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Abstract—The software system is evolving over the time, thus, 

the test suite must be repaired according to the changing code. 

Updating test cases manually is a time-consuming activity, 

especially for large test suites, which motivate the recent 

development of automatically repairing test techniques. To 

develop an effective automatic repair technique that reduces the 

effort of development and the cost of evolution, the developer 

should understand how the test suite evolves in practice. This 

investigation aims to conduct a comprehensive empirical study 

on eight Java systems with many versions of these systems and 

their test suites to find out how the test suite is evolving, and to 

find the relationship between the change in the program and the 

corresponding evolution in the test suite. This study showed that 

the test suite size is mostly increased, where the test suite 

complexity is stabilized. The increase (or decrease) in the code 

size will mostly increase (or decrease) the test suite size. However, 

the increasing or decreasing in the code complexity is offset by 

stabilizing the test suite complexity. Moreover, the percentage of 

the code coverage tends to be increased more than decreased, but 

in the mutation coverage, the opposite is true. 

Keywords—Software; test; code complexity; code coverage; test 

evolution 

I. INTRODUCTION 

Software testing is an important and essential step to 
identify the correctness and quality of software system. In the 
software testing process, the tester should write one test case 
or more to check each function of the system. The test case is 
the smallest meaningful unit of the tests. The result of each 
test case is either pass or fail. .If test cases are passed (i.e., the 
actual results = the expected results), then the functionality of 
a software system corresponding to these passed test cases is 
working correctly. The test suite is a collection of test cases to 
test system functionalities. Any software system (S) is divided 
into two parts: program (P) and test suite (T). All system test 
cases (Tc) are stored in (T). These test cases are used to check 
the correctness of all parts of P. The new version of the 
software system (S') should have a different program (P') and 
test suite (T'). 

Software systems evolve and change during their 
development and maintenance. Even a little change in the 
software code can affect a large number of test cases [1]. The 
software system upgrades are accompanied by code 
refactoring or code evolution. The code refactoring is a 
process of improving the internal structure of code without 

changing the external behavior or system functionality [2]. 
Refactoring process makes the code more readable, does not 
contain duplications, easier in maintenance, and increase the 
quality of the code. On other hand, the code evolution is 
adding new code to add new functionality to the system or 
deleting/ modifying the existing parts of the code to edit 
functionality in the system. Code evolution is a continuous 
process; it may change the system functionality and external 
behavior. 

Software evolution is one of the essential and normal 
issues required for most existence software throughout their 
lifetime. The changes in the code make some of the test cases 
in the current test suite become out of date for the new version 
of the software. Therefore, the tester must revise all changes 
on the code to repair the corresponding test cases in the test 
suite. While the code evolution may happen frequently, it is 
very hard for a tester to follow all these code evolutions and 
make the correct decisions as create, delete, and update test 
cases. Also, it is time-consuming to repair test cases manually, 
particularly, the large test suite [1]. This motivates researchers 
to develop automatic test repair techniques. The basic 
requirement to automate test repair technique is 
comprehensive understanding of how test suite evolves in 
practice. Generally, analysis a test suite evolution can help 
developers to build effective automated test repair techniques. 
So, this paper is intended to conduct an empirical study to 
understand and identify how the test suite evolves during the 
code changes and to create or build a relationship between 
code changes and the corresponding changes of the test suite. 
The main goal of the experiment is to provide answers to the 
following research questions regarding test suites evolution: 

RQ1. Is the test suite size increasing/ decreasing/ 
stabilizing during a software evolution? 

RQ2. What is the relationship between source code size 
and test suite size during a software evolution? 

RQ3. Is the test suite complexity increasing/ decreasing/ 
stabilizing during a software evolution? 

RQ4. What is the relationship between source code 
complexity and test suite complexity during a software 
evolution? 

RQ5. What is the effectiveness of the test suite during a 
software evolution? 
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II. RELATED WORKS 

This section shows some previous studies on the test suite 
evolution and the co-evolution between code and test. 

A. Test Suite Evolution 

Elbaum et al. examined the impact of software evolution 

on code coverage information [3]. This examination showed 

that a little change in software code can give large impact on 

code coverage information. This impact increases as the 

degree of change increases and it could be difficult to predict. 

One study presented a technique for studying test-suite 
evolution [1]. There were 88 program versions studied, 14,312 
test cases, and 17,427 test changes (i.e., modification, 
addition, and deletion). This study provided initial insight on 
how test cases are added, removed, and modified in practice. It 
focused on test repair and investigated the characteristics of 
deleted and added test cases and implemented technique 
within a tool called TestEvol [4]. TestEvol is a tool which 
enables the systematic study of test-suite evolution for Java 
programs and JUnit test cases. In [1] and [4], the researchers 
showed that the test modifications tend to be complex and 
hard-to-automate. The most important results were, firstly: the 
occurring of non-repair test modification nearly four times as 
frequently as test repairs. In other words, repairing test is a 
relatively small fraction of the activities performed during test 
evolution. Secondly: many test cases are not really deleted and 
added, but rather moved or renamed. 

Another approach to study test suite evolution is based on 
the observation that software developers follow common 
patterns to identify changes and adapt test cases [5] and [6]. 
Mirzaaghaei et al. proposed a novel approach for repairing and 
generating test cases automatically during software evolution. 
These studies defined a set of algorithms for repairing test 
cases commonly adopted by software developers and 
implemented those algorithms on TestCareAssistant (TCA) 
for evaluation. TCA properly repairs 90% of the compilation 
errors, where the TCA addressed and generated test cases that 
cover the same amount of instructions of state of the art 
techniques. 

All aforementioned studies in this section examined the 
test suite evolution from different aspects, whether from 
repairing test cases based on following common patterns 
commonly adopted by software developers or from fixing test 
oracle or others. However, in this study, we studied the test 
suite evolution in term of size (RQ1), complexity (RQ3), and 
effectiveness (RQ5). 

B. Co-Evolution between Code and Test 

Marsavina et al. investigate fine-grained co-evolution 
patterns of production and test code [7]. This investigation 
analyzed five open source systems and then generates six 
patterns. These patterns explain the relationship between the 
change in code and corresponding test cases in the test suite. 

Levin et al. have done a large scale study of 61 open 
source projects to study the relationship between test 
maintenance and production code maintenance in semantic 
changes [8]. The most important results were that the test 

maintenance is individually in each project rather than 
standardized. 

Several researchers studied the nature of the co-evolution 
between code and test (i.e. synchronously or phased) [9], [10] 
and [11]. In [9], Lubsen et al. used two cases studies: open 
source system and industrial software system, as they used 
association rule mining to study the natural of co-evolution. 
They concluded that within an open source system the 
development and testing are separate activities, wherein the 
industrial software system, the developer used test-driven 
development strategy. In [10] and [11], the researchers 
proposed three views which are: change history view, growth 
history view, and test coverage evolution view to study the 
nature of the co-evolution. In study number [10], the 
researchers used two open source projects, while in [11], they 
used two open source projects and one industrial software 
project. They concluded that the nature of co-evolution depends 
on the development style that is used to develop a project. 

Ens et al. create and implement the interactive visual 
analytics tool for analyzing co-change and co-evolution 
between code and test [12]. It enables managers and engineers 
to display 2D and 3D views. In addition, it helps in 
determining the intensive period of testing and development 
and determining the development style of the project. 

III. METHODOLOGY 

The main goal of this study is to understand how test suite 
evolves over the time. Thus, to achieve this goal, several 
versions of 8 open source Java systems with their test suits 
were used to investigate different aspects of test-suite 
evolution. These systems were selected according to many 
criteria, which are popular, system size, each system has at 
least 5 versions, and each version has a JUnit test suite. The 8 
open source Java systems that used in our empirical study are 
selected from GitHub (https://github.com/). Table I lists the 
systems and its versions. 

Most researches have studied the relationship between the 
code and the test suite generally and provided general 
information about the relationship between the code and the 
test suite. However, in the current investigation, we studied 
the relationship between code and test suite in term of size and 
complexity. 

A. Relationship between Code and Test Suite 

The test suite is changing and evolving during its lifetime 
according to the code changes. Therefore, the relationship 
between the code and its test suite must be investigated. 
Accordingly, this paper studied the relationship between the 
code and test suite in terms of size and complexity. 

Several metrics are used to determine the size of 
production code or tests, such as the number of classes, Line 
of Code (LOC), number of methods, and number of packages. 
The software complexity focuses on how a piece of code 
interacts with other pieces. One of the most popular 
measurements of software complexity is McCabe metric or 
Cyclomatic complexity metric. The Cyclomatic complexity 
per method metric is the maximum number of linearly 
independent paths within method [13]. 
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TABLE. I. SOFTWARE SYSTEMS USED IN THE EMPIRICAL STUDY 

Program Description 
Number of 

versions 

Commons-Lang1 

It is a library which provides extra 

methods for manipulation of the core 

classes of the Java API. 

11 

OGNL2 
It is an expression language for Java, 
which using the simpler expression than 

the Java language. 

12 

Biojava3 
It is an open source project for 
manipulating and processing biological 

data in Java language. 

12 

Commons-DBCP4 
It implements Data Base Connection 

Pooling service. 
5 

Californium5 

It is a Java implementation of the 

Constrained Application Protocol 

(CoAP). 

9 

Assertj6 

It is a Java library which provides an 

interface for writing rich and strongly 

typed assertion to improve 
maintainability and readability of tests 

[14]. 

11 

MessagePack7 

Is a binary serialization (pack) format. 

This enables a process to exchange data 
as simple and fast as possible. 

10 

Aho-Corasick8 
It is a Java implementation of the Aho-

Corasick algorithm. 
8 

In this paper, we used Eclipse Metrics plug-in 1.3.8 tool to 
measure the size and complexity metrics because it is one of 
the most commonly used Java tool in many research either in 
mobile applications or in other applications [15], [16], [17], 
and [18]. Moreover, this tool work with the most widely used 
platforms, such as Windows, Mac, and Linux. 

B. Test Suite Effectiveness 

The test suite effectiveness (i.e., test suite quality) can be 
described as the number of bugs in code detected by the test 
suite. It could be measured in two broad ways: code coverage 
and mutation testing. The code coverage metric measures the 
percentage of code covered by the test suite. In this study, we 
used Eclemma tool because it is giving more accurate results 
[7] and it is one of the most widely used tools for code 
coverage [7], [19], [20], [21], [22], and [23]. 

The mutation testing is a testing technique used to check if 
the current test cases are able to detect any fault in mutant or 
the change in software system code [24]. Each modified or 
mutated version of a program called mutant. In mutation 
testing, the tool generates multiple mutants of the original 
program and then executes the test suite on each mutant. If the 
outputs of the same test case in both, mutant and original 
program, are different, then the test case detects the fault and 
the mutant is called killing. However, if the fault is not 
detected, then the mutant is called surviving. The mutation 
coverage calculated as a number of detecting mutants over the 
total number of generating mutants. The detected mutants are 

                                                           
1
 https://github.com/apache/commons-lang 

2 https://github.com/jkuhnert/ognl 
3 https://github.com/biojava/biojava 
4 https://github.com/apache/commons-dbcp 
5 https://github.com/eclipse/californium 
6 https://github.com/joel-costigliola/assertj-core 
7 https://github.com/msgpack/msgpack-java 
8 https://github.com/robert-bor/aho-corasick 

killed mutants plus timeout mutants. The mutants called 
timeout if it causes an infinite loop. The survived mutants are 
equivalent mutants or not detected mutants. The equivalent 
mutant is a mutant that acts as original program behavior, and 
cannot be detected by any test case. The following example 
explains the equivalent mutants [25]: 

Original program: 

 int index = 3; 

 if (index >= 2) 

  return "foo"; 

Mutant program: 

 int index = 3; 

 if (index > 2) 

  return "foo"; 

The effectiveness of the test suite can be measured by the 
ability of the test suite to detect most mutants. Pitclipse tool is 
used in this research because it is fast, also it is considered as 
one of the most popular tools [26]and [27], and it has been 
used successfully in several studies [28], [29] and [25]. 

IV. RESULT 

In this section, the results of this study will be presented. 
The results were divided according to the research questions 
as follows: 

A. Code and Test Suite Size Metrics 

The size metrics, for both code and test suite, for the eight 
systems has been illustrated in Fig. 1 according to the number 
of classes for each version. The number of classes is mostly 
compatible with the number of line of codes (LOC), so, there 
is no difference between them. 

These results show that the overall percentage of increase 
in the test suite size within all versions of all systems is equal 
to 78.6%. This percentage calculated as a number of increased 
versions over the number of changed versions (i.e. 70 
versions). The percentages of stabilizing and decreasing of the 
test suite size in all versions of all systems are equal 18.5% 
and 2.9%, respectively. That means the test suite size is 
mostly increased during its evolution. The percentages of 
stabilizing and decreasing have been calculated by the same 
method of calculating the increasing percentage. In all eight 
systems, there is a harmony which based upon the number of 
classes’ changes between the system code and the test suite as 
shown in Fig. 1. Here, the compatibility means that any 
modification to the older version of the system code in terms 
of increasing or decreasing in the code size is accompanied by 
the same effect on the test suite size. 

In the current investigation, 8 systems with 78 versions 
have been evaluated. Where, 70 versions have been changed, 
where the remaining 8 versions are the initial versions of all 
systems. There are 65 versions out of 70 versions (92.9%) are 
compatible and most of them have been increased in the size. 
In the remaining 5 versions (7.1%), there is no compatibility 
between the changes in code size and test suite size. 

B. Code and Test Suite Complexity Metrics 

According to the average cyclomatic complexity per 
method for each version, the complexity metric, for both code 
and test suite, for the eight systems has been illustrated in 
Fig. 2. These results show that the overall percentage of 

https://github.com/apache/commons-lang
https://github.com/jkuhnert/ognl
https://github.com/biojava/biojava
https://github.com/apache/commons-dbcp
https://github.com/eclipse/californium
https://github.com/joel-costigliola/assertj-core
https://github.com/msgpack/msgpack-java
https://github.com/robert-bor/aho-corasick
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stabilizing or increasing in the test suite complexity in all 
versions of all systems is equal to 94.3% (91.4% stabilizing 
and 2.9% increasing). On other hand, the percentage of 
decreasing in the complexity of the test suite in all systems is 
equal to 5.7%, which means that the test suite complexity is 
mostly stabilized during software evolution. All previous 
percentages calculated by the same method used in the 
previous Section 4.1, besides complexity metric rather than 
size metric. 

In more detail analysis, there are only four versions that 
increase in the code complexity, where the test suite 
complexity for one version is decreased and in the other three 
versions it was stabilized. In addition, there is only one 
version where the complexity of the code has decreased, but 
the test suite complexity has stabilized. This means that the 
increasing or decreasing in code complexity is offset by 
stabilizing in the test complexity, this relationship achieved by 
80%. Furthermore, the code complexity stabilization means 
stabilization in test complexity, this relationship achieved by 
85.7% for all versions of within systems. 

C. Test Suite Effectiveness 

In this empirical study, the code coverage and mutation 
coverage was used to predict the quality of the system’s test 
over the time. The code coverage and mutation coverage 
metrics results are explained in the following subsections, 
4.3.1 and 4.3.2. 

a) Code Coverage: The results for the code coverage 

metric for all systems have been illustrated in Fig. 3. The code 

coverage is increased in 32 versions (45.7%), stabilized in 20 

versions (28.6%), and decreased in 18 versions (25.7%). 

These results show that the code coverage tends to increase 

more than it is stabilized or decrease during the systems 

improvement. All previous percentages calculated by the same 

method used in Section 4.1, besides using code coverage 

metric rather than size metric. 

b) Mutation Coverage: The results for the mutation 

coverage metric for all systems have been illustrated in Fig. 4. 

The mutation coverage is increased in 22 versions (31.4%), 

stabilized and decreased in 24 versions (34.3%). These results 

show that the mutation coverage tends to stabilize or decrease 

more than it is increased during the systems improvement. All 

previous percentages calculated by the same method used in 

the previous Section 4.1, besides mutation coverage metric 

rather than size metric. 

V. DISCUSSION 

In this section, we will discuss the results and we will 
answer the research questions. 

A. Size 

The test suite size tends to increase or stabilize in all 
versions of systems, except for the second version of 
CommonsDBCP and sixth version of Californium. In these 
two versions, the test suite size is decreased, this may due to 
many reasons, such as remove some test cases (i.e., redundant 

test cases), restructuring the test cases by merge two test cases 
within one test case, or there are some changes should be 
considered on the source code. The answer to the first research 
question (RQ1) of this study, the test suite size is often 
increased over the time by adding new test cases. This 
addition caused by the developer who has frequently adding 
new functionalities to the systems and fixing new critical 
defects that are found. 

As shown in Fig. 1, for all eight systems, there is 
compatibility between the changes in code size and test suite 
size. In other words, the increasing, decreasing, or 
stabilization in the code size leads to an increase, decrease, or 
stabilize the test suite size, respectively. This relationship 
achieved in 65 versions (92.9%), while the remaining 5 
versions do not satisfy this relationship (7.1%). This is 
considered an answer to the research question (RQ2). For 
example, there is an incompatibility between the code size and 
test suite size for the third and eighth versions of Californium 
because the test suite may be improved by restructuring test 
cases or restructuring the source code, where the number of 
classes of the source code was decreased, while the LOC was 
increased. 

B. Complexity 

The complexity results shown in Fig. 2 can be used to 
answer the research questions (RQ3) and (RQ4). Where, the 
test suite complexity is mostly stabilized during the software 
evolution, even as the size of the test suite increases. 
Moreover, the percentage of decreasing in the test suite 
complexity was greater than the percentage of increase. Here, 
the test suite may evolve by adding more methods rather than 
extend the existing methods (i.e., increase nodes and edges). 
In most versions, the code complexity was stabilized. The 
increase, decrease, or stabilization in code complexity is offset 
by stabilizing in test suite complexity. This is because the test 
case just calls the code methods, which do not increase the test 
complexity (i.e. do not increase the number of linearly 
independent paths within the test method). 

In general, the size of the test suite does not increase and 
evolve by adding new functionalities (methods or classes) to 
the source code only, but also by improving the current test 
cases or adding more test cases for the current functionalities. 
As the first versions of the system always need frequent 
improvement processes because the developer will understand 
the functional requirements better by the time, particularly, 
after the system deployment in real life. In parallel, the 
improvement may consider the non-functional requirements 
that effect on the system quality, where the codes for both 
system and test suite should be written in high quality and in a 
professional way for the latest versions and it will be more 
stabilized. 

C. Test Suite Effectiveness 

In this paper, the test suite effectiveness and quality were 
measured by two metrics: code coverage and mutation 
coverage to answer the research question (RQ5). 
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Fig. 1. The Size of the Code and Test Suite for All Systems Versions. 
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Fig. 2. The Complexity of Code and Test Suite for All Systems Versions. 
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Fig. 3. The Code Coverage for All Systems Versions. 
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Fig. 4. The Mutation Coverage for All Systems Versions. 
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The average of the code coverage for all versions in all 
systems is 71%. This percentage calculated as total code 
coverage in all versions over the number of versions (i.e. 78 
versions). Furthermore, the percentage of the code coverage 
mostly increase rather than stabilize or decrease within the 
system versions, as shown in Fig. 5. This indicates that the test 
suite improved over the time by adding more effective test 
cases. In a few versions, the code coverage decreased because 
of some reasons, such as the developer may add new code 
(i.e., functionality) without adding new test cases. In other 
words, the code size is increased while the test suite size is 
stabilized. 

When the test suite size is increased more than the code 
size (i.e., number of classes), the percentage of the code 
coverage is increased or stabilized by 76.2%. In contrast, 
when the code size is increased more than the test suite size, 
then the percentage of the code coverage is decreased by 
38.5%. In sum, 76.5% of all versions are increased or 
stabilized regarding the percentage of their code coverage 
when increasing the test suites size. This indicates that the 
percentage of the code coverage can be improved by adding 
more test cases, to test untested classes and new functionalities 
added to the source code. All previous percentages have been 
calculated by the number of versions that satisfied the 
relationship over the number of versions that satisfied and did 
not satisfy this relationship. 

The average of the mutation coverage of all versions in all 
systems is 57%. This percentage calculated as total mutation 
coverage in all versions over the number of versions (i.e. 78 
versions). As shown in Fig. 6, the percentage of either 
decreasing or stabilizing mutation coverage was (34.3%), 
where it was a little bit greater than the percentage of 
increasing (31.4%). 

The mutation coverage percentage increases as timeout 
mutants increase, and /or as the test suite size increases to kill 
more mutants. On the other side, the mutation coverage 
decreases as survived mutants and equivalent mutants 
increase. In general, the percentage of increasing and 
stabilizing for the mutation coverage of all systems versions, 
at the test suits size increasing or stabilizing was about 66.2%. 
This percentage has been calculated by the number of versions 
that satisfied the relationship over the number of versions that 
satisfied and did not satisfy this relationship. The mutation 
coverage for the third, fifth, ninth, and tenth versions of 
CommonsLang and the fourth version of Californium was 
decreased. This is may be due to the equivalent mutants that 
affect mutation coverage and causing its decrease. In addition, 
in CommonsDBCP, MessagePack and Aho-corasick systems 
the mutation coverage percentage was high but it decreased 
after a while, this is maybe because the Pitclipse tool wrongly 
deals with the mutants as a timeout mutants (i.e. infinite loop) 
which causes increase in mutation percentage in the first 
versions [25]. 

 

Fig. 5. The Percentage of Accumulative Code Coverage State for All 

Systems Versions. 

 
Fig. 6. The Percentage of Accumulative Mutation Coverage State for All 

Systems Versions. 

VI. CONCLUSION AND FUTURE WORK 

The test suite size mostly increases or stabilizes in 
program versions. However, the test suite complexity mostly 
stabilizes and sometimes decreases. The change (i.e. increase 
or decrease) or stability in the code size is often accompanied 
by the same change (i.e. increase or decrease) or stability in 
the test suite size. Often, the complexity of the code and test is 
stable and does not change between the versions of the 
system, but in a few cases, it increase or decrease. In these 
cases, the increase, decrease, or stability in the complexity of 
the code, offset by stabilization of the complexity of the test. 

The code coverage and mutation coverage metrics were 
measured by using Eclemma and Pitclipse tools, respectively, 
to evaluate the effectiveness of the test suite. In code 
coverage, the percentage of increasing the code coverage in 
program versions is more than the percentage of decreasing. 
However, in mutation testing, the percentage of decreasing 
mutation coverage is more than the percentage of increase. 
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We are planning to extend the current empirical study by 
engaging and evaluating more well-known Java open-source 
systems, especially the large ones. Relying on the new results 
we will develop and build an automated test suite repairing 
tool. This tool enables a software tester to update the test suite 
automatically by generating new test cases, deleting, or 
updating some existence test cases. 
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