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Abstract—More than 21 million people worldwide suffer from
schizophrenia. This serious mental disorder exposes people to
stigmatization, discrimination, and violation of their human
rights. Different works on classification and diagnosis of mental
illnesses use electroencephalogram signals (EEG) because it
reflects brain functioning, and how these diseases affect it. Due
to the information provided by the EEG signals and the perfor-
mance demonstrated by Deep Learning algorithms, the present
work proposes a model for the classification of schizophrenic
and healthy people through EEG signals using Deep Learning
methods. Considering the properties of an EEG, high-dimensional
and multichannel, we applied the Pearson Correlation Coefficient
(PCC) to represent the relations between the channels, this way
instead of using the large amount of data that an EEG provides,
we used a shorter matrix as an input of a Convolutional Neural
Network (CNN). Finally, results demonstrated that the proposed
EEG-based classification model achieved Accuracy, Specificity,
and Sensitivity of 90%, 90%, and 90%, respectively.
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I. INTRODUCTION

Schizophrenia is a serious mental disorder that is character-
ized by alterations in thinking, often including psychological
experiences such as hearing things or delusions. More than 21
million people worldwide suffer from schizophrenia, of which
more than 50% do not have adequate medical attention [1],
being men the ones that suffer it more frequently than women
[2].

According to [3], this severe mental disorder can present
these symptoms: delusions, hallucinations, disorganized dis-
course (for example, disaggregation or frequent incoherence),
very disorganized or catatonic behavior and negative symptoms
(i. e. diminished emotional expression).

The schizophrenics who do not have the proper treatment
are more prone to suffer stigmatization, discrimination, and
violation of their human rights [1], the life expectancy of
people in these patients according to [2], [4] is between 10
to 15 years and their risk of suicide is 10% .

The World Health Organization (WHO) [1] has several
programs for the correct treatment of this disorder, which
includes pharmacotherapy and psychosocial support, since

schizophrenia generally begins in late adolescence or early
adulthood [2], the earlier diagnosis is important.

For a schizophrenic to receive adequate treatment, diagno-
sis is necessary. Due to EEG has unique characteristics, high
dimensionality, and variability [5], there are diverse approaches
for the diagnosis and treatment of different mental disorders,
which work on the data presented by an EEG.

An EEG provides information about the electrical activity
of the brain [6], [7], with this information is possible to identify
emotions [8], [9], [10], [11], whether a person is healthy or
suffer some neurological disease [12], [13], [14], [15], [16],
[17].

In different researches, Deep Learning algorithms are used
for classification and extraction of characteristics of an EEG,
among the most seen are The work of Acharya et al. [6],
where the authors used a CNN with 13 layers to detect normal,
practical, and seizure classes. In [18] the authors used a CNN
with Random Forest and a voting layer to classify high-
risk individuals, clinically stable first-episode patients with
schizophrenia and healthy controls.

On the other hand, en [19], the authors used CNN to
detect and classify segments of EEG which display abnormal
brain activity. In [20] was used CNN to classify people who
listened and imagined music and compare strategies for learn-
ing features. Author in [21] used graph signal representation
of an EEG in a CNN, [22] used a CNN to decode and
visualize features of an EEG and [23] used CNN to classify
between listen to music, reading, and watching augmented
reality application, Convolutional Deep Belief Networks [5],
Deep Recurrent-Convolutional Neural Networks [24], Deep
Neural Networks [9], [15], Restricted Boltzmann Machines [8],
Non-Ruinous Autocoder Stacked [25], Deep Belief Network
[26].

Observing the performance shown by the Deep Learning
algorithms working on EEG signals and the features extracted
from them, we propose a method to classify schizophrenic and
healthy people. For the other hand, we use PCC to reduce the
high-dimensionality and variability presented by each channel
of an EGG into a single matrix. This way, the correlation
matrix is presented as an input of a CNN for the classification.

In [11] PCC is used to represent the correlation between the
32 channels of an EEG as a matrix, then the correlation matrix
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Fig. 1. Methodology proposed (A) Data Segmentation, (B) Pearson Correlation Coefficient and (C) Convolutional Neural Network

is presented as an input for CNNs, obtaining an accuracy of
94.44% for a CNN with five convolutional layers.

The rest of the paper is organized as follows. In Section
II, we give a description of PCC and CNN. In Section III,
we describe the data used, the classification procedure and
the results obtained. In Section IV, we discuss the results
and future work. Finally, in Section V we provide conclusions.

II. METHODOLOGY

The methodology proposed is shown in Fig. 1 consists of
four parts. The first one is how the dataset is composed, which
consists of 122880 records per subject (16 channels, and 7680
records per channel). The second part (Section A of Fig. 1)
is the Data Segmentation, detailed in subsection II-A, which
consists of how the data per subject is segmented and ordered
to get a (channels ∗ records) matrix.

The third part (Section B of Fig. 1) is the Pearson Cor-
relation Coefficient, detailed in subsection II-B, is to obtain a
matrix that represents the correlation between the channels per
subject applying PCC on each (16 channels ∗ 7680 records)
matrix, the finale matrix is 16 ∗ 16 dimensions.

The fourth part (Section C of Fig. 1) is the classification
with Convolutional Neural Network, detailed in subsection
II-C, which consists of using the correlation matrix as an
input to a CNN, this way the performance of the CNN
improves performance due to the values of the correlation
matrix are between -1 and 1, instead of the variable values raw
EEG signal presents. The CNN consists of two convolutional
layers, two max-pooling layers, one fully connected layer, and
softmax.

A. Data Segmentation

Each file that corresponds to a subject contains the 122880
EEG recordings in a column, those 122880 EEG recordings
turned as a 16 ∗ 7680 matrix. 7680 recordings per each
channel, taking the first 7680 recordings for the first channel,
the second 7680 recordings for the second channel and so on.

Since the length of each channel is too long, we partitioned
each EEG recordings matrix per subject into six parts, each
one of those partitioned matrices represents ten seconds of
each EEG recordings. It means that each 16 ∗ 7680 matrix
turned into six 16 ∗ 1280 matrices.

Fig. 2. Heat map of the correlation matrix for a healthy person.

B. Pearson Correlation Coefficient

The Pearson Correlation Coefficient represents how two
variables are related, and in this work, these variables are the
signals captured for the electrodes, generating one channel by
each of them.

PCC was used to represent how a channel is related to the
other ones, this way we turned each sample (16∗1280 matrix)
as a square matrix, which is suitable to be used as an image
on a CNN, the Fig. 2 and the Fig. 3 show the correlation
matrices of a healthy and schizophrenic person, respectively.
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Fig. 3. Heat map of the correlation matrix for a schizophrenic person.

If the two signals are x and y, PCC is calculated as:

PCC =
cov(x, y)

σxσy
(1)

Where cov(.) is the covariance, σx and σy the standard
deviations of the signals. The value PCC ranges between −1
and 1, which indicates a perfect negative and perfect positive
linear relationship, respectively. So, if PCC is 0, it means that
there is no linear relationship between the two signals.

C. Convolutional Neural Network

Once we obtained the correlation matrix per subject, we
treated each one as an image for the input of the CNN.

In Table I, we detailed the CNN structure used for this
work.

A Stochastic Gradient Descent (SGD) optimizer was used,
with a learning rate value of 3, decay learning value of 0.5,
and momentum of 0.1. And as loss function, Mean Squared
Error.

For a better understanding, we define a CNN and its parts
below.

CNN is a subset of deep learning [6]. His name comes
from the use of convolution filters for complex operations
[14], and according to [27], it was inspired biologically by the
visual cortex and design at the beginning for image processing.

A typical configuration of a CNN consists of a sequence
of convolution and sub-sampled layers. After the last
subsampling layer usually follows a series of fully connected
layers, this way the 2-D map of characteristics turns into a
1-D vector, and then the classification as traditional Neural
Networks (NN) is performed [14].

To avoid overfitting, regularization methods, as dropout,
are usually used during training.

CNN comprises three types of layers:

1) Convolutional Layer A set of filters that slide
through the input. A Filter is a matrix that convolves
the input data and strides control how much the Filter
convolves through the length of the input data. The
output of the convolution is known as a feature map
[6].

2) Pooling Layer Also known as down-sampling layer.
Reduce the previous layer neurons output dimension,
to relieve the computational intensity and prevent
overfitting [6].
Max pooling partitions the input data into rectangles
and takes the maximum value from each partition,
reducing the output dimension [23].

3) Fully Connected Layer In this layer, all the neurons
have a connection with each one of the previous
layer neurons, like a hidden layer of a Multilayer
Perceptron (MLP).

TABLE I. CNN STRUCTURE

LAYER DESCRIPTION

(C.1) CONVOLUTIONAL
LAYER

Layer that uses 3 ∗ 3 filters that strides
1 ∗ 1 through the input data.

(C.2) MAXPOOLING
LAYER

Layer that partitions the output data
from the previous layer in 2∗2 matrices
and reduces them taking the max value
of each partition. The partitions stride is
2 ∗ 2.

(C.3) CONVOLUTIONAL
LAYER

Layer that uses 3 ∗ 3 filters that strides
1 ∗ 1 through the input data.

(C.4) MAXPOOLING
LAYER

Layer that partitions the output data
from the previous layer in 2∗2 matrices
and reduces them taking the max value
of each partition. The partitions stride is
2∗2. Also, we applied a dropout of 0.25
to the output data of this layer.

(C.5) FLATTEN Turn the output data from the previous
layer in a 1-D vector.

(C.6) FULLY CONNECTED
LAYER

Layer with 256 neurons.

(C.7) SOFTMAX Output layer with softmax activation to
the classification.

It is common to use activation functions after each
convolutional layer. An activation function is an operation
that maps an output for a group of input.

In this work an activation function is used:

1) Softmax This function computes the probability dis-
tribution of the k output classes. The last layer applies
this function to predict, which class the input belongs.
The output values are between 0 and 1, and the sum
is 1.
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III. EXPERIMENTS AND RESULTS

A. Data Description

EEG recordings data used for this work, also analyzed in
[12], is available at http://brain.bio.msu.ru/eeg schizophrenia.
htm. The recordings belong to two groups. The first one
consists of 39 healthy boys (11-13 years old). The second
consists of 45 boys (10-14 years old) diagnosed with
schizophrenia using clinical interviews at the Research Center
for Psychological Disorders of the Russian Academy of
Medical Sciences [12]. For all subjects, from 16 channels
(electrode positions) the EEG signals were registered, those
channels are F7, F3, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2.

During the recordings, the patients were in a rest state
with eyes closed. The signal was recorded for 1 minute at a
frequency of 128 Hz, obtaining 7680 records per each channel
of a subject.

B. Results

All this work was developed, executed, and tested using
the Google environment Colaboratory, and for the CNN, Keras
python library. The EEG signals used in this work come from
45 subjects who suffer schizophrenia and from 39 healthy
subjects.

Since the total length of the EEG signals per subject is
60 seconds, we divided those signals into six same length
parts. Therefore there will be 270 samples of subjects who
suffer schizophrenia, and 234 samples of healthy subjects, each
sample with 10 seconds length.

Fig. 4. Accuracy evolution in the training stage.

From all the 504 samples of EEG signals, 484 samples
were the training data, and the rest 20 samples the test data.

In the training stage, the number of epochs was set
up in 400, and the validation was set up in 30% for the
training data input. Fig. 4 and Fig. 5 show the results
in the training stage. For training, the accuracy, and loss
values are 92.01%, and 0.076 respectively and for validation,

the accuracy and loss values are 86.3% and 0.094, respectively.

Fig. 5. Loss evolution in the training stage.

The model’s performance was calculated in terms of Sen-
sitivity or True Positive Rate (TPR)(2), Specificity or True
Negative Rate (TNR)(3) and Accuracy (4) defined as below:

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Where TP denotes True Positive (number of Schizophrenia
correctly classified as Schizophrenia), FN denotes False Nega-
tive (number of Schizophrenia wrongly classified as Healthy),
TN denotes True Negative (number of Healthy correctly clas-
sified as Healthy), and FP denotes False Positive (number of
Healthy wrongly classified Schizophrenia).

The confusion matrix is presented in Table II. It shows
that 0.9 of the schizophrenia EEG signals were correctly
classified (TPR), and the normal EEG signals reached 0.9 of
correct classification (TNR) and accuracy of 0.9.

TABLE II. CONFUSION MATRIX

PREDICTED

Schizophrenia Normal

ORIGINAL
Schizophrenia 0.9 0.1

Normal 0.1 0.9

IV. DISCUSSION

The problem of the classification of EEG signals to aid
the diagnosis of mental diseases is still open nowadays [12].
Because of this, new researches are developed, trying to
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improve the performance of the previous works.

In this work, a model to classify people who suffer
schizophrenia and healthy people by EEG signals using deep
learning has demonstrated performance with an accuracy of
0.9.

Piryatinska et al. [12] presented a model that calculates
ε-complexity coefficients of the original signal. Then they
classified these coefficients with Random Forest (RF) and
support vector machine (SVM). Table III shows a comparison
between the accuracy reached by [12] and the proposed
method, Piryatinska et al. [12] reached an accuracy of
84.5% applying RF on ε-complexity coefficients, and 81.07%
utilizing SVM on ε-complexity coefficients, lower than the
accuracy of 90% obtained by our method applying CNN
on the channels correlation matrix obtained from raw EEG
signals.

TABLE III. COMPARISON OF RESULTS FOUND IN [12] WITH THE RESULT
OF OUR METHOD

Accuracy

ε-complexity coefficients with RF 84.5%

ε-complexity coefficients with SVM 81.07%

Our method 90%

V. CONCLUSION

In conclusion, we proposed a model that uses PCC to ob-
tain the correlation matrix of the EEG signal and present it to a
CCN architecture, to classify people who suffer schizophrenia
and healthy people from publicly available data. The proposed
methodology obtained an accuracy of 90%, with a specificity
of 90% and a sensitivity of 90%. The performance of the
proposed method is better than the existing work that used
the same data.
Increasing the amount of data, the performance of the proposed
method can be better.
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