
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

Static Analysis on Floating-Point Programs Dealing
with Division Operations

MG Thushara1
Department of Computer Science and Applications

Amrita School of Engineering, Amritapuri
Amrita Vishwa Vidyapeetham, India

K. Somasundaram2

Department of Mathematics
Amrita School of Engineering-Coimbatore

Amrita Vishwa Vidyapeetham, India

Abstract—Numerical accuracy is a critical point in safe
computations when it comes to floating-point programs. Given a
certain accuracy for the inputs of a program, the static analysis
computes a safe approximation of the accuracy on the outputs.
This accuracy depends on the propagation of the errors on the
data and on the round-off errors on the arithmetic operations
performed during the execution. Floating point values disposes
a large dynamic range. But the main pitfall is the inaccuracies
that occur with floating point computations. Based on the theory
of abstract interpretation, in the paper an upper bound to the
precision of the results of these computations in program have
been demonstrated.

Keywords—Abstract interpretation; static analysis; forward
analysis; abstract domain

I. INTRODUCTION

The optimization of floating point computations in high
performance computing is a critical problem. Most of the pro-
gramming language is restricted in the ability to optimize the
computations. The error propagation factor in the computations
are considered to the minimal. Here, the paper introduces
manual static analysis for floating point computation that
deals with division operations in programs. The semantics of
floating-point numbers are complicated and range of values
comes in accordance with the precision.

There are different sources of inaccuracies in floating-point
numbers like limited precision arithmetic, error accumulation
as a result of floating-point computations, the result of a
floating point computation when it becomes an input to some
other function or process.

In programs with floating-point computations, it is demand-
ing to have numerical accuracy in the results. Our approach
is to combine a forward and a backward static analysis, done
by abstract interpretation. The forward analysis is a classical
approach where the errors on the inputs and on the results of
the intermediary operations are safely propagated to determine
the accuracy of the results. Based on the results of the forward
analysis and on assertions indicating the accuracy required
by the user for the outputs at the end of the execution, the
backward analysis will be carried out. Backward analysis
computes the minimal accuracy needed for the inputs and
intermediary results of the program in order to satisfy the
assertions made. In order to refine the results until a fixed-
point is reached, the forward analyses and backward analyses
can be applied repeatedly.

Static analysis are useful in several safety critical contexts.
For instance, the explosion of the rocket-Ariane 5 [1], owing to
a software error in the inertial reference system. Specifically, a
64-bit floating-point number was converted to a 16 bit signed
integer which was larger than 32,767, the largest integer in a 16
bit signed integer, and that lead to the failure. Another instance
was Patriot Missile [2] failed in detecting and intercepting an
incoming Iraqi Scud missile and killing 18 American army
men during the Gulf war. The cause of the incident was an
inaccurate calculation of the time due to computer arithmetic
errors.

Technically,abstract values are used in the form [a, b]p
where a and b are floating-point numbers defining an interval
and p is an integer giving the accuracy. Intuitively, [a, b]p is the
set of numbers between a and b which have at least p correct
digits.

Using the principles of abstract interpretation, an abstract
domain is defined for floating point numbers using intervals.
By static analysis with forward and backward analysis the
input and results of the computations are optimized using the
division operations.

II. BACKGROUND STUDY

A. Abstract Interpretation

Static analysis involves defining a abstract domain [3]
and computing automatically the program text with the ab-
stract semantics according to predefined abstractions. Abstract
interpretation uses theory of sound approximation of com-
puter program semantics. Using the control-flow or data-flow,
without doing all computations, information can be obtained
about semantics of the program. In formal static analysis,
these information can be used to analyze the behaviour of
the possible executions of computer programs. The concept of
Abstract interpretation was coined by the computer scientist
working couple Patrick Cousot and Radhia Cousot in 1970s.

Real numbers are approximated by floating-point arith-
metic [4], so error may propagate due to rounding during
computations. Even though this seems to be accurate, losing
precisions in safety critical applications will make the results
useless. For dealing with this issue the authors in [4], came
up with a tool using static analysis which allows to find the
possible programming errors.

www.ijacsa.thesai.org 422 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

B. IEEE 754 Floating-Point Arithmetic

The programs containing floating-point computations [5]
is critical when it comes to verification. This is mainly due
to rounding errors, infinities, non-numeric objects (NaNs),
signed zeroes, denormal numbers, different rounding modes,
etc. Here, the authors has define and proved the correctness
of algorithms which are using the values bound with variables
x, y or z. This filtering algorithms are defined and formally
proved for their correctness.

David Goldberg in his paper [6] discusses most of the
aspects related to floating-point arithmetic. A look through on
the implications of rounding for operations like addition, sub-
traction, multiplication and division. Also, explains the IEEE
floating-point standard and also discusses different aspects of
computer systems include design of instruction set, compiler
optimization and exception handling.

In [7], a classification of floating point formats, including
IEEE Standard 754 is presented by the author.

In [8], the author discusses about Interval mathematics
that guarantees result but the arithmetic on existing processors
makes these methods very slow. The paper looks into the effi-
ciency of interval arithmetic on computers. Interval arithmetic
can be considered as an extension of floating-point arithmetic.
This controls the precision of a computation as well as the
accuracy of the computed result.

C. Literature Reviews

FLUCTUAT [9] is a static analyzer for analysing the errors
generated from approximations of floating-point arithmetic
operations on real numbers. It mainly focuses on error com-
putation using relational methods.

Round-off error in floating-point is formally verified using
the tool FPTaylor in [10]. The approach used in the paper is
Symbolic Taylor Expansions and the implementation of the
tool called FPTaylor which is built on this approach.

The tool -VCFloat [11] automatically deals with rounding
errors in real-number expressions of C floating-point compu-
tations and does the correctness proof using Coq.

In [12], a static analysis computing round-off error bounds
on floating-point computation is introduced. The paper uses
denotational semantics for the estimation of round-off er-
rors.Authors have developed a prototype - PRECiSA (Program
Round-off Error Certifier via Static Analysis) for verification
in NASA for floating-point computations.

III. METHODOLOGY

In Fig. 1, a sample code that can lead to inaccuracies is
depicted an the expected and actual result is shown in Fig. 2.
An error of 0.00000000000000011102 is found in the result.

In this paper, static analysis for numerical accuracy is
introduced. The information gained by this analysis will be
used for the optimizing the floating-point representation. In
order to show the correctness, experimental results will be
presented in the coming sessions. Concrete semantics of a
program is the set of all possible executions in all possible

double x=0.1; int i=1;
while (i <= 10)
{
x = x + 0.1;
printf("x=%0.20f", x);
i++;

}

Fig. 1. Error Propagating code.

Expected output: At 10th iteration x = 1.0

Actual output:
(1) x=0.10000000000000000555
(2) x=0.20000000000000001110
(3) x=0.30000000000000004441
(4) x=0.40000000000000002220
(5) x=0.50000000000000000000
(6) x=0.59999999999999997780
(7) x=0.69999999999999995559
(8) x=0.79999999999999993339
(9) x=0.89999999999999991118
(10)x=0.99999999999999988898

Fig. 2. A simple Code snippet.

environment. Whereas Abstract semantics is a super set of the
concrete semantics. In general, Abstract Interpretation [3] is a
theory of semantics-based program analysis.

An abstract domain α is chosen replacing the objects of
concrete domain S as α(S). For every program there is a
corresponding computation tree or control flow graph.

(0) a = 1; b = 0;
(1) while (a < 10)

{
(2) b = b + 1;
(3) a = a + 1;

}
(4) Print b
(5) End

Fig. 3. A simple Code snippet.

Consider the code in Fig. 3, the corresponding control flow
graph is shown in Fig. 4. The rules that allows us to compute
the precision of the noes in a control flow graph is known as
transfer functions. Two classes of transfer functions are used-
the one that computes the past behaviour for each control
point is transfer functions for forward analysis and the one
that computes information about the future behaviour for each
program point is transfer functions for backward analysis.

Here, floating point numbers are represented as intervals
in the abstract domain. The transfer functions for division
operation is then formulated. Using the principle of interval
arithmetic the computations are further proceeded.

In this paper the approach is by defining the abstract
domain whose elements are floating-point intervals with an
associate precision. Then the transfer function for the division

www.ijacsa.thesai.org 423 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

Fig. 4. A sample control flow graph

operator is formulated. Here the abstract domain is defined as
[a, b]p where a and b are interval bounds and p is the precision.
The IEEE754 standard Fig. 5 defines four different precisions:
single, double, single-extended, and double-extended. In IEEE
754, single and double precision correspond roughly to what
most foating-point hardware provides.

Fig. 5. IEEE standard

IV. ABSTRACT DOMAIN AND RUNNING EXAMPLE

Let Ip be the set of all floating-point intervals with a
precision p. An element i ∈ Ip is denoted as i = [a, b]p where
a and b are two floating-point numbers and p is the precision
(length of the mantissa). Consider βp as the set of all binary
representations with p as the mantissa length.

Then,

Ip = [a, b]p = {c ∈ βp : a ≤ c ≤ b}

and
I =

⋃
p∈N

Ip.

The abstract domain is defined as 〈I,v,t,u,⊥I ,>I〉. The
elements are ordered by

[a, b]p v [c, d]q ⇐⇒ [a, b] ⊆ [c, d] and q ≤ p.

a) Transfer Functions: The computations in a program
can be represented using computation tree which demonstrates
the control-flow of the program. For this, transfer functions are
used which analyses the value at each computation node using
the information from the past behaviour of the node.

To define Control Flow Graph(CFG) semantics, an oper-
ational semantics can be defined which is like an interpreter
where the entry node is the input and is the initial state which
is the mapping from variables to values and the final state
is the output of the program. These semantics are defined in
terms of transfer functions. The transfer function holds the
execution semantics of that node and specifies the next node
to be executed. If an abstract interpretation is done and then
formulate a transfer function, the result is exactly the same
as that of the results of doing operational semantics to actual
value and then do abstraction. Consider the division of two
intervals x = [a, b]p1 and y = [c, d]p2 with a = s1 ·m1 · 2e1 ,
b = s′1 ·m′1 · 2e

′
1 , c = s2 ·m2 · 2e2 and d = s′2 ·m′2 · 2e

′
2 .

In the forward analysis, in order to estimate the precision
for z different cases are taken. Let d = e2 − e1.

p =


max(p1, p2), if e1 = e2,

min(p1 − 1, p2) + d, if e1 > e2,

min(p1, p2 − 1) + d, if e1 < e2.

Rounding error [6] is part of floating-point computations. If
z is the floating-point number represented by d.d..dxβe, then
the error can be represented as d.d..d− (z/βe)|βp−1.

In this section, the numerical analysis is demonstrated
using a sample code snippet given in Fig. 6. Each value is
represented as a floating point interval in the form [a, b]p where
a and b are the interval range and p is the precision of the
float value. All the variable values are represented in the form
of interval of float value in their abstract form. Each time
an operation is performed, the precision is affected and in the
paper optimization of the precision is tried by applying forward
analysis.

(1) float b=102.0 , a=2.015;
(2) while(b>1.0)

{
(3) b=b/a;
(4) printf("%f",b);

}

Fig. 6. An example Code snippet.

In Fig. 6, two variables a and b are used and they are
initialized as 102.0 and 2.015. Which is internally mapped to
abstract domain in the form [102.0, 102.0]32 and [2.0, 2.0]15.
Here, the while loop is used to reduce the value of b by dividing
b by a. Static forward analysis is applied on the given code
snippet which is demonstrated in Fig. 7.

www.ijacsa.thesai.org 424 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

The predefined abstractions are used to compute the ab-
stract semantics automatically from the program text which
is then optimized automatically or manually by the user. At
control point (3), b′ is calculated by interval division of b and
a. The new value is obtained as [51.0, 51.0]32 by using transfer
function for division. At beginning of each iteration a join
operation is performed on the values of b. After control point
(3), a join (∪) operation based on previous value of b from
control point (1) and current value of b from (3) is performed.

To over approximate the value of b a widening operation
is performed after control point (3)”. It is observed that the
value of b becomes unchanged after every iteration. Then the
loop is stopped and determines the forward analysis result of
b. This is shown in Fig. 7.

(1) float b=[102.0,102.0]32,
a=[2.0,2.0]15;

(3) b’= [102.0,102.0]32/ [2.0,2.0]15
=[51.0,51.0]32

b=b ∪ b’
=[102.0,102.0}32 ∪ [51.0,51.0]32
=[51.0,102.0]32

(3)’ b’’=[51.0,102.0}32/ [2.0,2.0]15
=[25.5,51.0]15

b=b’ ∪ b’’
=[51.0,102.0}32 ∪ [25.5,51.0]15
=[25.5,51.0]32

(3)’’ b’’’=[25.5,51.0]32/ [2.0,2.0]15
=[12.75,25.5.0]15

b=b’’ 5 b’’’
=[25.5,51.0]32 5 [12.75,25.5]15
=[12.0,26.0]32

(3)’’’ b’’’’=[12.0,26.0]32/ [2.0,2.0]15
=[6.0,13.0]15

b=b’’’ ∪ b’’’’
=[12.0,26.0]32 ∪ [6.0,13.0]15
=[12.0,26.0]32

Fig. 7. An example Code snippet.

V. CONCLUSION

In this paper, A static numerical analysis is demonstrated
on floating-point computation with the help of a code snippet.
The abstract domain of the form [a, b]p is used where a

and b are the range of float values and p is the precision.
Here, forward analysis is applied to show the float-interval
division operation. The aim of the paper is to prove that a
minimal accuracy is achieved on the result of the floating-
point computations where mostly due to rounding errors and
error propagation, the results get affected. With the help of
transfer function, the analysis result is demonstrated in Fig.
7. Transfer functions are used to show the numerical analysis
applied on the floating-point computations.

REFERENCES

[1] European Space Agency. European Space Agency, Ariane 501 Inquiry
Board Report. Technical report, , 1996.

[2] Information Management and D.C. Technology Division, Washington.
Patriot missile defense: Software problems led to system failure at
Dhahran, Saudi Arabia. Technical report, Information Management and
Technology Division, US General Accounting Office, 1992.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. ACM.

[4] Eric Goubault, Matthieu Martel, and Sylvie Putot. Asserting the
precision of floating-point computations: A simple abstract interpreter.
In Daniel Le Métayer, editor, Programming Languages and Systems,
pages 209–212, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[5] Roberto Bagnara, Abramo Bagnara, Fabio Biselli, Michele Chiari,
and Roberta Gori. Correct approximation of ieee 754 floating-point
arithmetic for program verification, 2019.

[6] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, March 1991.

[7] David M. Russinoff. Floating-Point Formats, pages 63–75. Springer
International Publishing, Cham, 2019.

[8] Ulrich Kulisch. Mathematics and speed for interval arithmetic: A
complement to ieee 1788. ACM Trans. Math. Softw., 45(1):5:1–5:22,
March 2019.

[9] Eric Goubault and Sylvie Putot. Static analysis of numerical algo-
rithms. In Kwangkeun Yi, editor, Static Analysis, pages 18–34, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[10] Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh
Gopalakrishnan. Rigorous estimation of floating-point round-off errors
with symbolic taylor expansions. In Nikolaj Bjørner and Frank de Boer,
editors, FM 2015: Formal Methods, pages 532–550, Cham, 2015.
Springer International Publishing.

[11] Tahina Ramananandro, Paul Mountcastle, Benoı̂t Meister, and Richard
Lethin. A unified coq framework for verifying c programs with
floating-point computations. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2016, pages 15–26,
New York, NY, USA, 2016. ACM.

[12] Mariano Moscato, Laura Titolo, Aaron Dutle, and César A. Muñoz.
Automatic estimation of verified floating-point round-off errors via
static analysis. In Stefano Tonetta, Erwin Schoitsch, and Friedemann
Bitsch, editors, Computer Safety, Reliability, and Security, pages 213–
229, Cham, 2017. Springer International Publishing.

www.ijacsa.thesai.org 425 | P a g e


