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Abstract—This paper presents a GPU-based parallelized and 

a CPU-based serial Monte-Carlo method for breakage of a 

particle. We compare the efficiency of the graphic card’s 

graphics processing unit (GPU) and the general-purpose central 

processing unit (CPU), in a simulation using Monte Carlo (MC) 

methods for processing the particle breakage. Three applications 

are used to compare the computational performance times, clock 

cycles and speedup factors, to find which platform is faster under 

which conditions. The architecture of the GPU is becoming 

increasingly programmable; it represents a potential speedup for 

many applications compared to the modern CPU. The objective 

of the paper is to compare the performance of the GPU and Intel 

Core i7-4790 multicore CPU. The implementation for the CPU 

was written in the C programming language, and the GPU 

implemented the kernel using Nvidia’s CUDA (Compute Unified 

Device Architecture). This paper compares the computational 

times, clock cycles and the speedup factor for a GPU and a CPU, 

with various simulation settings such as the number of simulation 

entries (SEs), for a better understanding of the GPU and CPU 

computational efficiency. It has been found that the number of 

SEs directly affects the speedup factor. 

Keywords—Breakage of particles; Central Processing Unit 

(CPU); Graphics Processing Unit (GPU); CUDA; computational 

time; clock cycle; speedup factor 

I. INTRODUCTION 

The breakage of particles is of interest in various fields of 
engineering and scientific research, including chemical 
engineering, aerosols, agriculture and medicine [1–3]. The 
population balance equation (PBE) provides a platform to 
develop the distributed phase. The PBE includes all the 
processes, such as nucleation, coagulation and breakage, that 
produce fragments and break simulation entries or parent 
particles from the population. Breakage is of major 
importance for understanding the behavior of, and dealing 
with, particle systems. 

The particle breakage-population balance equation (BP-
PBE), which characterizes the breakage dynamics in terms of 
the time evolution of the particle size distribution (PSD), is 
shown in Equation : 

     

  
            ∫  

 

 
                             (1) 

where        is the concentration of particle sizes and 
     is the particle size distribution. The size range between   
and      per unit volume, in time t, is defined by the BP-
PBE Equation1. 

where     is the rate at which a particle of size   breaks 
and the breakage function         describes the number 
fragment particles of size   resulting from the breakage of one 
parent particle of size  . The death term (first term on the 
RHS) of Equation (1) represents the deletion of particles of 
size   due to breakage into smaller fragments [4]. The birth 
term (second term on the RHS) of Equation (1) defines the 
addition of fragment particles with volume   due to breakage 
of particles with volume   , where     . The breakage rate 
     and the breakage kernel         can be obtained by 
modelling and simulation or via experiments [1, 2]. 

A variety of methods can provide a solution for the PBE 
[5], such as the sectional method, the method of moments and 
Monte Carlo methods [1–3]. In this paper, the time-driven 
Monte Carlo (MC) approach has been implemented for 
solving the PBE for breakage on the CPU [3, 6] which uses 
serial processing, and on the GPU [1, 3], which facilitates 
parallel processing. 

The modelling of breakage [6] of the particle is the process 
of making a model, which is a depiction of the structure and 
working of the particle breakage process [7]. A model is 
simple, but it represents similar to the real process. The main 
objective of the model of a process, for an analyst, is to 
estimate the outcome of variations in the process. Simulations 
of processes help to meet the specifications of a particular 
system, to reduce the chance of failure, to remove unexpected 
bottlenecks, to avoid overconsumption or underconsumption 
of resources and to optimize the performance of the process 
[7]. This paper focuses on: (1) Modelling and simulation of 
the breakage process serially and parallelly. (2) The 
differences between the GPU and CPU computational times 
and the speedup factor for a given breakage rate and breakage 
function. 
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The importance of this reported investigation is to provide 
awareness about parallel processing can save time and cost. 

The remainder of this paper is organised as follows. In 
Section II we have presented the literature review of the 
Modelling and simulation of the Particle breakage using 
Monte Carlo methods, the serial and parallel processing 
differences are briefly summarized, according to different the 
hardware, software, architecture and the compilation of the 
algorithm. The discussion and the results are covered in 
Section III. The paper is concluded in Section IV and the 
future work highlighted in Section V. 

II. LITERATURE REVIEW 

A. Monte Carlo Simulation for Particle Breakage 

MC methods (MC experiments) consist of a variety of 
computationally efficient algorithms that rely on recurring 
random sampling to obtain a numerical output. The MC 
method is widely used for modelling population balances 
(MC-PBs) [7]. The MC method has a discrete and stochastic 
nature [8, 9] and is suited to particle dynamics. 

The MC simulation comprises of more than 1,000 
iterations [10] or recalculations. During an MC simulation, the 
input probability distribution values are tested at random [11]. 
Every set of tests is called a recalculation or iteration, and the 
result of that test set is stored. Usually, Monte Carlo methods 
are classified by the time discretization system into event-
driven Monte Carlo methods and time-driven Monte Carlo 
methods. 

Event-driven MC [12] first estimates awaiting for time or 
time interval Δt among two consecutive events and then select 
the event randomly that occurs during time interval Δt. 

Time-driven Monte Carlo [12] calculates a time step Δt, 
also known as a pre-specified time step, and considers all 
possible events that may happen within that time step. 

The two most widely used sampling strategies for 
simulating breakage in Monte Carlo methods are the 
acceptance-rejection (AR) strategy [2, 10] and the inverse 
strategy [1, 12]. 

These sampling strategies have different ways of choosing 
the particle or SE to break randomly as shown in Fig. 1 

Acceptance-rejection sampling is a more straightforward 
way of selecting the required particle: it randomly chooses a 
particle, calculates the breakage probability and checks to see 
whether or not to accept it. The Monte Carlo method is used to 
handle the particle breakage. Many attempts are often needed 
to find a suitable particle for breakage. 

On the other hand, inverse sampling chooses a desirable 
particle by generating a random number between 0 and 1 and 
comparing it to a normalized value (R in [2, 3]) for the 
considered part of the PSD. Using the inverse scheme, one can 
always find a particle after a finite number of attempts (up to 
the total number of simulation particles (SEs)). 

The MC method using AR sampling features inherent 
parallelism [2][13]. This is because the choices of a random 

particle (to be broken) via AR sampling are uncorrelated, and 
hence can be made in parallel. 

This inherent feature of Monte Carlo AR sampling is easy 
to implement on a parallel architecture, such as the GPU [1, 2, 
14]. GPUs can execute millions of lightweight threads in 
parallel and simultaneously. 

B. Serial and Parallel Processing 

Population balance equation processes, such as 
coagulation, breakage and nucleation, have been modelled on 
CPUs [8, 11] and GPUs [1, 2, 13]. It is worth emphasizing that 
an ideal grouping with high efficiency is important for PB-
MC, because the increase in the number of simulation entries 
leads to an increase in the accuracy of the implemented 
process or algorithm, while the computing efficiency 
decreases. Computational power has increased over the last 10 
years, but it is also important to increase computational 
efficiency for estimating particle dynamics. The MC 
simulation can be accelerated in two ways [15] as follows. 

1) CPU parallel processing, via OpenMP (open multi-

processing) and MPI (message passing interface) [15]. 

2) GPU parallel processing: processing via the GPU and 

CUDA [16]. 

 

Fig. 1. Simulation Model. 

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random_sampling
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In fact, the parallel computing of MC simulations utilizes 
more computer resources concurrently to decrease 
computational time. The CPU time increases linearly with 
computational complexity O(N) [1]. Monte Carlo acceptance-
rejection sampling [16] has a significant effect on 
computational performance. 

Recently, fast inverse and AR MC sampling on the GPU 
have been proposed [1, 2], to enhance the performance of MC 
methods for particle breakage. 

Several nanotechnology applications have high inherent 
parallelism. The GPU is capable of high performance, as it 
supports a large number of cores, [16], and in many 
applications, GPU gets high performance. The clock speed of 
the serial processing [17] has driven the attention of the 
researchers to the parallel architecture,[16, 18–22] which is 
capable of providing tremendous computational efficiency [1, 
2]. Usually, MC simulations require looping during the 
simulation of particle breakage events on CPU at the end of 
the simulation the computational cost increases [10]. The GPU 
and its advanced capabilities used for rendering of 3D games 
basically timeframe [23]. Now the GPU competencies are 
being coupled to accelerate computational workload by 
modelling of the complex and computationally expensive 
processes in different fields of scientific research. 

1) Hardware: With regard to the hardware used for 

simulation, the CPU by Intel with four cores maximum 

performance, while the Nvidia GPU with 2,304 cores [24] can 

deliver 4,156 Gigaflops. The use of GPUs in high-

performance computing also affects the computational cost. 

The GPU has two main characteristics [25] as follows: Table 

I. Allowing contact with the GPU’s cores using CUDA 

programming. CUDA by Nvidia [23] is embedded in the 

standard C language. The function of a GPU is known as a 

kernel distribution function and is executed on the GPU cores 

[25]. 2. Achieving the distribution of the task via a kernel grid, 

where the kernel grid is split into blocks, with each block 

subdivided into several threads. The GPU has off-chip global 

memory and on-chip shared memory [26, 27]. This enables 

the programmer to select the type of memory used according 

to the requirement of the kernel [28]. 

2) Architecture: GPUs and CPUs were developed using 

different theories. CPUs can provide a prompt response time 

for individual tasks [29], whereas GPUs are built specifically 

for graphical applications and for rendering [27]. As stated 

above, the CPU used in modelling the breakage of a particle 

consists of four cores and a great deal of cache memory as 

shown in Fig. 2, which can deal with some application threads 

simultaneously. 

The CPU memory is also known as host memory. The 
GPU, on the other hand, consists of hundreds of cores [14] 
and is capable of handling thousands of threads in parallel. 
The Nvidia graphics processing units are composed of 
streaming multiprocessors (SMs) [29]. 

Every SM contains a couple of cores. The GPUs have 
three types of memory: very fast and high-latency global 
memory, the on-chip low-latency shared the memory of each 
SM and the local private memory of each thread [29, 30]. The 
computational efficiency increases with more appropriate use 
of GPU memory. This parallel processing of the GPU can 
accelerate the algorithm by 60-70 times, compared with the 
serial processing of the CPU. The GPU is also more cost-
efficient than an ordinary CPU. The general-purpose central 
processing unit is able to run several applications. 

The graphics card cannot work alone, without CPU 
support. The GPU processes the task in parallel and the CPU 
controls it. The CPU invokes the task on the GPU, and the 
execution of the kernel is handled by the CUDA library, 
which runs on the central processing unit, while the GPU 
executes the kernel (functions). Both the CPU and the GPU 
work in parallel [29]. Here, the Peripheral Component 
Interconnect Express (PCIe) enables CPU-GPU data 
communication. The PCIe speed also limits the CPU-GPU 
data transfer time. 

TABLE. I. HARDWARE USED FOR IMPLEMENTATION AND COMPRESSION 

OF THE BREAKAGE ALGORITHM WITH CUDA 8.0 

Simulation Hardware 

Simulation Tool CPU GPU 

Generation 4th Kepler 

Model Intel Core i7-4790 GeForce GTX 780 

Core 4 2,304 

Clock Rate 3.60 GHz 1.006 GHz 

Flops 44.24 Giga 4,156Giga 

 

Fig. 2. The Architecture of the CPU and GPU. 
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Fig. 3. The CUDA Processing Flow Copies Data from the main Memory to 

the GPU Memory and the CPU Instructs the GPU on the Process. The GPU 
Executes it with Each Core in Parallel, then Copies the Result from the GPU 

Memory to the main Memory. 

3) CUDA and C programming: CUDA is a piece of 

software that deals with the GPU device, which can execute 

the computation in parallel. A GPU is a known device and it 

can execute lightweight threads in parallel through the CUDA 

programming as can be seen in Fig. 3. The GPU kernel, 

written in C, represents an extended programming language, 

compiling the device code and working on large quantities of 

data in parallel. 

4) Compilation of the GPU and CPU code UDA: There 

are a few steps to compile the GPU CUDA program. Frist 

CUDA front end cudafe (cudafe.exe) splits the CUDA 

program into two parts: host and device code. The host code 

consists of a C/C++ program, and the device code uses GPU 

CUDA kernels. The host code part is compiled by the standard 

C compiler GCC and the device code is compiled using the 

CUDA compiler NVCC. The CUDA compiler NVCC 

converts intermediate code as in the type of assembly 

programming known as parallel thread execution (PTX). PTX 

is a low-level programming language used for GPUs by 

Nvidia as in Fig. 4. Furthermore, PTX code is interpreted into 

the binary code of the graphics processing unit cubin, which 

uses the ptxas compiler [30]. The compilation time also 

depends on the number of instructions and programs per 

kernel. 

The increase in compilation and speed evaluation is 
directly proportional to the number of instructions [31] and 
programs per kernel. 

 

Fig. 4. CUDA Program Compilation. 

III. SIMULATION RESULTS AND DISCUSSION 

A. Discussion 

The process of breakage of particles has been simulated. 
Considering the performance on the GPU GeForce GTX 780, 
the most obvious and substantial outcome is the speedup 
factor of the breakage algorithm, compared to the performance 
on the CPU Intel Core i7-4790. The efficiency difference is 
greater than the difference between floating-point rates for the 
CPU and the GPU. 

In this study, the particles are represented as simulation 
entries (SEs). For comparison, the results are obtained from 
calculations using the CPU and the GPU. A well-parallelized 
algorithm produced the same results as the sequential version. 

The simulations were performed for various SEs on a 3.60-
GHz i7 CPU and a GeForce GTX-780 GPU. 

This detailed comparison of the computational efficiencies 
of the GPU and CPU can be used as guidance for choosing a 
hardware tool for the MC simulations. The results show the 
following. 

The computational performance of GPU rendering is 
superior to that of CPU rendering for a single-cell scenario. 

The acceptance-rejection sampling procedure is simple and 
easy to program. The GPU shows improved computational 
efficiency over the CPU. 
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The speedup ratio for the CPU and GPU demonstrates the 
difference between them. The speedup factor increases as the 
number of simulation entries increases. The GPU accelerates 
the rendering of complex processes, but the GPU acceleration 
power is limited by the quantity of input data allowed by the 
memory of the graphics card. However, this could be more 
than millions of SEs. For ideal performance, at least 100,000 
particles are needed, with 500 simulations (iterations). The 
GPU requires full utilization in order to take advantage of the 
hardware’s latency. It is not optimal to use the GPU for a low 
number of simulation entries, because most of the GPU time is 
spent on initializations for the calculations. 

The computations are much faster on a GPU GeForce 
GTX 780 compared to a CPU. The GPU-based algorithm runs 
more than 65 times faster than our portable C implementation. 
As a result, there is an average speedup ratio of 65 compared 
to the scalar C++ code. 

B. Results 

1) Comparison of computational efficiency on CPU 

(serail) and GPU (Parallel): The computational efficiency of 

CPU- and GPU-based code has been compared. A difference 

in computing time can clearly be seen between the GPU and 

CPU, for the same settings. The GPU accelerates the 

rendering, as shown in Fig. 5. The computational time 

efficiency of the simulations depends on the number of SE 

settings. 

The execution time depends on the number of simulations 
(iterations) for different SE settings and is calculated on the 
GPU. The GPU program performs the simulation for the 
breakage of a SE (particle), for various numbers of iterations. 
As shown in Fig. 5, the time required to simulate the process 
and compute the results for 500 simulations, for 10

5
, 10

4
, 10

3
 

and 10
2
 SEs, is around 41, 4.1, 0.6 and 0.2s, respectively. If 

the number of simulations increases by 10 times, the 
computational time also increases by a factor of approximately 
10, as predicted. The plot shows that for a small number of 
SEs, very less time is required to render and compute the 
results on the GPU. The computational time is directly 
proportional to the number of SEs and the number of 
simulations. For 150, 250, 350, 450 and 500 simulations, the 
time taken to render 10

5
 SEs was 12.6, 20.8, 29, 37.3 and 41.4 

seconds, respectively. 

The computational time for the CPU-based algorithm 
executing the breakage process for various SE settings 
repeated for different numbers of simulations, is shown in  
Fig. 5. The time required to simulate and compute the results 
for 500 simulations, for 10

5
, 10

4
, 10

3
 and 10

2
 SEs, was around 

2,600, 230, 22 and 2 s respectively. This clearly shows that the 
computational time increases by a factor of 10 with an 
increase in SEs by the same factor, as expected. The serial 
algorithm for a low number of SEs needs much less 
computational time to render and compute the results on the 
CPU and the computational time is directly proportional to the 
number of SEs. 

Fig. 7 shows the computational time plotted 
logarithmically for different synchronization points of the 
simulations, for 10

5
 SEs and 500 simulations (iterations or 

repetitions of a piece of code for statistical purposes). Each 
synchronization point (data export time point: after a certain 
time, the simulation computes the results and stores them in 
the CPU memory) is used to calculate the statistical results. 
Simple observation shows that the serial code (CPU) and 
parallel code (GPU) for the maximum number of SEs (10

5
) 

take 2,600s and 41s, respectively. 

 

Fig. 5. GPU Program Computational Time for different SE Settings and 

different Numbers of Simulations. 

 

Fig. 6. CPU Program Computational Time for different SE Settings and 

different Numbers of Simulations. 

 

Fig. 7. Computational Time Synchronization Points Defined in the 

Simulations. 
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The clock register (clock ()) is used to obtain the time 
measurements as in equation (2): 

                                                     (2) 

Simple observation shows that the serial code and parallel 
code for the maximum number of SEs (10

5
) take 2,600 s and 

41 s respectively. The performance difference between the 
CPU and GPU computational efficiencies is better illustrated 
in the speedup plot. To determine the time in seconds (s), the 
function clock () is divided by the CLOCKS_PER_SEC 
macro. 

                   
                            

              
           (3) 

The macro CLOCKS_PER_SEC represents the number 
of clock ticks per second calculated as in equation (3). 

2) Speedup factor: The speedup factor accelerating the 

particle dynamics simulation shows that the speed is higher 

than for the algorithm implemented in serial programming 

(CPU). The most common method for assessing the advantage 

of using the GPU is to calculate the computational times for 

the GPU and CPU [30, 32]. Speedup ( ) is the computational 

time of the serial code (     ) divided by the computational 

time of the parallel code (    ), where both are computing the 

same result, i.e., 

  
     

     
              (4) 

To make a comparison,  Fig. 5 and  Fig. 6 show the CPU 
time for the CPU and GPU as a function of the simulation 
time. Simple examination shows that the CPU simulation is 
much slower than the GPU simulation. Usually, the speedup 
factor is calculated as in equation (4) and is plotted on the y-
axis and the SEs or numbers of iterations (simulations) on the 
x-axis, as shown in Fig. 8. The plot shows that the GPU 
processing was 65 times faster than CPU processing. The 
GPU operated up to its maximum processing limit and 
achieved a speedup factor of 65. The GPU cannot operate any 
faster than this, for the considered particle breakage algorithm 
[2]. It does not matter if the number of simulation entries 
increases. For lower numbers of SEs, the GPU process is 
much faster than the CPU computations. To use the maximum 
power of the GPU, we used the maximum number of SEs 
(10

5
), with 500 simulations. Fig. 8 shows the usage of the 

maximum computational power of the GPU. It is clear from 
Fig. 9 that the GPU reaches a certain limit, and the speedup 
factor is approximately constant after that limit. The number 
of SEs and the number of simulations no longer affects the 
efficiency of the GPU. 

The speedup factor shows that GPU processing is much 
faster than for a normal CPU. We do, in fact, achieve a 
considerable speedup over the CPU case, although we should 
expect significant speedups (30 to 65 times), according to the 
GPU acceleration computation. 

Fig. 8 shows the real speedup achieved using the graphics 
processing unit. There is a significant difference in the 
speedup factor with variations in the number of SEs. It 
increases to certain limit, depending on the memory of the 
graphics card. The speedup ratio, compared to the CPU for the 
GTX card, clearly shows the performance change between the 
CPU and the GPU. 

The speedup plot depends on the SEs. There are no 
differences in computational efficiencies. If we consider only 
1,000 SEs and 10 simulations (iterations) the total number of 
threads to be launched on the GPU is 10,000 (SEs x 
iterations). Alternatively, or we take 10000 SEs and 1 
simulation. The computational time is calculated and found as 
the same time consumed by both settings. For the most 
significant number of SEs and simulations, a speedup factor of 
up to 65 was obtained. 

3) Clock cycles: The clock cycle is the speed of the 

processor. It is the time taken to complete a full process 

[33].One can predict this from the speed of the processor [34]. 

The i7 CPU with a speed of 3.6 GHz is used as a hardware 

tool in this study. The speed of a processor is measured in 

Gigahertz (GHz). 

This means that this CPU processor can perform 
3,600,000,000 clock cycles per second. Fig. 9 shows that for 
all input SEs, GPUs show their advantages over CPUs, 
leveraging their parallel computing abilities. Specifically, for 
10

5
 input SEs and 500 simulations, 4.16 × 10

10
 cycles are 

needed by the GPU, as shown in Fig. 9, compared to 9.39 × 
10

12
 cycles for the CPU. The major overhead for GPUs and 

CPUs arises from executing instructions, which depend on 
memory access. The serial and parallel algorithm clock cycles 
are summarized in Table II. 

 

Fig. 8. The Dimensionless Speedup Factor for the Total SEs used for the 

Simulations. The Total Number of Simulation Entries was Simulated only 
once. No Iterations were Performed. Dimensionless Speedup Factor for the 

different SE and Iteration Settings. The Speedup is Plotted on the y-Axis and 

the x-Axis shows the Number of Iterations for the SEs. 
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TABLE. II. CLOCK CYCLES OF THE SERIAL AND PARALLEL IMPLEMENTED ALGORITHM 

Iterations CPU Clock Cycles GPU Clock Cycles 

 102 SEs 103 SE 104 SEs 105 SEs 102 SEs 103 SEs 104 SEs 105 SEs 

  1012   1010 

50 0.0008 0.0071 0.0823 0.9472 0.0126 0.0190 0.0578 0.4415 

150 0.0025 0.0217 0.2467 2.8080 0.0139 0.0282 0.1379 1.2716 

250 0.0039 0.0362 0.4115 4.6980 0.0173 0.0366 0.2180 2.0995 

350 0.0056 0.0508 0.5638 6.5376 0.0206 0.0460 0.2977 2.9244 

450 0.0075 0.0653 0.7513 8.3916 0.0231 0.0544 0.3768 3.7594 

500 0.0081 0.0757 0.8273 9.3924 0.0243 0.0604 0.4137 4.1628 

 

Fig. 9. The Clock Cycle for the Total SEs (SEs * NoSim = Number of 

Simulation Entries) used to Simulate the Breakage Process. Execution Cycles 

of the Two Versions of Hardware Tools used. The y-Axis Shows Clock 
Cycles for the GPU and CPU for Various SEs and the x-Axis shows the 

Number of Simulations. A Log Scale is used. 

IV. CONCLUSIONS 

We provided here a new background for modelling particle 
breakage using a graphics processing unit as a parallel 
environment and a CPU for serial processing. We performed 
simulations of the particle breakage process with different 
input SEs and simulation settings on a 3.60-GHz Intel Core i7 
CPU and a GeForce GTX-780 GPU. 

It was found that the GPU-based rendering is much faster 
than the CPU- based rendering. GPU saves time and produces 
fast results. Significant speedup was achieved for the graphics 
processor over the central processing unit, for the reported 
breakage algorithm (BP-PBE). 

In the case of a stochastic particle model, the typical 
speedup is around 60-65 times, depending on the particle 
numbers (SEs) considered. Comparisons of CPU and GPU 
simulation results show that there are differences due to the 
different computational platforms. Significant differences 
between GPU and CPU results can be observed for the case of 
a large number of simulation entries. However, the monitored 
differences in the computational time for the simulation of 
particles on the GPU and CPU are of the order of the 
characteristic CPU time. This demonstrates that the GPU is a 
proficient and efficient tool for rendering parallel processes, 
such as modelling the breakage of particles. 

The objective of this paper is to show the advantages of 
using the GPU for rendering the breakage of particles. A fast 
and efficient breakage algorithm is developed, and the 
performance improvement of the parallel algorithm on the 
GPU is observed and compared with the efficiency of CPU 
implementations. This study examined the computational 
efficiency of single-cell implementations on both the GPU and 
the CPU. 

V. FUTURE WORK 

In future, the authors are interested to implement 
breakage-coagulation algorithms to evaluate the efficiencies of 
various algorithms. Moreover, multiple-cell implementations 
could also be optimized to improve the performance of the 
breakage process. Each cell will have a different breakage 
rate, decreasing with time. Small particles take more time to 
break, and it can easily be predicted that if the breakage rate is 
reduced, then the computational time will increase, and the 
speedup factor will also be affected. 
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