploits by attacking vulnerabilities 
in computer processor hardware instead of attacking software 
vulnerabilities. Immediately following their disclosure, Intel 
and AMD scrambled to quickly release firmware patches to 
their processors in order to mitigate the potential risk of 
exploitation. 

However, not everyone felt that the mitigations were 
sufficient. Google later announced that it was disabling 
Hyper-threading on all Chromebooks running Chrome OS 74. 
Additionally, Theo de Raddit, founder and owner of 
OpenBSD, railed against Hyper-threading stating that, “SMT 
is fundamentally broken because it shares resources between 
the two CPU instances and those shared resources lack 
security differentiators.” [1] He went on to explain that the 
risk of side-channel attacks like Spectre and Meltdown are 
dangerous enough to warrant disabling Hyper-threading on all 
computers running OpenBSD OS [2]. 

Despite the previously mentioned security concerns, 
system architects should not automatically follow Google and 
de Raddit‟s lead. Instead, architects ought to conduct a 
thorough analysis of their own environment to determine the 
risk level of leveraging multithreading. The following 
provides insights that can help architects make informed 
decisions when determining the suitability of SMT by 
exploring key processes related to SMT, reviewing prominent 
SMT exploits, and describing why Spectre and Meltdown 
does not necessarily warrant disabling SMT. Building this 
case, the remainder of the paper will first provide a high-level 
description of the key processes and components involved 
during speculative execution. Second, briefly describe the 
most renown Spectre and Meltdown variants. Third, 
leveraging the Common Vulnerability Scoring System, 
provide a methodology to characterize these exploits‟ severity. 

II. KEY PROCESSES AND COMPONENTS 

A. Simultaneous Multithreading 

Processors were originally constructed from a single core 
with a single thread of execution. However advantages in a 
number of areas to include energy efficiency, true 
concurrency, performance, isolation, and reliability led to 
CPUs designs with multiple physical cores (each possessing 
their own ALU, registers, and other necessary components) on 
a single die [3]. The die is still commonly referred to as a 
single CPU despite it being composed of numerous individual 
cores. Fig. 1 below depicts how multiple cores can operate 
within a single die. 

However, additional transitors packed onto a more 
compact form led to greater heat dispertion and power 
consumption - something that is not desirable in a processor. 
In order to combant this, SMT was created. SMT allowed a 
single core to to appear as two (or more) logical cores to an 
OS with each logical core running a single thread of 
execution. This meant that although a CPU may only have 
four physical cores (quad core), with SMT, the OS would 
percieve it as having eight logical cores. If a program required 
that the processor fetch a section of data from main memory, 
instead of the rest of the core sitting idly by waiting for the 
data transfer, the ALU or FPU could begin computation on 

another section of instructions. 
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Fig. 1. Typical Architecture and Interactions for Multiple Cores on a Single 

Die. 

B. Caching 

Caching is a technique used by processors to compensate 
for the dichotomy between the processing speeds of the CPU 
and the slower speeds of main memory (RAM). Modern CPUs 
use a hierarchy of successively slower but larger caches built 
directly into the chip in order to decrease the latency between 
execution of instruction sets. The cache is divided into fixed-
sized chunks of memory called lines. Each line is typically 64 
or 128 bytes long, with larger cache sizes resulting in greater 
speed performance. Depicted in Fig. 2, when the processor 
attempts to fetch data from memory, it will first check the L1 
cache at the top of the hierarchy for a copy of the data [4]. If 
the data is found, it is referred to as a cache hit, if not it is 
referred to as a cache miss. This process is then repeated 
moving down the chain from L1 to L2 to L3 cache until a hit 
is found. If all three caches result in a miss, then the processor 
will check system memory for the necessary data. 

C. Speculative Execution 

Speculative execution, also known as branch prediction, is 
the process by which a microprocessor closely tied into the 
fetch stage of the CPU instruction cycle makes a prediction as 
to what is most likely the next sequence of instructions in a 
program. 

 

Fig. 2. Typical Cache Hierarchy. 

Modern Intel processors have multiple forms of 
speculative execution for direct and indirect branches. Direct 
branch instructions relocate the stack pointer to a predefined 
memory address prior to the execution of the program [5]. In 
contrast, indirect branch instructions can jump to random 
memory addresses in the program computed at run time. In the 

Intel x86 architecture, this can be accomplished via the jmp 
instruction to jump to an address in a register, memory 

location, or on the stack. jmp eax, jmp [eax], and 

ret respectively. Similar indirect and direct branch calls are 
also supported on ARM, MIPS, and RISK V architectures. 

There are several functions that optimize indirect branches 
in order to compensate for the additional clock cycles 
necessary to process the instruction. The Branch Target Buffer 
(BTB) is a simple cache managed by the control unit that 
stores a mapping from addresses that recently executed branch 
instructions to destination addresses [6]. The BTB is leveraged 
by the processor to predict future code addresses before the 
decoding stage of a branch instruction. The Return Stack 
Buffer (RSB) stores a clone of the most recently processed 
section of the call stack [7]. Both BTB and RSB can greatly 
improve the speed of a running program by reducing the 
amount of computational work necessary for the processor. 

D. Protected Memory 

Protected memory is a method of controlling memory 
access rights on embedded systems. Its main purpose is to 
prevent apps from accessing regions of memory that they do 
not have proper security rights. For instance, one tab open in a 
browser should be restricted from accessing working memory 
from another tab. Without proper memory protection, data 
sections are vulnerable to memory related exploits or code 
injections [8]. This can be prevented by either software or 
hardware solutions. Software solutions assign a key value to a 
program during runtime that it must provide in order to gain 
access to the protected memory [9]. Hardware solutions work 
in a similar manner but separate threads of execution with 
logical barriers. 

III. THE EXPLOITS 

A. Spectre 

Spectre is a general term used to describe a group of 
microarchitecture attacks that „trick‟ the processor into 
speculatively executing malicious instruction sequences [10]. 
Because these instructions are eventually reverted by the CPU, 
they are referred to as transient instructions. By influencing 
which transient instructions are speculatively executed, 
information about memory addresses can be leaked from 
protected memory. Two prominent variants of the Spectre 
attacks exist - CVE-2017-5753 and CVE-2017-5715. 

The first variant maliciously trains the branch prediction 
algorithm into erroneously executing a section of code that 
would not normally have been executed in the normal Von 
Neumann sequence. Listing 1 provides a short code example 
provided by the original Google Project Zero paper that better 
illustrates how this attack occurs [11]. 

In listing 1, the untrusted_offset_from_caller variable 
contains attack-controlled data. During the first phase of the 
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attack, the code is repeatedly invoked with a valid value (i.e. a 
value between 0 and arr1->length-1) for 
untrusted_offset_from_caller and thusly trains the branch 
predictor to predict the conditional on line 11 to evaluate as 
true. Next, during the second (or exploit) phase, the attacker 
invokes the same code but this time with the 
untrusted_offset_from_caller variable set to a value out of 
bounds for arr1. Because the first phase of the attack trained 
the branch predictor to expect the conditional to return true, if 
arr1->length is not cached, the processor will begin 
speculatively executing. 

1. struct array { 

2.     unsigned long length; 

3.     unsigned char data[]; 

4. }; 

5.   

6. struct array *arr1 = ...; /* small array */ 

7. struct array *arr2 = ...; /* array of size 0x400 */ 

8. /* >0x400 (OUT OF BOUNDS!) */ 

9.   

10. unsigned long untrusted_offset_from_caller = ...; 

11. if (untrusted_offset_from_caller < arr1->length) { 

12.     unsigned char value = arr1-

>data[untrusted_offset_from_caller]; 

13.     unsigned long index2 = 

((value&1)*0x100)+0x200; 

14.     if (index2 < arr2->length) { 

15.         unsigned char value2 = arr2->data[index2]; 

16.     } 

17. } 

Listing. 1. Spectre Exploit Pseudocode. 

arr1->data[untrusted_offset_from_caller] even before the 
conditional has been fully evaluated. 

Eventually the processor will finish evaluating the 
conditional and return to its normal non-speculative path. The 
out-of-bounds index call will be rolled back along with 
value2. However, the speculative execution will still 
temporarily store arr2->data[index2] in the L1 cache. By 
measuring the difference between the time to load arr2-
>data[0x200] and. 

arr2->data[0x300], it can be determined whether value of 
index2 was 0x200 or 0x300; this determines if arr1-
>data[untrusted_offset_from_caller]&1 is 0 or 1. By selecting 
an appropriate value for untrusted_offset_from_caller, this 
process can leak address information stored in protected 
memory that usually would not be released but due to 
speculative evaluation is temporarily stored in the L1 cache 
[12]. 

The second variant of Spector relies on selecting a gadget 
in the victim‟s address space and influencing the target to 
speculatively execute that gadget. A gadget is a series of 
predefined machine instructions from the program being 
exploited. In order to execute the gadget, the attacker trains 
the BTB to erroneously predict an indirect branch to the 
address of the gadget. The training consists of the attacker 
repeatedly indirectly branching to the address of the gadget. 

After the BTB is trained to speculatively execute the address 
of the gadget, a similar approach as in variant one can be 
applied to leak protected memory. 

B. Meltdown 

Unlike Spector, Meltdown (CVE-2017-5754) does not rely 
on vulnerabilities in the victim‟s source code, but instead 
leverages out of order execution to run malicious code 
instructions in user-space. Note, an important part of OS 
memory management is how the OS links virtual memory to 
physical memory. When a process requests system memory, 
the OS will allocate a section of physical memory for use by 
the program. The OS then provides the running process with a 
virtual memory address that links to the actual physical 
memory address. A mapping between all virtual memory 
addresses and their physical counterparts is stored and 
referenced by the memory management unit (MMU). 

To better illustrate how Meltdown leaks kernel physical 
memory addresses, consider the following short code section 
written in Listing 2 [13]. 

1. ; rcx = kernel address, rbx = probe array 

2. xor rax, rax 

3. retry: 

4. mov al, byte [rcx] 

5. shl rax, 0xc 

6. jz retry 

7. mov rbx, qword [rbx + rax] 

Listing. 2. Meltdown Exploit Pseudocode. 

Three main steps are involved in the execution of the 
Meltdown vulnerability. Step one, an attacker selects the 
kernel restricted memory location they are attempting to gain 
access to and then loads that address into a specified register. 
This is accomplished in line 4 where the values of the kernel 
address (virtual memory) are stored in the least significant 
byte of the RAX register. When line 4 is executed, the mov 
instruction is fetched by the core before being decoded into 
microcode (µOps), allocated, and sent to the record buffer. By 
leveraging a process called out-of-order execution, the 
decoded and allocated µOps of lines 5-7 will be executed 
before line 4 is completed. 

Step two consists of „tricking‟ the processor into storing 
the restricted memory addresses in the L1 cache. Line 5 
multiplies the secret value from Step 1 (the linked physical 
address to the virtual memory location) by the page size. This 
negates the ability for the hardware pre-fetcher to load 
adjacent memory locations into cache. In the example above, a 
single byte is read at a time resulting in the dimensions of the 
probe being 256 x 4096. Finally, Line 7 adds the multiplied 
secret to the base address of the probe array. Similar, to the 
Spectre attack, once the processor finishes the mov instruction 
it will throw an interrupt error and roll-back the following 
instructions, but the probe array will have already been stored 
in the L1 cache. 

Step three, the exploit recovers the secret value from Step 
1 via a microarchitecture side-channel attack on the L1 cache. 
When the transient instructions defined in step two are 
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executed, only one line of the probe array is cached. The 
position of that line in the array will depend on the value of 
the original secret. Therefore, by iterating over the full 256-
page array and measuring the quickest load time, (i.e. the 
cached one) the original secret value can be determined. If this 
same process is repeated for each of the kernel restricted 
memory addresses, a complete memory dumb can be 
constructed of the kernel protect memory. 

IV. UNDERSTANDING THE CVSS 

An understanding of vulnerability severity is an important 
guidepost for architects deciding if they want to disable HT. 
CVSS scores are a useful tool to measure vulnerability 
severity.  CVSS scores are developed by the multi-stakeholder 
organization Forum of Incident Response and Security Teams 
(FIRST) and serve as an important vulnerability severity 
assessment engine for many prominent organizations that 
include the National Institute of Standards and Technology 
(NIST) NVD database. CVSS assigns a vulnerability severity 
score that ranges from 0 – 10, with 10 being the most severe. 

The heart of CVSS scoring is a combination of an 
exploitability assessment and a vulnerability impact 
assessment. Exploitability assessments characterize how easily 
a malicious actor may be able to exploit the vulnerability. 
Exploitability is comprised of possible attack vectors (AV), 
attack complexity (AC), the level of privilege (PR) required 
on a computer needed to execute an exploit, and whether the 
exploit can be executed without user interaction (UI).  Impact 
assessments characterize the magnitude of the vulnerability in 
terms of confidentiality loss, integrity loss, and availability 
loss to the data on the computer. 

Fig. 3-5 from the NIST National Vulnerability Database 
demonstrates that neither Spectre variants nor Meltdown 
exhibit an overall CVSS score above a „MEDIUM‟. (4.0 – 6.9 
Overall Score). 

For a more detailed explanation of CVSS scoring, refer to 
the CVSS user guide [14]. 

 

Fig. 3. Spectre CVE-2017-5753–5.6 Score. 

 

Fig. 4. Spectre CVE-2017-5715–5.6 Score. 

 

Fig. 5. Meltdown CVE-2017-5754–5.8 Score. 

V. TO DISABLE OR NOT TO DISABLE SMT 

Prominent subject matter experts such as Theo de Raddit 
argue that SMT‟s security vulnerabilities outweigh its 
performance advantages. However, this paper contends that 
while disabling hyperthreading may be appropriate in some 
environments, it should not be a defacto standard for 
enterprise architects. The CVSS assessment does not warrant 
such an action. 

Although Spectre and Meltdown do present serious 
security concerns, their overall vulnerability severity remains 
a relatively unremarkable „MEDIUM‟.  They both have a 
„LOW‟ severity for exploitability due to the fact that neither 
attack can leverage a network connection for lateral 
movement. Additionally, these exploits are extremely difficult 
to operationalize and the ability for a malicious actor to 
successfully launch an attack is far from certain. Resultantly, 
both attacks have a higher attack complexity and a lower 
exploitability severity. 

Spectre and Meltdown‟s impact severity do slightly 
elevate to the „MEDIUM‟ range but remains well below the 
„HIGH‟ severity threshold. Data confidentiality risks are more 
concerning because of memory dumping from kernel 
protected addresses, or information leaking from protected 
memory, but the risk to data availability or data integrity 
remains „LOW‟. Potential data leaks do not result in an 
alteration of stored data or the ability to access saved data. 

VI. CONCLUSION 

There is no „one size fits all‟ approach to risk tolerance. 
Unique to each environment, is a careful balance between 
security and performance. Business and operational 
requirements should drive cybersecurity risk mitigation 
decisions. This balance aptly applies when determining 
whether to disable SMT. Even though both Spectre and 
Meltdown both rank „Medium‟ in CVSS severity, a more 
security focused environment might be inclined to disable 
SMT and accept the performance loss. However, 
environments with a less cautious risk tolerance that needs the 
performance advantages from SMT to facilitate business 
operations should not disable SMT by default and instead 
evaluate software application-based patch mitigations. 
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