
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

75 | P a g e

www.ijacsa.thesai.org

The Computational Efficiency of Monte Carlo

Breakage of Articles using Serial and Parallel

Processing: A Comparison

Jherna Devi
1

Institute of Technology for Nanostructures (NST) and Center

for Nano Integration Duisburg-Essen (CENIDE)

University Duisburg-Essen, Duisburg, D-47057, Germany

Department of Information Technology, Quaid-e-Awam

University of Engineering Science & Technology

(QUEST) Nawabshah, 67480, Sindh, Pakistan

Jagdesh Kumar
2

School of Technology and Innovations

University of Vaasa, Finland

Department of Electrical Engineering, Quaid-e-Awam

University of Engineering Science & Technology

(QUEST) Nawabshah, 67480, Sindh, Pakistan

Abstract—This paper presents a GPU-based parallelized and

a CPU-based serial Monte-Carlo method for breakage of a

particle. We compare the efficiency of the graphic card’s

graphics processing unit (GPU) and the general-purpose central

processing unit (CPU), in a simulation using Monte Carlo (MC)

methods for processing the particle breakage. Three applications

are used to compare the computational performance times, clock

cycles and speedup factors, to find which platform is faster under

which conditions. The architecture of the GPU is becoming

increasingly programmable; it represents a potential speedup for

many applications compared to the modern CPU. The objective

of the paper is to compare the performance of the GPU and Intel

Core i7-4790 multicore CPU. The implementation for the CPU

was written in the C programming language, and the GPU

implemented the kernel using Nvidia’s CUDA (Compute Unified

Device Architecture). This paper compares the computational

times, clock cycles and the speedup factor for a GPU and a CPU,

with various simulation settings such as the number of simulation

entries (SEs), for a better understanding of the GPU and CPU

computational efficiency. It has been found that the number of

SEs directly affects the speedup factor.

Keywords—Breakage of particles; Central Processing Unit

(CPU); Graphics Processing Unit (GPU); CUDA; computational

time; clock cycle; speedup factor

I. INTRODUCTION

The breakage of particles is of interest in various fields of
engineering and scientific research, including chemical
engineering, aerosols, agriculture and medicine [1–3]. The
population balance equation (PBE) provides a platform to
develop the distributed phase. The PBE includes all the
processes, such as nucleation, coagulation and breakage, that
produce fragments and break simulation entries or parent
particles from the population. Breakage is of major
importance for understanding the behavior of, and dealing
with, particle systems.

The particle breakage-population balance equation (BP-
PBE), which characterizes the breakage dynamics in terms of
the time evolution of the particle size distribution (PSD), is
shown in Equation :

 ∫

 (1)

where is the concentration of particle sizes and
 is the particle size distribution. The size range between
and per unit volume, in time t, is defined by the BP-
PBE Equation1.

where is the rate at which a particle of size breaks
and the breakage function describes the number
fragment particles of size resulting from the breakage of one
parent particle of size . The death term (first term on the
RHS) of Equation (1) represents the deletion of particles of
size due to breakage into smaller fragments [4]. The birth
term (second term on the RHS) of Equation (1) defines the
addition of fragment particles with volume due to breakage
of particles with volume , where . The breakage rate
 and the breakage kernel can be obtained by
modelling and simulation or via experiments [1, 2].

A variety of methods can provide a solution for the PBE
[5], such as the sectional method, the method of moments and
Monte Carlo methods [1–3]. In this paper, the time-driven
Monte Carlo (MC) approach has been implemented for
solving the PBE for breakage on the CPU [3, 6] which uses
serial processing, and on the GPU [1, 3], which facilitates
parallel processing.

The modelling of breakage [6] of the particle is the process
of making a model, which is a depiction of the structure and
working of the particle breakage process [7]. A model is
simple, but it represents similar to the real process. The main
objective of the model of a process, for an analyst, is to
estimate the outcome of variations in the process. Simulations
of processes help to meet the specifications of a particular
system, to reduce the chance of failure, to remove unexpected
bottlenecks, to avoid overconsumption or underconsumption
of resources and to optimize the performance of the process
[7]. This paper focuses on: (1) Modelling and simulation of
the breakage process serially and parallelly. (2) The
differences between the GPU and CPU computational times
and the speedup factor for a given breakage rate and breakage
function.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

76 | P a g e

www.ijacsa.thesai.org

The importance of this reported investigation is to provide
awareness about parallel processing can save time and cost.

The remainder of this paper is organised as follows. In
Section II we have presented the literature review of the
Modelling and simulation of the Particle breakage using
Monte Carlo methods, the serial and parallel processing
differences are briefly summarized, according to different the
hardware, software, architecture and the compilation of the
algorithm. The discussion and the results are covered in
Section III. The paper is concluded in Section IV and the
future work highlighted in Section V.

II. LITERATURE REVIEW

A. Monte Carlo Simulation for Particle Breakage

MC methods (MC experiments) consist of a variety of
computationally efficient algorithms that rely on recurring
random sampling to obtain a numerical output. The MC
method is widely used for modelling population balances
(MC-PBs) [7]. The MC method has a discrete and stochastic
nature [8, 9] and is suited to particle dynamics.

The MC simulation comprises of more than 1,000
iterations [10] or recalculations. During an MC simulation, the
input probability distribution values are tested at random [11].
Every set of tests is called a recalculation or iteration, and the
result of that test set is stored. Usually, Monte Carlo methods
are classified by the time discretization system into event-
driven Monte Carlo methods and time-driven Monte Carlo
methods.

Event-driven MC [12] first estimates awaiting for time or
time interval Δt among two consecutive events and then select
the event randomly that occurs during time interval Δt.

Time-driven Monte Carlo [12] calculates a time step Δt,
also known as a pre-specified time step, and considers all
possible events that may happen within that time step.

The two most widely used sampling strategies for
simulating breakage in Monte Carlo methods are the
acceptance-rejection (AR) strategy [2, 10] and the inverse
strategy [1, 12].

These sampling strategies have different ways of choosing
the particle or SE to break randomly as shown in Fig. 1

Acceptance-rejection sampling is a more straightforward
way of selecting the required particle: it randomly chooses a
particle, calculates the breakage probability and checks to see
whether or not to accept it. The Monte Carlo method is used to
handle the particle breakage. Many attempts are often needed
to find a suitable particle for breakage.

On the other hand, inverse sampling chooses a desirable
particle by generating a random number between 0 and 1 and
comparing it to a normalized value (R in [2, 3]) for the
considered part of the PSD. Using the inverse scheme, one can
always find a particle after a finite number of attempts (up to
the total number of simulation particles (SEs)).

The MC method using AR sampling features inherent
parallelism [2][13]. This is because the choices of a random

particle (to be broken) via AR sampling are uncorrelated, and
hence can be made in parallel.

This inherent feature of Monte Carlo AR sampling is easy
to implement on a parallel architecture, such as the GPU [1, 2,
14]. GPUs can execute millions of lightweight threads in
parallel and simultaneously.

B. Serial and Parallel Processing

Population balance equation processes, such as
coagulation, breakage and nucleation, have been modelled on
CPUs [8, 11] and GPUs [1, 2, 13]. It is worth emphasizing that
an ideal grouping with high efficiency is important for PB-
MC, because the increase in the number of simulation entries
leads to an increase in the accuracy of the implemented
process or algorithm, while the computing efficiency
decreases. Computational power has increased over the last 10
years, but it is also important to increase computational
efficiency for estimating particle dynamics. The MC
simulation can be accelerated in two ways [15] as follows.

1) CPU parallel processing, via OpenMP (open multi-

processing) and MPI (message passing interface) [15].

2) GPU parallel processing: processing via the GPU and

CUDA [16].

Fig. 1. Simulation Model.

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random_sampling

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

77 | P a g e

www.ijacsa.thesai.org

In fact, the parallel computing of MC simulations utilizes
more computer resources concurrently to decrease
computational time. The CPU time increases linearly with
computational complexity O(N) [1]. Monte Carlo acceptance-
rejection sampling [16] has a significant effect on
computational performance.

Recently, fast inverse and AR MC sampling on the GPU
have been proposed [1, 2], to enhance the performance of MC
methods for particle breakage.

Several nanotechnology applications have high inherent
parallelism. The GPU is capable of high performance, as it
supports a large number of cores, [16], and in many
applications, GPU gets high performance. The clock speed of
the serial processing [17] has driven the attention of the
researchers to the parallel architecture,[16, 18–22] which is
capable of providing tremendous computational efficiency [1,
2]. Usually, MC simulations require looping during the
simulation of particle breakage events on CPU at the end of
the simulation the computational cost increases [10]. The GPU
and its advanced capabilities used for rendering of 3D games
basically timeframe [23]. Now the GPU competencies are
being coupled to accelerate computational workload by
modelling of the complex and computationally expensive
processes in different fields of scientific research.

1) Hardware: With regard to the hardware used for

simulation, the CPU by Intel with four cores maximum

performance, while the Nvidia GPU with 2,304 cores [24] can

deliver 4,156 Gigaflops. The use of GPUs in high-

performance computing also affects the computational cost.

The GPU has two main characteristics [25] as follows: Table

I. Allowing contact with the GPU’s cores using CUDA

programming. CUDA by Nvidia [23] is embedded in the

standard C language. The function of a GPU is known as a

kernel distribution function and is executed on the GPU cores

[25]. 2. Achieving the distribution of the task via a kernel grid,

where the kernel grid is split into blocks, with each block

subdivided into several threads. The GPU has off-chip global

memory and on-chip shared memory [26, 27]. This enables

the programmer to select the type of memory used according

to the requirement of the kernel [28].

2) Architecture: GPUs and CPUs were developed using

different theories. CPUs can provide a prompt response time

for individual tasks [29], whereas GPUs are built specifically

for graphical applications and for rendering [27]. As stated

above, the CPU used in modelling the breakage of a particle

consists of four cores and a great deal of cache memory as

shown in Fig. 2, which can deal with some application threads

simultaneously.

The CPU memory is also known as host memory. The
GPU, on the other hand, consists of hundreds of cores [14]
and is capable of handling thousands of threads in parallel.
The Nvidia graphics processing units are composed of
streaming multiprocessors (SMs) [29].

Every SM contains a couple of cores. The GPUs have
three types of memory: very fast and high-latency global
memory, the on-chip low-latency shared the memory of each
SM and the local private memory of each thread [29, 30]. The
computational efficiency increases with more appropriate use
of GPU memory. This parallel processing of the GPU can
accelerate the algorithm by 60-70 times, compared with the
serial processing of the CPU. The GPU is also more cost-
efficient than an ordinary CPU. The general-purpose central
processing unit is able to run several applications.

The graphics card cannot work alone, without CPU
support. The GPU processes the task in parallel and the CPU
controls it. The CPU invokes the task on the GPU, and the
execution of the kernel is handled by the CUDA library,
which runs on the central processing unit, while the GPU
executes the kernel (functions). Both the CPU and the GPU
work in parallel [29]. Here, the Peripheral Component
Interconnect Express (PCIe) enables CPU-GPU data
communication. The PCIe speed also limits the CPU-GPU
data transfer time.

TABLE. I. HARDWARE USED FOR IMPLEMENTATION AND COMPRESSION

OF THE BREAKAGE ALGORITHM WITH CUDA 8.0

Simulation Hardware

Simulation Tool CPU GPU

Generation 4th Kepler

Model Intel Core i7-4790 GeForce GTX 780

Core 4 2,304

Clock Rate 3.60 GHz 1.006 GHz

Flops 44.24 Giga 4,156Giga

Fig. 2. The Architecture of the CPU and GPU.

AL

U Contro

l

AL

U

AL

U

AL

U

CPU Architecture

ALU

ALU

ALU

ALU

ALU

ALU

ALU

GPU Architecture

Cache

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

78 | P a g e

www.ijacsa.thesai.org

Fig. 3. The CUDA Processing Flow Copies Data from the main Memory to

the GPU Memory and the CPU Instructs the GPU on the Process. The GPU
Executes it with Each Core in Parallel, then Copies the Result from the GPU

Memory to the main Memory.

3) CUDA and C programming: CUDA is a piece of

software that deals with the GPU device, which can execute

the computation in parallel. A GPU is a known device and it

can execute lightweight threads in parallel through the CUDA

programming as can be seen in Fig. 3. The GPU kernel,

written in C, represents an extended programming language,

compiling the device code and working on large quantities of

data in parallel.

4) Compilation of the GPU and CPU code UDA: There

are a few steps to compile the GPU CUDA program. Frist

CUDA front end cudafe (cudafe.exe) splits the CUDA

program into two parts: host and device code. The host code

consists of a C/C++ program, and the device code uses GPU

CUDA kernels. The host code part is compiled by the standard

C compiler GCC and the device code is compiled using the

CUDA compiler NVCC. The CUDA compiler NVCC

converts intermediate code as in the type of assembly

programming known as parallel thread execution (PTX). PTX

is a low-level programming language used for GPUs by

Nvidia as in Fig. 4. Furthermore, PTX code is interpreted into

the binary code of the graphics processing unit cubin, which

uses the ptxas compiler [30]. The compilation time also

depends on the number of instructions and programs per

kernel.

The increase in compilation and speed evaluation is
directly proportional to the number of instructions [31] and
programs per kernel.

Fig. 4. CUDA Program Compilation.

III. SIMULATION RESULTS AND DISCUSSION

A. Discussion

The process of breakage of particles has been simulated.
Considering the performance on the GPU GeForce GTX 780,
the most obvious and substantial outcome is the speedup
factor of the breakage algorithm, compared to the performance
on the CPU Intel Core i7-4790. The efficiency difference is
greater than the difference between floating-point rates for the
CPU and the GPU.

In this study, the particles are represented as simulation
entries (SEs). For comparison, the results are obtained from
calculations using the CPU and the GPU. A well-parallelized
algorithm produced the same results as the sequential version.

The simulations were performed for various SEs on a 3.60-
GHz i7 CPU and a GeForce GTX-780 GPU.

This detailed comparison of the computational efficiencies
of the GPU and CPU can be used as guidance for choosing a
hardware tool for the MC simulations. The results show the
following.

The computational performance of GPU rendering is
superior to that of CPU rendering for a single-cell scenario.

The acceptance-rejection sampling procedure is simple and
easy to program. The GPU shows improved computational
efficiency over the CPU.

CPU
Main

Memory

4.Copy Result
2. Instruct

GPU on

processing

1. Copy Data

Memory for

GPU

3. Executes in parallel in

each core

GPU

Processing flow in

CUDA

.CU

cudafe

PTX

NVCC

Device

ptxas

GPU bin/cubin

GCC

(preprocessor)

CPU bin/host bin

Host

cpp

host bin cubin

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

79 | P a g e

www.ijacsa.thesai.org

The speedup ratio for the CPU and GPU demonstrates the
difference between them. The speedup factor increases as the
number of simulation entries increases. The GPU accelerates
the rendering of complex processes, but the GPU acceleration
power is limited by the quantity of input data allowed by the
memory of the graphics card. However, this could be more
than millions of SEs. For ideal performance, at least 100,000
particles are needed, with 500 simulations (iterations). The
GPU requires full utilization in order to take advantage of the
hardware’s latency. It is not optimal to use the GPU for a low
number of simulation entries, because most of the GPU time is
spent on initializations for the calculations.

The computations are much faster on a GPU GeForce
GTX 780 compared to a CPU. The GPU-based algorithm runs
more than 65 times faster than our portable C implementation.
As a result, there is an average speedup ratio of 65 compared
to the scalar C++ code.

B. Results

1) Comparison of computational efficiency on CPU

(serail) and GPU (Parallel): The computational efficiency of

CPU- and GPU-based code has been compared. A difference

in computing time can clearly be seen between the GPU and

CPU, for the same settings. The GPU accelerates the

rendering, as shown in Fig. 5. The computational time

efficiency of the simulations depends on the number of SE

settings.

The execution time depends on the number of simulations
(iterations) for different SE settings and is calculated on the
GPU. The GPU program performs the simulation for the
breakage of a SE (particle), for various numbers of iterations.
As shown in Fig. 5, the time required to simulate the process
and compute the results for 500 simulations, for 10

5
, 10

4
, 10

3

and 10
2
 SEs, is around 41, 4.1, 0.6 and 0.2s, respectively. If

the number of simulations increases by 10 times, the
computational time also increases by a factor of approximately
10, as predicted. The plot shows that for a small number of
SEs, very less time is required to render and compute the
results on the GPU. The computational time is directly
proportional to the number of SEs and the number of
simulations. For 150, 250, 350, 450 and 500 simulations, the
time taken to render 10

5
 SEs was 12.6, 20.8, 29, 37.3 and 41.4

seconds, respectively.

The computational time for the CPU-based algorithm
executing the breakage process for various SE settings
repeated for different numbers of simulations, is shown in
Fig. 5. The time required to simulate and compute the results
for 500 simulations, for 10

5
, 10

4
, 10

3
 and 10

2
 SEs, was around

2,600, 230, 22 and 2 s respectively. This clearly shows that the
computational time increases by a factor of 10 with an
increase in SEs by the same factor, as expected. The serial
algorithm for a low number of SEs needs much less
computational time to render and compute the results on the
CPU and the computational time is directly proportional to the
number of SEs.

Fig. 7 shows the computational time plotted
logarithmically for different synchronization points of the
simulations, for 10

5
 SEs and 500 simulations (iterations or

repetitions of a piece of code for statistical purposes). Each
synchronization point (data export time point: after a certain
time, the simulation computes the results and stores them in
the CPU memory) is used to calculate the statistical results.
Simple observation shows that the serial code (CPU) and
parallel code (GPU) for the maximum number of SEs (10

5
)

take 2,600s and 41s, respectively.

Fig. 5. GPU Program Computational Time for different SE Settings and

different Numbers of Simulations.

Fig. 6. CPU Program Computational Time for different SE Settings and

different Numbers of Simulations.

Fig. 7. Computational Time Synchronization Points Defined in the

Simulations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

80 | P a g e

www.ijacsa.thesai.org

The clock register (clock ()) is used to obtain the time
measurements as in equation (2):

 (2)

Simple observation shows that the serial code and parallel
code for the maximum number of SEs (10

5
) take 2,600 s and

41 s respectively. The performance difference between the
CPU and GPU computational efficiencies is better illustrated
in the speedup plot. To determine the time in seconds (s), the
function clock () is divided by the CLOCKS_PER_SEC
macro.

 (3)

The macro CLOCKS_PER_SEC represents the number
of clock ticks per second calculated as in equation (3).

2) Speedup factor: The speedup factor accelerating the

particle dynamics simulation shows that the speed is higher

than for the algorithm implemented in serial programming

(CPU). The most common method for assessing the advantage

of using the GPU is to calculate the computational times for

the GPU and CPU [30, 32]. Speedup () is the computational

time of the serial code () divided by the computational

time of the parallel code (), where both are computing the

same result, i.e.,

 (4)

To make a comparison, Fig. 5 and Fig. 6 show the CPU
time for the CPU and GPU as a function of the simulation
time. Simple examination shows that the CPU simulation is
much slower than the GPU simulation. Usually, the speedup
factor is calculated as in equation (4) and is plotted on the y-
axis and the SEs or numbers of iterations (simulations) on the
x-axis, as shown in Fig. 8. The plot shows that the GPU
processing was 65 times faster than CPU processing. The
GPU operated up to its maximum processing limit and
achieved a speedup factor of 65. The GPU cannot operate any
faster than this, for the considered particle breakage algorithm
[2]. It does not matter if the number of simulation entries
increases. For lower numbers of SEs, the GPU process is
much faster than the CPU computations. To use the maximum
power of the GPU, we used the maximum number of SEs
(10

5
), with 500 simulations. Fig. 8 shows the usage of the

maximum computational power of the GPU. It is clear from
Fig. 9 that the GPU reaches a certain limit, and the speedup
factor is approximately constant after that limit. The number
of SEs and the number of simulations no longer affects the
efficiency of the GPU.

The speedup factor shows that GPU processing is much
faster than for a normal CPU. We do, in fact, achieve a
considerable speedup over the CPU case, although we should
expect significant speedups (30 to 65 times), according to the
GPU acceleration computation.

Fig. 8 shows the real speedup achieved using the graphics
processing unit. There is a significant difference in the
speedup factor with variations in the number of SEs. It
increases to certain limit, depending on the memory of the
graphics card. The speedup ratio, compared to the CPU for the
GTX card, clearly shows the performance change between the
CPU and the GPU.

The speedup plot depends on the SEs. There are no
differences in computational efficiencies. If we consider only
1,000 SEs and 10 simulations (iterations) the total number of
threads to be launched on the GPU is 10,000 (SEs x
iterations). Alternatively, or we take 10000 SEs and 1
simulation. The computational time is calculated and found as
the same time consumed by both settings. For the most
significant number of SEs and simulations, a speedup factor of
up to 65 was obtained.

3) Clock cycles: The clock cycle is the speed of the

processor. It is the time taken to complete a full process

[33].One can predict this from the speed of the processor [34].

The i7 CPU with a speed of 3.6 GHz is used as a hardware

tool in this study. The speed of a processor is measured in

Gigahertz (GHz).

This means that this CPU processor can perform
3,600,000,000 clock cycles per second. Fig. 9 shows that for
all input SEs, GPUs show their advantages over CPUs,
leveraging their parallel computing abilities. Specifically, for
10

5
 input SEs and 500 simulations, 4.16 × 10

10
 cycles are

needed by the GPU, as shown in Fig. 9, compared to 9.39 ×
10

12
 cycles for the CPU. The major overhead for GPUs and

CPUs arises from executing instructions, which depend on
memory access. The serial and parallel algorithm clock cycles
are summarized in Table II.

Fig. 8. The Dimensionless Speedup Factor for the Total SEs used for the

Simulations. The Total Number of Simulation Entries was Simulated only
once. No Iterations were Performed. Dimensionless Speedup Factor for the

different SE and Iteration Settings. The Speedup is Plotted on the y-Axis and

the x-Axis shows the Number of Iterations for the SEs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

81 | P a g e

www.ijacsa.thesai.org

TABLE. II. CLOCK CYCLES OF THE SERIAL AND PARALLEL IMPLEMENTED ALGORITHM

Iterations CPU Clock Cycles GPU Clock Cycles

 102 SEs 103 SE 104 SEs 105 SEs 102 SEs 103 SEs 104 SEs 105 SEs

 1012 1010

50 0.0008 0.0071 0.0823 0.9472 0.0126 0.0190 0.0578 0.4415

150 0.0025 0.0217 0.2467 2.8080 0.0139 0.0282 0.1379 1.2716

250 0.0039 0.0362 0.4115 4.6980 0.0173 0.0366 0.2180 2.0995

350 0.0056 0.0508 0.5638 6.5376 0.0206 0.0460 0.2977 2.9244

450 0.0075 0.0653 0.7513 8.3916 0.0231 0.0544 0.3768 3.7594

500 0.0081 0.0757 0.8273 9.3924 0.0243 0.0604 0.4137 4.1628

Fig. 9. The Clock Cycle for the Total SEs (SEs * NoSim = Number of

Simulation Entries) used to Simulate the Breakage Process. Execution Cycles

of the Two Versions of Hardware Tools used. The y-Axis Shows Clock
Cycles for the GPU and CPU for Various SEs and the x-Axis shows the

Number of Simulations. A Log Scale is used.

IV. CONCLUSIONS

We provided here a new background for modelling particle
breakage using a graphics processing unit as a parallel
environment and a CPU for serial processing. We performed
simulations of the particle breakage process with different
input SEs and simulation settings on a 3.60-GHz Intel Core i7
CPU and a GeForce GTX-780 GPU.

It was found that the GPU-based rendering is much faster
than the CPU- based rendering. GPU saves time and produces
fast results. Significant speedup was achieved for the graphics
processor over the central processing unit, for the reported
breakage algorithm (BP-PBE).

In the case of a stochastic particle model, the typical
speedup is around 60-65 times, depending on the particle
numbers (SEs) considered. Comparisons of CPU and GPU
simulation results show that there are differences due to the
different computational platforms. Significant differences
between GPU and CPU results can be observed for the case of
a large number of simulation entries. However, the monitored
differences in the computational time for the simulation of
particles on the GPU and CPU are of the order of the
characteristic CPU time. This demonstrates that the GPU is a
proficient and efficient tool for rendering parallel processes,
such as modelling the breakage of particles.

The objective of this paper is to show the advantages of
using the GPU for rendering the breakage of particles. A fast
and efficient breakage algorithm is developed, and the
performance improvement of the parallel algorithm on the
GPU is observed and compared with the efficiency of CPU
implementations. This study examined the computational
efficiency of single-cell implementations on both the GPU and
the CPU.

V. FUTURE WORK

In future, the authors are interested to implement
breakage-coagulation algorithms to evaluate the efficiencies of
various algorithms. Moreover, multiple-cell implementations
could also be optimized to improve the performance of the
breakage process. Each cell will have a different breakage
rate, decreasing with time. Small particles take more time to
break, and it can easily be predicted that if the breakage rate is
reduced, then the computational time will increase, and the
speedup factor will also be affected.

ACKNOWLEDGMENT

The support of the Quaid-E-Awam University, Nawabshah
Sindh (Pakistan) by a scholarship under the Faculty
Development Program is greatly acknowledged.

REFERENCES

[1] J. Devi and F. E. Kruis, “A fast Monte Carlo GPU based algorithm for
particle breakage,” IEEE-CODIT 17, pp. 784–789, 2017.

[2] G. Kotalczyk, J. Devi, and F. E. Kruis, “A time-driven constant-number
Monte Carlo method for the GPU-simulation of particle breakage based
on weighted simulation particles,” Powder Technology, vol. 317, pp.
417–429, 2017.

[3] J. Devi, G. Kotalczyk, and F. E. Kruis, “Accuracy control in Monte
Carlo simulations of particle breakage,” IJMIC, vol. 31, no. 3, p. 278,
2019.

[4] P. J. Hill and K. M. Ng, “New discretization procedure for the breakage
equation,” AIChE J., vol. 41 No. 5, pp. 1204–1216, 1995.

[5] J. Kumar, G. Warnecke, M. Peglow, and S. Heinrich, “Comparison of
numerical methods for solving population balance equations
incorporating aggregation and breakage,” Powder Technology, vol. 189,
no. 2, pp. 218–229, 2009.

[6] K. F. Lee, R. I.A. Patterson, W. Wagner, and M. Kraft, “Stochastic
weighted particle methods for population balance equations with
coagulation, fragmentation and spatial inhomogeneity,” Journal of
Computational Physics, vol. 303, pp. 1–18, 2015.

[7] W. K. Chan et al., Eds., Modeling as the practice of representation:
Proceedings of the 2017 Winter Simulation Conference, December 3-6,
2017, Las Vegas, NV. Piscataway, NJ, Madison, WI: IEEE; Omnipress,
2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

82 | P a g e

www.ijacsa.thesai.org

[8] H. Zhao, A. Maisels, T. Matsoukas, and C. Zheng, “Analysis of four
Monte Carlo methods for the solution of population balances in
dispersed systems,” Powder Technology, vol. 173, no. 1, pp. 38–50,
2007.

[9] F. E. Kruis, J. Wei, T. van der Zwaag, and S. Haep, “Computational
fluid dynamics based stochastic aerosol modeling: Combination of a
cell-based weighted random walk method and a constant-number
Monte-Carlo method for aerosol dynamics,” Chemical Engineering
Science, vol. 70, pp. 109–120, 2012.

[10] J. Wei and F. E. Kruis, “A GPU-based parallelized Monte-Carlo method
for particle coagulation using an acceptance–rejection strategy,”
Chemical Engineering Science, vol. 104, pp. 451–459, 2013.

[11] Z. Xu, H. Zhao, and C. Zheng, “Fast Monte Carlo simulation for particle
coagulation in population balance,” Journal of Aerosol Science, vol. 74,
pp. 11–25, 2014.

[12] G. Kotalczyk and F. E. Kruis, “Fractional Monte Carlo time steps for the
simulation of coagulation for parallelized flowsheet simulations,”
Chemical Engineering Research and Design, vol. 136, pp. 71–82, 2018.

[13] G. Kotalczyk and F. E. Kruis, “A Monte Carlo method for the
simulation of coagulation and nucleation based on weighted particles
and the concepts of stochastic resolution and merging,” Journal of
Computational Physics, vol. 340, pp. 276–296, 2017.

[14] NVIDIA Corporation (2013), “NVIDIA GeForce GTX 780
Specifications,” https://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-780/specifications, 2013.

[15] Kruis, F.E: Zhao, H, J. Wei, and C. & Zheng, “A parallelized population
balance-Monte Carlo method for diffusion and coagulation of
nanoparticles,” pp. 26–29, 2010.

[16] J. Wei and F. E. Kruis, “GPU-accelerated Monte Carlo simulation of
particle coagulation based on the inverse method,” Journal of
Computational Physics, vol. 249, pp. 67–79, 2013.

[17] M. Woźniak, K. Kuźnik, M. Paszyński, V. M. Calo, and D. Pardo,
“Computational cost estimates for parallel shared memory isogeometric
multi-frontal solvers,” Computers & Mathematics with Applications,
vol. 67, no. 10, pp. 1864–1883, 2014.

[18] J. Wei, J. Wang, Q. H. Wu, J. Chen, and N. Jia, “Multisegment
pulverised coal mill model and online implementation for condition
monitoring,” International Journal of Modelling, Identification and
Control, vol. 1, no. 3, pp. 206–214, 2006.

[19] J. Wei, “A parallel Monte Carlo method for population balance
modeling of particulate processes using bookkeeping strategy,” Physica
A: Statistical Mechanics and its Applications, vol. 402, pp. 186–197,
2014.

[20] Z. Xu, H. Zhao, and C. Zheng, “Accelerating population balance-Monte
Carlo simulation for coagulation dynamics from the Markov jump
model, stochastic algorithm and GPU parallel computing,” Journal of
Computational Physics, vol. 281, pp. 844–863, 2015.

[21] S. Hong, T. Oguntebi, and K. Olukotun, Eds., Efficient Parallel Graph
Exploration on Multi-Core CPU and GPU: IEEE, Oct. 2011.

[22] S. Ryoo et al., Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. New York, NY: ACM,
2008.

[23] C. Gregg and K. Hazelwood, “Where is the data? Why you cannot
debate CPU vs. GPU performance without the answer,” Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium ,Austin, TX, USA, pp. 134–144, 2011.

[24] J. P. Harvey, GPU acceleration of object classification algorithms using
NVIDIA CUDA, 2009.

[25] V. W. Lee et al., “Debunking the 100X GPU vs. CPU myth: An
Evaluation of Throughput Computing on CPU and GPU,” SIGARCH
Comput. Archit. News, vol. 38, no. 3, p. 451, 2010.

[26] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy Through
Microbenchmarking,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 1,
pp. 72–86, 2017.

[27] J. Nickolls and W. J. Dally, “The GPU Computing Era,” IEEE Micro,
vol. 30, no. 2, pp. 56–69, 2010.

[28] J. Wei, “A Fast Monte Carlo Method Based on an Acceptance-Rejection
Scheme for Particle Coagulation,” Aerosol Air Qual. Res., 2013.

[29] F. Molnár, T. Szakály, R. Mészáros, and I. Lagzi, “Air pollution
modelling using a Graphics Processing Unit with CUDA,” Computer
Physics Communications, vol. 181, no. 1, pp. 105–112, 2010.

[30] C. P. Da Silva, D. M. Dias, C. Bentes, M. A. Pacheco, and L. F.
Cupertino, “Evolving GPU machine code,” Journal of Machine Learning
Research, vol. 16, pp. 673–712, 2015.

[31] T. E. Lewis and G. D. Magoulas, Eds., Identifying similarities in TMBL
programs with alignment to quicken their compilation for GPUs. New
York, NY, USA ©2011: ACM, 2011.

[32] M. S. Friedrichs et al., “Accelerating molecular dynamic simulation on
graphics processing units,” (eng), Journal of computational chemistry,
vol. 30, no. 6, pp. 864–872, 2009.

[33] H. McVeigh, “Factors influencing the utilisation of e-learning in post-
registration nursing students,” (eng), Nurse education today, vol. 29, no.
1, pp. 91–99, 2009.

[34] S. Abdel-Hafeez and A. Gordon-Ross, “An Efficient O(N)
Comparison-Free Sorting Algorithm,” IEEE Trans. VLSI Syst., vol. 25,
no. 6, pp. 1930–1942, 2017.

