
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

89 | P a g e

www.ijacsa.thesai.org

Empirical Analysis of Object-Oriented

Software Test Suite Evolution

Nada Alsolami
1

Computer Science Department, Al

Imam Mohammad Ibn Saud Islamic

University, Riyadh, Saudi Arabia

Qasem Obeidat
2

Computer Science Department

University of Bahrain

Sakheer, Kingdom of Bahrain

Mamdouh Alenezi
3

Computer Science Department

Prince Sultan University

Riyadh, Saudi Arabia

Abstract—The software system is evolving over the time, thus,

the test suite must be repaired according to the changing code.

Updating test cases manually is a time-consuming activity,

especially for large test suites, which motivate the recent

development of automatically repairing test techniques. To

develop an effective automatic repair technique that reduces the

effort of development and the cost of evolution, the developer

should understand how the test suite evolves in practice. This

investigation aims to conduct a comprehensive empirical study

on eight Java systems with many versions of these systems and

their test suites to find out how the test suite is evolving, and to

find the relationship between the change in the program and the

corresponding evolution in the test suite. This study showed that

the test suite size is mostly increased, where the test suite

complexity is stabilized. The increase (or decrease) in the code

size will mostly increase (or decrease) the test suite size. However,

the increasing or decreasing in the code complexity is offset by

stabilizing the test suite complexity. Moreover, the percentage of

the code coverage tends to be increased more than decreased, but

in the mutation coverage, the opposite is true.

Keywords—Software; test; code complexity; code coverage; test

evolution

I. INTRODUCTION

Software testing is an important and essential step to
identify the correctness and quality of software system. In the
software testing process, the tester should write one test case
or more to check each function of the system. The test case is
the smallest meaningful unit of the tests. The result of each
test case is either pass or fail. .If test cases are passed (i.e., the
actual results = the expected results), then the functionality of
a software system corresponding to these passed test cases is
working correctly. The test suite is a collection of test cases to
test system functionalities. Any software system (S) is divided
into two parts: program (P) and test suite (T). All system test
cases (Tc) are stored in (T). These test cases are used to check
the correctness of all parts of P. The new version of the
software system (S') should have a different program (P') and
test suite (T').

Software systems evolve and change during their
development and maintenance. Even a little change in the
software code can affect a large number of test cases [1]. The
software system upgrades are accompanied by code
refactoring or code evolution. The code refactoring is a
process of improving the internal structure of code without

changing the external behavior or system functionality [2].
Refactoring process makes the code more readable, does not
contain duplications, easier in maintenance, and increase the
quality of the code. On other hand, the code evolution is
adding new code to add new functionality to the system or
deleting/ modifying the existing parts of the code to edit
functionality in the system. Code evolution is a continuous
process; it may change the system functionality and external
behavior.

Software evolution is one of the essential and normal
issues required for most existence software throughout their
lifetime. The changes in the code make some of the test cases
in the current test suite become out of date for the new version
of the software. Therefore, the tester must revise all changes
on the code to repair the corresponding test cases in the test
suite. While the code evolution may happen frequently, it is
very hard for a tester to follow all these code evolutions and
make the correct decisions as create, delete, and update test
cases. Also, it is time-consuming to repair test cases manually,
particularly, the large test suite [1]. This motivates researchers
to develop automatic test repair techniques. The basic
requirement to automate test repair technique is
comprehensive understanding of how test suite evolves in
practice. Generally, analysis a test suite evolution can help
developers to build effective automated test repair techniques.
So, this paper is intended to conduct an empirical study to
understand and identify how the test suite evolves during the
code changes and to create or build a relationship between
code changes and the corresponding changes of the test suite.
The main goal of the experiment is to provide answers to the
following research questions regarding test suites evolution:

RQ1. Is the test suite size increasing/ decreasing/
stabilizing during a software evolution?

RQ2. What is the relationship between source code size
and test suite size during a software evolution?

RQ3. Is the test suite complexity increasing/ decreasing/
stabilizing during a software evolution?

RQ4. What is the relationship between source code
complexity and test suite complexity during a software
evolution?

RQ5. What is the effectiveness of the test suite during a
software evolution?

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

90 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS

This section shows some previous studies on the test suite
evolution and the co-evolution between code and test.

A. Test Suite Evolution

Elbaum et al. examined the impact of software evolution

on code coverage information [3]. This examination showed

that a little change in software code can give large impact on

code coverage information. This impact increases as the

degree of change increases and it could be difficult to predict.

One study presented a technique for studying test-suite
evolution [1]. There were 88 program versions studied, 14,312
test cases, and 17,427 test changes (i.e., modification,
addition, and deletion). This study provided initial insight on
how test cases are added, removed, and modified in practice. It
focused on test repair and investigated the characteristics of
deleted and added test cases and implemented technique
within a tool called TestEvol [4]. TestEvol is a tool which
enables the systematic study of test-suite evolution for Java
programs and JUnit test cases. In [1] and [4], the researchers
showed that the test modifications tend to be complex and
hard-to-automate. The most important results were, firstly: the
occurring of non-repair test modification nearly four times as
frequently as test repairs. In other words, repairing test is a
relatively small fraction of the activities performed during test
evolution. Secondly: many test cases are not really deleted and
added, but rather moved or renamed.

Another approach to study test suite evolution is based on
the observation that software developers follow common
patterns to identify changes and adapt test cases [5] and [6].
Mirzaaghaei et al. proposed a novel approach for repairing and
generating test cases automatically during software evolution.
These studies defined a set of algorithms for repairing test
cases commonly adopted by software developers and
implemented those algorithms on TestCareAssistant (TCA)
for evaluation. TCA properly repairs 90% of the compilation
errors, where the TCA addressed and generated test cases that
cover the same amount of instructions of state of the art
techniques.

All aforementioned studies in this section examined the
test suite evolution from different aspects, whether from
repairing test cases based on following common patterns
commonly adopted by software developers or from fixing test
oracle or others. However, in this study, we studied the test
suite evolution in term of size (RQ1), complexity (RQ3), and
effectiveness (RQ5).

B. Co-Evolution between Code and Test

Marsavina et al. investigate fine-grained co-evolution
patterns of production and test code [7]. This investigation
analyzed five open source systems and then generates six
patterns. These patterns explain the relationship between the
change in code and corresponding test cases in the test suite.

Levin et al. have done a large scale study of 61 open
source projects to study the relationship between test
maintenance and production code maintenance in semantic
changes [8]. The most important results were that the test

maintenance is individually in each project rather than
standardized.

Several researchers studied the nature of the co-evolution
between code and test (i.e. synchronously or phased) [9], [10]
and [11]. In [9], Lubsen et al. used two cases studies: open
source system and industrial software system, as they used
association rule mining to study the natural of co-evolution.
They concluded that within an open source system the
development and testing are separate activities, wherein the
industrial software system, the developer used test-driven
development strategy. In [10] and [11], the researchers
proposed three views which are: change history view, growth
history view, and test coverage evolution view to study the
nature of the co-evolution. In study number [10], the
researchers used two open source projects, while in [11], they
used two open source projects and one industrial software
project. They concluded that the nature of co-evolution depends
on the development style that is used to develop a project.

Ens et al. create and implement the interactive visual
analytics tool for analyzing co-change and co-evolution
between code and test [12]. It enables managers and engineers
to display 2D and 3D views. In addition, it helps in
determining the intensive period of testing and development
and determining the development style of the project.

III. METHODOLOGY

The main goal of this study is to understand how test suite
evolves over the time. Thus, to achieve this goal, several
versions of 8 open source Java systems with their test suits
were used to investigate different aspects of test-suite
evolution. These systems were selected according to many
criteria, which are popular, system size, each system has at
least 5 versions, and each version has a JUnit test suite. The 8
open source Java systems that used in our empirical study are
selected from GitHub (https://github.com/). Table I lists the
systems and its versions.

Most researches have studied the relationship between the
code and the test suite generally and provided general
information about the relationship between the code and the
test suite. However, in the current investigation, we studied
the relationship between code and test suite in term of size and
complexity.

A. Relationship between Code and Test Suite

The test suite is changing and evolving during its lifetime
according to the code changes. Therefore, the relationship
between the code and its test suite must be investigated.
Accordingly, this paper studied the relationship between the
code and test suite in terms of size and complexity.

Several metrics are used to determine the size of
production code or tests, such as the number of classes, Line
of Code (LOC), number of methods, and number of packages.
The software complexity focuses on how a piece of code
interacts with other pieces. One of the most popular
measurements of software complexity is McCabe metric or
Cyclomatic complexity metric. The Cyclomatic complexity
per method metric is the maximum number of linearly
independent paths within method [13].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

91 | P a g e

www.ijacsa.thesai.org

TABLE. I. SOFTWARE SYSTEMS USED IN THE EMPIRICAL STUDY

Program Description
Number of

versions

Commons-Lang1

It is a library which provides extra

methods for manipulation of the core

classes of the Java API.

11

OGNL2
It is an expression language for Java,
which using the simpler expression than

the Java language.

12

Biojava3
It is an open source project for
manipulating and processing biological

data in Java language.

12

Commons-DBCP4
It implements Data Base Connection

Pooling service.
5

Californium5

It is a Java implementation of the

Constrained Application Protocol

(CoAP).

9

Assertj6

It is a Java library which provides an

interface for writing rich and strongly

typed assertion to improve
maintainability and readability of tests

[14].

11

MessagePack7

Is a binary serialization (pack) format.

This enables a process to exchange data
as simple and fast as possible.

10

Aho-Corasick8
It is a Java implementation of the Aho-

Corasick algorithm.
8

In this paper, we used Eclipse Metrics plug-in 1.3.8 tool to
measure the size and complexity metrics because it is one of
the most commonly used Java tool in many research either in
mobile applications or in other applications [15], [16], [17],
and [18]. Moreover, this tool work with the most widely used
platforms, such as Windows, Mac, and Linux.

B. Test Suite Effectiveness

The test suite effectiveness (i.e., test suite quality) can be
described as the number of bugs in code detected by the test
suite. It could be measured in two broad ways: code coverage
and mutation testing. The code coverage metric measures the
percentage of code covered by the test suite. In this study, we
used Eclemma tool because it is giving more accurate results
[7] and it is one of the most widely used tools for code
coverage [7], [19], [20], [21], [22], and [23].

The mutation testing is a testing technique used to check if
the current test cases are able to detect any fault in mutant or
the change in software system code [24]. Each modified or
mutated version of a program called mutant. In mutation
testing, the tool generates multiple mutants of the original
program and then executes the test suite on each mutant. If the
outputs of the same test case in both, mutant and original
program, are different, then the test case detects the fault and
the mutant is called killing. However, if the fault is not
detected, then the mutant is called surviving. The mutation
coverage calculated as a number of detecting mutants over the
total number of generating mutants. The detected mutants are

1
 https://github.com/apache/commons-lang

2 https://github.com/jkuhnert/ognl
3 https://github.com/biojava/biojava
4 https://github.com/apache/commons-dbcp
5 https://github.com/eclipse/californium
6 https://github.com/joel-costigliola/assertj-core
7 https://github.com/msgpack/msgpack-java
8 https://github.com/robert-bor/aho-corasick

killed mutants plus timeout mutants. The mutants called
timeout if it causes an infinite loop. The survived mutants are
equivalent mutants or not detected mutants. The equivalent
mutant is a mutant that acts as original program behavior, and
cannot be detected by any test case. The following example
explains the equivalent mutants [25]:

Original program:

 int index = 3;

 if (index >= 2)

 return "foo";

Mutant program:

 int index = 3;

 if (index > 2)

 return "foo";

The effectiveness of the test suite can be measured by the
ability of the test suite to detect most mutants. Pitclipse tool is
used in this research because it is fast, also it is considered as
one of the most popular tools [26]and [27], and it has been
used successfully in several studies [28], [29] and [25].

IV. RESULT

In this section, the results of this study will be presented.
The results were divided according to the research questions
as follows:

A. Code and Test Suite Size Metrics

The size metrics, for both code and test suite, for the eight
systems has been illustrated in Fig. 1 according to the number
of classes for each version. The number of classes is mostly
compatible with the number of line of codes (LOC), so, there
is no difference between them.

These results show that the overall percentage of increase
in the test suite size within all versions of all systems is equal
to 78.6%. This percentage calculated as a number of increased
versions over the number of changed versions (i.e. 70
versions). The percentages of stabilizing and decreasing of the
test suite size in all versions of all systems are equal 18.5%
and 2.9%, respectively. That means the test suite size is
mostly increased during its evolution. The percentages of
stabilizing and decreasing have been calculated by the same
method of calculating the increasing percentage. In all eight
systems, there is a harmony which based upon the number of
classes’ changes between the system code and the test suite as
shown in Fig. 1. Here, the compatibility means that any
modification to the older version of the system code in terms
of increasing or decreasing in the code size is accompanied by
the same effect on the test suite size.

In the current investigation, 8 systems with 78 versions
have been evaluated. Where, 70 versions have been changed,
where the remaining 8 versions are the initial versions of all
systems. There are 65 versions out of 70 versions (92.9%) are
compatible and most of them have been increased in the size.
In the remaining 5 versions (7.1%), there is no compatibility
between the changes in code size and test suite size.

B. Code and Test Suite Complexity Metrics

According to the average cyclomatic complexity per
method for each version, the complexity metric, for both code
and test suite, for the eight systems has been illustrated in
Fig. 2. These results show that the overall percentage of

https://github.com/apache/commons-lang
https://github.com/jkuhnert/ognl
https://github.com/biojava/biojava
https://github.com/apache/commons-dbcp
https://github.com/eclipse/californium
https://github.com/joel-costigliola/assertj-core
https://github.com/msgpack/msgpack-java
https://github.com/robert-bor/aho-corasick

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

92 | P a g e

www.ijacsa.thesai.org

stabilizing or increasing in the test suite complexity in all
versions of all systems is equal to 94.3% (91.4% stabilizing
and 2.9% increasing). On other hand, the percentage of
decreasing in the complexity of the test suite in all systems is
equal to 5.7%, which means that the test suite complexity is
mostly stabilized during software evolution. All previous
percentages calculated by the same method used in the
previous Section 4.1, besides complexity metric rather than
size metric.

In more detail analysis, there are only four versions that
increase in the code complexity, where the test suite
complexity for one version is decreased and in the other three
versions it was stabilized. In addition, there is only one
version where the complexity of the code has decreased, but
the test suite complexity has stabilized. This means that the
increasing or decreasing in code complexity is offset by
stabilizing in the test complexity, this relationship achieved by
80%. Furthermore, the code complexity stabilization means
stabilization in test complexity, this relationship achieved by
85.7% for all versions of within systems.

C. Test Suite Effectiveness

In this empirical study, the code coverage and mutation
coverage was used to predict the quality of the system’s test
over the time. The code coverage and mutation coverage
metrics results are explained in the following subsections,
4.3.1 and 4.3.2.

a) Code Coverage: The results for the code coverage

metric for all systems have been illustrated in Fig. 3. The code

coverage is increased in 32 versions (45.7%), stabilized in 20

versions (28.6%), and decreased in 18 versions (25.7%).

These results show that the code coverage tends to increase

more than it is stabilized or decrease during the systems

improvement. All previous percentages calculated by the same

method used in Section 4.1, besides using code coverage

metric rather than size metric.

b) Mutation Coverage: The results for the mutation

coverage metric for all systems have been illustrated in Fig. 4.

The mutation coverage is increased in 22 versions (31.4%),

stabilized and decreased in 24 versions (34.3%). These results

show that the mutation coverage tends to stabilize or decrease

more than it is increased during the systems improvement. All

previous percentages calculated by the same method used in

the previous Section 4.1, besides mutation coverage metric

rather than size metric.

V. DISCUSSION

In this section, we will discuss the results and we will
answer the research questions.

A. Size

The test suite size tends to increase or stabilize in all
versions of systems, except for the second version of
CommonsDBCP and sixth version of Californium. In these
two versions, the test suite size is decreased, this may due to
many reasons, such as remove some test cases (i.e., redundant

test cases), restructuring the test cases by merge two test cases
within one test case, or there are some changes should be
considered on the source code. The answer to the first research
question (RQ1) of this study, the test suite size is often
increased over the time by adding new test cases. This
addition caused by the developer who has frequently adding
new functionalities to the systems and fixing new critical
defects that are found.

As shown in Fig. 1, for all eight systems, there is
compatibility between the changes in code size and test suite
size. In other words, the increasing, decreasing, or
stabilization in the code size leads to an increase, decrease, or
stabilize the test suite size, respectively. This relationship
achieved in 65 versions (92.9%), while the remaining 5
versions do not satisfy this relationship (7.1%). This is
considered an answer to the research question (RQ2). For
example, there is an incompatibility between the code size and
test suite size for the third and eighth versions of Californium
because the test suite may be improved by restructuring test
cases or restructuring the source code, where the number of
classes of the source code was decreased, while the LOC was
increased.

B. Complexity

The complexity results shown in Fig. 2 can be used to
answer the research questions (RQ3) and (RQ4). Where, the
test suite complexity is mostly stabilized during the software
evolution, even as the size of the test suite increases.
Moreover, the percentage of decreasing in the test suite
complexity was greater than the percentage of increase. Here,
the test suite may evolve by adding more methods rather than
extend the existing methods (i.e., increase nodes and edges).
In most versions, the code complexity was stabilized. The
increase, decrease, or stabilization in code complexity is offset
by stabilizing in test suite complexity. This is because the test
case just calls the code methods, which do not increase the test
complexity (i.e. do not increase the number of linearly
independent paths within the test method).

In general, the size of the test suite does not increase and
evolve by adding new functionalities (methods or classes) to
the source code only, but also by improving the current test
cases or adding more test cases for the current functionalities.
As the first versions of the system always need frequent
improvement processes because the developer will understand
the functional requirements better by the time, particularly,
after the system deployment in real life. In parallel, the
improvement may consider the non-functional requirements
that effect on the system quality, where the codes for both
system and test suite should be written in high quality and in a
professional way for the latest versions and it will be more
stabilized.

C. Test Suite Effectiveness

In this paper, the test suite effectiveness and quality were
measured by two metrics: code coverage and mutation
coverage to answer the research question (RQ5).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

93 | P a g e

www.ijacsa.thesai.org

Fig. 1. The Size of the Code and Test Suite for All Systems Versions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

94 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Complexity of Code and Test Suite for All Systems Versions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

95 | P a g e

www.ijacsa.thesai.org

Fig. 3. The Code Coverage for All Systems Versions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

96 | P a g e

www.ijacsa.thesai.org

Fig. 4. The Mutation Coverage for All Systems Versions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

97 | P a g e

www.ijacsa.thesai.org

The average of the code coverage for all versions in all
systems is 71%. This percentage calculated as total code
coverage in all versions over the number of versions (i.e. 78
versions). Furthermore, the percentage of the code coverage
mostly increase rather than stabilize or decrease within the
system versions, as shown in Fig. 5. This indicates that the test
suite improved over the time by adding more effective test
cases. In a few versions, the code coverage decreased because
of some reasons, such as the developer may add new code
(i.e., functionality) without adding new test cases. In other
words, the code size is increased while the test suite size is
stabilized.

When the test suite size is increased more than the code
size (i.e., number of classes), the percentage of the code
coverage is increased or stabilized by 76.2%. In contrast,
when the code size is increased more than the test suite size,
then the percentage of the code coverage is decreased by
38.5%. In sum, 76.5% of all versions are increased or
stabilized regarding the percentage of their code coverage
when increasing the test suites size. This indicates that the
percentage of the code coverage can be improved by adding
more test cases, to test untested classes and new functionalities
added to the source code. All previous percentages have been
calculated by the number of versions that satisfied the
relationship over the number of versions that satisfied and did
not satisfy this relationship.

The average of the mutation coverage of all versions in all
systems is 57%. This percentage calculated as total mutation
coverage in all versions over the number of versions (i.e. 78
versions). As shown in Fig. 6, the percentage of either
decreasing or stabilizing mutation coverage was (34.3%),
where it was a little bit greater than the percentage of
increasing (31.4%).

The mutation coverage percentage increases as timeout
mutants increase, and /or as the test suite size increases to kill
more mutants. On the other side, the mutation coverage
decreases as survived mutants and equivalent mutants
increase. In general, the percentage of increasing and
stabilizing for the mutation coverage of all systems versions,
at the test suits size increasing or stabilizing was about 66.2%.
This percentage has been calculated by the number of versions
that satisfied the relationship over the number of versions that
satisfied and did not satisfy this relationship. The mutation
coverage for the third, fifth, ninth, and tenth versions of
CommonsLang and the fourth version of Californium was
decreased. This is may be due to the equivalent mutants that
affect mutation coverage and causing its decrease. In addition,
in CommonsDBCP, MessagePack and Aho-corasick systems
the mutation coverage percentage was high but it decreased
after a while, this is maybe because the Pitclipse tool wrongly
deals with the mutants as a timeout mutants (i.e. infinite loop)
which causes increase in mutation percentage in the first
versions [25].

Fig. 5. The Percentage of Accumulative Code Coverage State for All

Systems Versions.

Fig. 6. The Percentage of Accumulative Mutation Coverage State for All

Systems Versions.

VI. CONCLUSION AND FUTURE WORK

The test suite size mostly increases or stabilizes in
program versions. However, the test suite complexity mostly
stabilizes and sometimes decreases. The change (i.e. increase
or decrease) or stability in the code size is often accompanied
by the same change (i.e. increase or decrease) or stability in
the test suite size. Often, the complexity of the code and test is
stable and does not change between the versions of the
system, but in a few cases, it increase or decrease. In these
cases, the increase, decrease, or stability in the complexity of
the code, offset by stabilization of the complexity of the test.

The code coverage and mutation coverage metrics were
measured by using Eclemma and Pitclipse tools, respectively,
to evaluate the effectiveness of the test suite. In code
coverage, the percentage of increasing the code coverage in
program versions is more than the percentage of decreasing.
However, in mutation testing, the percentage of decreasing
mutation coverage is more than the percentage of increase.

45.7%

28.6%
25.7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Increase Stabilize Decrease

A
cc

u
m

u
la

ti
ve

 P
e

rc
e

n
ta

ge

Code Coverage State

31.4%

34.3% 34.3%

30%

31%

32%

33%

34%

35%

Increase Stabilize Decrease

A
cc

u
m

u
la

ti
ve

 P
e

rc
e

n
ta

ge

Mutation Coverage State

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

98 | P a g e

www.ijacsa.thesai.org

We are planning to extend the current empirical study by
engaging and evaluating more well-known Java open-source
systems, especially the large ones. Relying on the new results
we will develop and build an automated test suite repairing
tool. This tool enables a software tester to update the test suite
automatically by generating new test cases, deleting, or
updating some existence test cases.

REFERENCES

[1] L. S. Pinto, S. Sinha, and A. Orso, ―Understanding Myths and Realities
of Test-suite Evolution‖, In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
p. 33. ACM, New York, NY, USA, 2012, pp. 33:1–33:11.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code, Addison-Wesley Professional,
2018.

[3] S. Elbaum, D. Gable, and G. Rothermel, ―The impact of software
evolution on code coverage information‖, in Proceedings IEEE
International Conference on Software Maintenance. ICSM 2001, pp.
170–179.

[4] L. S. Pinto, S. Sinha, and A. Orso, ―TestEvol: A tool for analyzing test-
suite evolution‖, 35th International Conference on Software Engineering
(ICSE), 2013, pp. 1303–1306.

[5] M. Mirzaaghaei, F. Pastore, and M. Pezze, ―Supporting Test Suite
Evolution through Test Case Adaptation‖, in Verification and Validation
IEEE Fifth International Conference on Software Testing, 2012, pp.
231–240.

[6] M. Mirzaaghaei, ―Automatic Test Suite Evolution‖, in Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, New York, NY,
USA, 2011, pp. 396–399.

[7] C. Marsavina, D. Romano, and A. Zaidman, ―Studying Fine-Grained
Co-evolution Patterns of Production and Test Code‖, in IEEE 14th
International Working Conference on Source Code Analysis and
Manipulation, 2014, pp. 195–204.

[8] S. Levin and A. Yehudai, ―The Co-evolution of Test Maintenance and
Code Maintenance through the Lens of Fine-Grained Semantic
Changes‖, in IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2017, pp. 35–46.

[9] Z. Lubsen, A. Zaidman, and M. Pinzger, ―Using association rules to
study the co-evolution of production #x00026; test code‖, in 6th IEEE
International Working Conference on Mining Software Repositories,
2009, pp. 151–154.

[10] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v Deursen, ―Mining
Software Repositories to Study Co-Evolution of Production #x00026;
Test Code‖, in and Validation 1st International Conference on Software
Testing, Verification, 2008, pp. 220–229.

[11] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
―Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining‖,
Empir. Softw. Eng., vol. 16, no. 3, pp. 325–364, Jun. 2011.

[12] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani,
―ChronoTwigger: A Visual Analytics Tool for Understanding Source
and Test Co-evolution‖, in Second IEEE Working Conference on
Software Visualization, 2014, pp. 117–126.

[13] G. K. Gill and C. F. Kemerer, ―Cyclomatic complexity density and
software maintenance productivity‖, IEEE Trans. Softw. Eng., vol. 17,
no. 12, 1991, pp. 1284–1288.

[14] ―AssertJ‖. [Online]. Available: http://joel-costigliola.github.io/assertj/.
[Accessed: 09-Sep-2018].

[15] D. Franke and C. Weise, ―Providing a Software Quality Framework for
Testing of Mobile Applications‖, in Verification and Validation 4th
IEEE International Conference on Software Testing, 2011, pp. 431–434.

[16] Shalini and S. I. Hassan, ―An empirical evaluation of the impact of
aspectization of cross-cutting concerns in a Smart-phone based
application‖, in International Conference on Computing for Sustainable
Global Development (INDIACom), 2014, pp. 448–454.

[17] J. Hernandez, A. Kubo, H. Washizaki, and F. Yoshiaki, ―Selection of
metrics for predicting the appropriate application of design patterns‖, In
Proceedings of the 2nd Asian Conference on Pattern Languages of
Programs, p. 3. ACM, 2011.

[18] T. Pessoa, F. Brito, M. P. Monteiro, and S. Bryton, ―An Eclipse Plugin
to Support Code Smells Detection‖, arXiv preprint arXiv:1204.6492,
2012.

[19] L. Mariani and F. Pastore, ―MASH: A tool for end-user plug-in
composition‖, In Proceedings of the 34th International Conference on
Software Engineering, pp. 1387-1390. IEEE Press, 2012.

[20] S. Pathy and D. S. Baboo, ―Analysis of code coverage metrics using
eCobertura and EclEmma: A case study for sorting programs‖, vol.
Volume 4, no. Issue 2, 2016, pp. 121–130.

[21] N. Li, X. Meng, J. Offutt, and L. Deng, ―Is bytecode instrumentation as
good as source code instrumentation: An empirical study with industrial
tools (Experience Report)‖, In IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), 2013, pp. 380-389.

[22] P. Dhareula and A. Ganpati, ―Open Source Code Coverage Tools for
Java: A Comparative Analysis‖, Indian Journal of Science and
Technology, Vol 9(32), 2016, pp. 1–5.

[23] A. Bergel, V. Peũa-Araya, and T. Kuhn, ―Controlled Experiment to
Assess a Test-Coverage Visualization: Lesson Learnt‖, 2015.

[24] "Mutation Testing: Complete Guide". [Online]. Available:
https://www.guru99.com/mutation-testing.html. [Accessed: 17-Apr-
2018].

[25] O. Alfsson, ―An analysis of Mutation testing and Code coverage during
progress of projects‖, Bachelor’s thesis, Umeå University, p. 22.

[26] S. Rani, B. Suri, and S. K. Khatri, "Experimental comparison of
automated mutation testing tools for java", in 4th International
Conference on Reliability, Infocom Technologies and Optimization
(ICRITO) (Trends and Future Directions), 2015, pp. 1–6.

[27] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
―PIT: a practical mutation testing tool for Java (demo)‖, In Proceedings
of the 25th International Symposium on Software Testing and Analysis,
ACM, 2016, pp. 449–452.

[28] L. Inozemtseva and R. Holmes, ―Coverage is not strongly correlated
with test suite effectiveness‖, In Proceedings of the 36th International
Conference on Software Engineering, ACM, 2014, pp. 435–445.

[29] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,
―Predictive Mutation Testing‖, IEEE Trans. Softw. Eng., 2018, pp. 1–1.

