
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

390 | P a g e

www.ijacsa.thesai.org

Speculating on Speculative Execution
Assessing the Risk of Simultaneous Hyperthreading

Jefferson Dinerman

Secondary School Student and Independent Researcher

Alexandria, VA | United States of America

Abstract—Threat actors continue to design exploits that

specifically target physical weaknesses in processor hardware

rather than more traditional software vulnerabilities. The now

infamous attacks, Spector and Meltdown, ushered in a new era of

hardware-based security vulnerabilities that have caused some

experts to question whether the potential cybersecurity risks

associated with simultaneous multithreading (SMT), also known

as hyperthreading (HT), are potent enough to outweigh its

computational advantages. A small pool of researchers now touts

the need to disable SMT completely. However, this appears to be

an extreme reaction; while a more security focused environment

might be inclined to disable SMT, environments with a greater

level of risk tolerance that may need the performance advantages

offered by SMT to facilitate business operations, should not

disable it by default and instead evaluate software application-

based patch mitigations. This paper provides insights that can

help make informed decisions when determining the suitability of

SMT by exploring key processes related to multithreading,

reviewing the most common exploits, and describing why Spectre

and Meltdown do not necessarily warrant disabling HT.

Keywords—Speculative execution; hyperthreading; Spectre;

meltdown; simultaneous multithreading

I. INTRODUCTION

Although the news fervor regarding hardware-based
vulnerabilities has begun to subside, the potential risk to
unprotected systems remains just as relevant. Threat actors
continue to design exploits that specifically target physical
weaknesses in processor‟s hardware. The now infamous
attacks, Spector and Meltdown ushered a new era of
hardware-based security exploits by attacking vulnerabilities
in computer processor hardware instead of attacking software
vulnerabilities. Immediately following their disclosure, Intel
and AMD scrambled to quickly release firmware patches to
their processors in order to mitigate the potential risk of
exploitation.

However, not everyone felt that the mitigations were
sufficient. Google later announced that it was disabling
Hyper-threading on all Chromebooks running Chrome OS 74.
Additionally, Theo de Raddit, founder and owner of
OpenBSD, railed against Hyper-threading stating that, “SMT
is fundamentally broken because it shares resources between
the two CPU instances and those shared resources lack
security differentiators.” [1] He went on to explain that the
risk of side-channel attacks like Spectre and Meltdown are
dangerous enough to warrant disabling Hyper-threading on all
computers running OpenBSD OS [2].

Despite the previously mentioned security concerns,
system architects should not automatically follow Google and
de Raddit‟s lead. Instead, architects ought to conduct a
thorough analysis of their own environment to determine the
risk level of leveraging multithreading. The following
provides insights that can help architects make informed
decisions when determining the suitability of SMT by
exploring key processes related to SMT, reviewing prominent
SMT exploits, and describing why Spectre and Meltdown
does not necessarily warrant disabling SMT. Building this
case, the remainder of the paper will first provide a high-level
description of the key processes and components involved
during speculative execution. Second, briefly describe the
most renown Spectre and Meltdown variants. Third,
leveraging the Common Vulnerability Scoring System,
provide a methodology to characterize these exploits‟ severity.

II. KEY PROCESSES AND COMPONENTS

A. Simultaneous Multithreading

Processors were originally constructed from a single core
with a single thread of execution. However advantages in a
number of areas to include energy efficiency, true
concurrency, performance, isolation, and reliability led to
CPUs designs with multiple physical cores (each possessing
their own ALU, registers, and other necessary components) on
a single die [3]. The die is still commonly referred to as a
single CPU despite it being composed of numerous individual
cores. Fig. 1 below depicts how multiple cores can operate
within a single die.

However, additional transitors packed onto a more
compact form led to greater heat dispertion and power
consumption - something that is not desirable in a processor.
In order to combant this, SMT was created. SMT allowed a
single core to to appear as two (or more) logical cores to an
OS with each logical core running a single thread of
execution. This meant that although a CPU may only have
four physical cores (quad core), with SMT, the OS would
percieve it as having eight logical cores. If a program required
that the processor fetch a section of data from main memory,
instead of the rest of the core sitting idly by waiting for the
data transfer, the ALU or FPU could begin computation on

another section of instructions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

391 | P a g e

www.ijacsa.thesai.org

Fig. 1. Typical Architecture and Interactions for Multiple Cores on a Single

Die.

B. Caching

Caching is a technique used by processors to compensate
for the dichotomy between the processing speeds of the CPU
and the slower speeds of main memory (RAM). Modern CPUs
use a hierarchy of successively slower but larger caches built
directly into the chip in order to decrease the latency between
execution of instruction sets. The cache is divided into fixed-
sized chunks of memory called lines. Each line is typically 64
or 128 bytes long, with larger cache sizes resulting in greater
speed performance. Depicted in Fig. 2, when the processor
attempts to fetch data from memory, it will first check the L1
cache at the top of the hierarchy for a copy of the data [4]. If
the data is found, it is referred to as a cache hit, if not it is
referred to as a cache miss. This process is then repeated
moving down the chain from L1 to L2 to L3 cache until a hit
is found. If all three caches result in a miss, then the processor
will check system memory for the necessary data.

C. Speculative Execution

Speculative execution, also known as branch prediction, is
the process by which a microprocessor closely tied into the
fetch stage of the CPU instruction cycle makes a prediction as
to what is most likely the next sequence of instructions in a
program.

Fig. 2. Typical Cache Hierarchy.

Modern Intel processors have multiple forms of
speculative execution for direct and indirect branches. Direct
branch instructions relocate the stack pointer to a predefined
memory address prior to the execution of the program [5]. In
contrast, indirect branch instructions can jump to random
memory addresses in the program computed at run time. In the

Intel x86 architecture, this can be accomplished via the jmp
instruction to jump to an address in a register, memory

location, or on the stack. jmp eax, jmp [eax], and

ret respectively. Similar indirect and direct branch calls are
also supported on ARM, MIPS, and RISK V architectures.

There are several functions that optimize indirect branches
in order to compensate for the additional clock cycles
necessary to process the instruction. The Branch Target Buffer
(BTB) is a simple cache managed by the control unit that
stores a mapping from addresses that recently executed branch
instructions to destination addresses [6]. The BTB is leveraged
by the processor to predict future code addresses before the
decoding stage of a branch instruction. The Return Stack
Buffer (RSB) stores a clone of the most recently processed
section of the call stack [7]. Both BTB and RSB can greatly
improve the speed of a running program by reducing the
amount of computational work necessary for the processor.

D. Protected Memory

Protected memory is a method of controlling memory
access rights on embedded systems. Its main purpose is to
prevent apps from accessing regions of memory that they do
not have proper security rights. For instance, one tab open in a
browser should be restricted from accessing working memory
from another tab. Without proper memory protection, data
sections are vulnerable to memory related exploits or code
injections [8]. This can be prevented by either software or
hardware solutions. Software solutions assign a key value to a
program during runtime that it must provide in order to gain
access to the protected memory [9]. Hardware solutions work
in a similar manner but separate threads of execution with
logical barriers.

III. THE EXPLOITS

A. Spectre

Spectre is a general term used to describe a group of
microarchitecture attacks that „trick‟ the processor into
speculatively executing malicious instruction sequences [10].
Because these instructions are eventually reverted by the CPU,
they are referred to as transient instructions. By influencing
which transient instructions are speculatively executed,
information about memory addresses can be leaked from
protected memory. Two prominent variants of the Spectre
attacks exist - CVE-2017-5753 and CVE-2017-5715.

The first variant maliciously trains the branch prediction
algorithm into erroneously executing a section of code that
would not normally have been executed in the normal Von
Neumann sequence. Listing 1 provides a short code example
provided by the original Google Project Zero paper that better
illustrates how this attack occurs [11].

In listing 1, the untrusted_offset_from_caller variable
contains attack-controlled data. During the first phase of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

392 | P a g e

www.ijacsa.thesai.org

attack, the code is repeatedly invoked with a valid value (i.e. a
value between 0 and arr1->length-1) for
untrusted_offset_from_caller and thusly trains the branch
predictor to predict the conditional on line 11 to evaluate as
true. Next, during the second (or exploit) phase, the attacker
invokes the same code but this time with the
untrusted_offset_from_caller variable set to a value out of
bounds for arr1. Because the first phase of the attack trained
the branch predictor to expect the conditional to return true, if
arr1->length is not cached, the processor will begin
speculatively executing.

1. struct array {

2. unsigned long length;

3. unsigned char data[];

4. };

5.

6. struct array *arr1 = ...; /* small array */

7. struct array *arr2 = ...; /* array of size 0x400 */

8. /* >0x400 (OUT OF BOUNDS!) */

9.

10. unsigned long untrusted_offset_from_caller = ...;

11. if (untrusted_offset_from_caller < arr1->length) {

12. unsigned char value = arr1-

>data[untrusted_offset_from_caller];

13. unsigned long index2 =

((value&1)*0x100)+0x200;

14. if (index2 < arr2->length) {

15. unsigned char value2 = arr2->data[index2];

16. }

17. }

Listing. 1. Spectre Exploit Pseudocode.

arr1->data[untrusted_offset_from_caller] even before the
conditional has been fully evaluated.

Eventually the processor will finish evaluating the
conditional and return to its normal non-speculative path. The
out-of-bounds index call will be rolled back along with
value2. However, the speculative execution will still
temporarily store arr2->data[index2] in the L1 cache. By
measuring the difference between the time to load arr2-
>data[0x200] and.

arr2->data[0x300], it can be determined whether value of
index2 was 0x200 or 0x300; this determines if arr1-
>data[untrusted_offset_from_caller]&1 is 0 or 1. By selecting
an appropriate value for untrusted_offset_from_caller, this
process can leak address information stored in protected
memory that usually would not be released but due to
speculative evaluation is temporarily stored in the L1 cache
[12].

The second variant of Spector relies on selecting a gadget
in the victim‟s address space and influencing the target to
speculatively execute that gadget. A gadget is a series of
predefined machine instructions from the program being
exploited. In order to execute the gadget, the attacker trains
the BTB to erroneously predict an indirect branch to the
address of the gadget. The training consists of the attacker
repeatedly indirectly branching to the address of the gadget.

After the BTB is trained to speculatively execute the address
of the gadget, a similar approach as in variant one can be
applied to leak protected memory.

B. Meltdown

Unlike Spector, Meltdown (CVE-2017-5754) does not rely
on vulnerabilities in the victim‟s source code, but instead
leverages out of order execution to run malicious code
instructions in user-space. Note, an important part of OS
memory management is how the OS links virtual memory to
physical memory. When a process requests system memory,
the OS will allocate a section of physical memory for use by
the program. The OS then provides the running process with a
virtual memory address that links to the actual physical
memory address. A mapping between all virtual memory
addresses and their physical counterparts is stored and
referenced by the memory management unit (MMU).

To better illustrate how Meltdown leaks kernel physical
memory addresses, consider the following short code section
written in Listing 2 [13].

1. ; rcx = kernel address, rbx = probe array

2. xor rax, rax

3. retry:

4. mov al, byte [rcx]

5. shl rax, 0xc

6. jz retry

7. mov rbx, qword [rbx + rax]

Listing. 2. Meltdown Exploit Pseudocode.

Three main steps are involved in the execution of the
Meltdown vulnerability. Step one, an attacker selects the
kernel restricted memory location they are attempting to gain
access to and then loads that address into a specified register.
This is accomplished in line 4 where the values of the kernel
address (virtual memory) are stored in the least significant
byte of the RAX register. When line 4 is executed, the mov
instruction is fetched by the core before being decoded into
microcode (µOps), allocated, and sent to the record buffer. By
leveraging a process called out-of-order execution, the
decoded and allocated µOps of lines 5-7 will be executed
before line 4 is completed.

Step two consists of „tricking‟ the processor into storing
the restricted memory addresses in the L1 cache. Line 5
multiplies the secret value from Step 1 (the linked physical
address to the virtual memory location) by the page size. This
negates the ability for the hardware pre-fetcher to load
adjacent memory locations into cache. In the example above, a
single byte is read at a time resulting in the dimensions of the
probe being 256 x 4096. Finally, Line 7 adds the multiplied
secret to the base address of the probe array. Similar, to the
Spectre attack, once the processor finishes the mov instruction
it will throw an interrupt error and roll-back the following
instructions, but the probe array will have already been stored
in the L1 cache.

Step three, the exploit recovers the secret value from Step
1 via a microarchitecture side-channel attack on the L1 cache.
When the transient instructions defined in step two are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

393 | P a g e

www.ijacsa.thesai.org

executed, only one line of the probe array is cached. The
position of that line in the array will depend on the value of
the original secret. Therefore, by iterating over the full 256-
page array and measuring the quickest load time, (i.e. the
cached one) the original secret value can be determined. If this
same process is repeated for each of the kernel restricted
memory addresses, a complete memory dumb can be
constructed of the kernel protect memory.

IV. UNDERSTANDING THE CVSS

An understanding of vulnerability severity is an important
guidepost for architects deciding if they want to disable HT.
CVSS scores are a useful tool to measure vulnerability
severity. CVSS scores are developed by the multi-stakeholder
organization Forum of Incident Response and Security Teams
(FIRST) and serve as an important vulnerability severity
assessment engine for many prominent organizations that
include the National Institute of Standards and Technology
(NIST) NVD database. CVSS assigns a vulnerability severity
score that ranges from 0 – 10, with 10 being the most severe.

The heart of CVSS scoring is a combination of an
exploitability assessment and a vulnerability impact
assessment. Exploitability assessments characterize how easily
a malicious actor may be able to exploit the vulnerability.
Exploitability is comprised of possible attack vectors (AV),
attack complexity (AC), the level of privilege (PR) required
on a computer needed to execute an exploit, and whether the
exploit can be executed without user interaction (UI). Impact
assessments characterize the magnitude of the vulnerability in
terms of confidentiality loss, integrity loss, and availability
loss to the data on the computer.

Fig. 3-5 from the NIST National Vulnerability Database
demonstrates that neither Spectre variants nor Meltdown
exhibit an overall CVSS score above a „MEDIUM‟. (4.0 – 6.9
Overall Score).

For a more detailed explanation of CVSS scoring, refer to
the CVSS user guide [14].

Fig. 3. Spectre CVE-2017-5753–5.6 Score.

Fig. 4. Spectre CVE-2017-5715–5.6 Score.

Fig. 5. Meltdown CVE-2017-5754–5.8 Score.

V. TO DISABLE OR NOT TO DISABLE SMT

Prominent subject matter experts such as Theo de Raddit
argue that SMT‟s security vulnerabilities outweigh its
performance advantages. However, this paper contends that
while disabling hyperthreading may be appropriate in some
environments, it should not be a defacto standard for
enterprise architects. The CVSS assessment does not warrant
such an action.

Although Spectre and Meltdown do present serious
security concerns, their overall vulnerability severity remains
a relatively unremarkable „MEDIUM‟. They both have a
„LOW‟ severity for exploitability due to the fact that neither
attack can leverage a network connection for lateral
movement. Additionally, these exploits are extremely difficult
to operationalize and the ability for a malicious actor to
successfully launch an attack is far from certain. Resultantly,
both attacks have a higher attack complexity and a lower
exploitability severity.

Spectre and Meltdown‟s impact severity do slightly
elevate to the „MEDIUM‟ range but remains well below the
„HIGH‟ severity threshold. Data confidentiality risks are more
concerning because of memory dumping from kernel
protected addresses, or information leaking from protected
memory, but the risk to data availability or data integrity
remains „LOW‟. Potential data leaks do not result in an
alteration of stored data or the ability to access saved data.

VI. CONCLUSION

There is no „one size fits all‟ approach to risk tolerance.
Unique to each environment, is a careful balance between
security and performance. Business and operational
requirements should drive cybersecurity risk mitigation
decisions. This balance aptly applies when determining
whether to disable SMT. Even though both Spectre and
Meltdown both rank „Medium‟ in CVSS severity, a more
security focused environment might be inclined to disable
SMT and accept the performance loss. However,
environments with a less cautious risk tolerance that needs the
performance advantages from SMT to facilitate business
operations should not disable SMT by default and instead
evaluate software application-based patch mitigations.

REFERENCES

[1] Theo Raditt, Disable SMT/Hyperthreading in all Intel BIOSes, e-mail
message, OpenBSD Journal, August 24, 2018. https://undeadly.org
/cgi?action=article;sid=20180824024934

[2] Ibid.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

394 | P a g e

www.ijacsa.thesai.org

[3] Donald Firesmith, “Multicore Processing”, Carnegie Mellon Software
Institute Blog, August 21, 2017, https://insights.sei.cmu.edu/sei_blog/
multicore-processing-and-virtualization/ttps://insights.sei.cmu.edu/
sei_blog/2017/08/multicore-processing.html

[4] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom, “Spectre Attacks: Exploiting Speculative
Execution”, ArXiv e-prints, January 2018, p 4 - 7.

[5] David Gregg, M. Ertl, (2003). "Optimizing indirect branch prediction
accuracy in virtual machine interpreters", Sigplan Notices - SIGPLAN
38, 2003, p 278-288.

[6] Po-Yung Chang, Eric Hao, and Yale Patt, “Target Prediction for Indirect
Jumps,” ACM SIGARCH Computer Architecture News, March 1998,
pg 274 – 282.

[7] Giogo Maisuradze and Christian Rossow, “Speculative Execution Using
Return Stack Buffers”, Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, October 15 –
19, 2018, pg 2109 – 2111.

[8] Ibid, pg 2111 – 2114.

[9] Ibid, pg 2110.

[10] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom, “Spectre Attacks: Exploiting Speculative
Execution”, ArXiv e-prints, January 2018, pg 2.

[11] Jann Horn,“Reading Privileged Memory with a Side-Channel Attack”,
Google Project Zero Blog, January 3, 2018.
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html

[12] John Criswell, Nicholas Geoffray, and Vikram Adve, “Memory Safety
for Low-Level Software/Hardware Interactions”, USENIX Security
Symposium, August 10 – 14, 2009, pg 10.

[13] Moritz Lipp et all. 2018, “Meltdown: Reading Kernel Memory from
User Space”, USENIX Security Symposium, August 15 – 17, 2018, pg.
980.

[14] CVSS User Guide. 2019. FIRST.org. https://www.first.org/cvss/user-
guide.

https://www.researchgate.net/journal/0163-5964_ACM_SIGARCH_Computer_Architecture_News
https://www.bing.com/search?q=usenix+security+symposium
https://www.bing.com/search?q=usenix+security+symposium

