
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

181 | P a g e

www.ijacsa.thesai.org

Parallel Platform for Supporting Stream Ciphers Over

Multi-core Processors

Sally Almanasra

Faculty of Computer Studies

Arab Open University (AOU)

Riyadh, Saudi Arabia

Abstract—Designing secure and fast cryptographic primitives

is one of the critical issues in the current era. Several domains,

including Internet of Things (IoT), military and banking, require

fast and secure data encryption over public channels. Most of the

existing stream ciphers are designed to work sequentially and

therefore not utilizing available computing power. Also, other

stream ciphers are designed based on complex mathematical

problems which makes these ciphers slower due to the complex

computations. For this purpose, a novel parallel platform for

enhancing the performance of stream ciphers is presented. The

platform is designed to work efficiently over multi-core

processors using multithreading techniques. The architecture of

the platform relies on independent components that can operate

over multiple cores available on the corresponding

communication ends. Two groups of stream ciphers were

considered as case studies in our experiments. The first category

includes stream ciphers of a sequential design, while the second

category includes parallelizable stream ciphers. Performance

tests and analysis shows that the parallel platform was able to

maximize the encryption throughput of the selected stream

ciphers dramatically. The enhancements on the encryption

throughput is relative to the constructional design of the stream

ciphers. Parallelized stream ciphers (Salsa20, DSP-128, and

ECSC-128) was able to achieve higher throughput compared to

other sequentially designed stream ciphers.

Keywords—Stream ciphers; parallel computing;

multithreading; cryptographic primitives; multi-core processors

I. INTRODUCTION

High-performance computing is progressively in demand in
many day-to-day applications. Current computing resources
present a tremendous opportunity for creating higher
performance models through parallelism. The main concept of
parallelism relies on allowing several tasks to be accomplished
simultaneously and completed in a shorter period of time.
Concurrent use of multiple processing resources is able to
solve complex computational problems. A given problem is
broken into smaller portions and solved concurrently using
multiple computing units. To obtain the best of parallelism,
scientists are focusing on faster hardware devices and
processing techniques [1][2].

The multithreading technique is one processing technique
that aims to create a virtual multiprocessor environment to
execute multiple tasks on single processor [3][4]. The recent
hardware revolution plays an important a role in improving
system performance through multi-core technology. Multi-core

processors are designed as a single physical processor that
consists of the logical core of more than one processor.

Such processors’ architecture enables the multi-core
processor to run multiple tasks concurrently in order to achieve
a higher performance compared to single-core processors.
However, multi-core processors have a great advantage over
multi-processors’ architecture as a major proportion of intra-
communication latency between communicating cores is
minimized in multi-core processors, compared to the inter-
communication latency carried out in multi-processor
architectures. The architecture of multi-core processors is
presented in Fig. 1.

Nowadays, a vast range of critical applications require a
design of secure and high performance encryption algorithms
to facilitate secure communication over public channels [5].
This is also an urgent issue for IoT solutions. In this research
we aim to design a high-performance parallel platform to
support stream cipher algorithms that depends on complex
mathematical operations. Complex algorithms are known to
perform slowly as internal operations require massive complex
computations. In later sections we discuss some general
concepts on parallel computing, which contribute to speeding
up systems and applications.

The rest of the paper is organized as follows. Section 2
provides an overview of parallelism over multi-core
processors. Section 3 presents the structure of stream ciphers.
The design and structure of the parallel platform is introduced
in Section 4. A number of performance tests were performed
and results are presented in Section 5. A concluding remark is
given in Section 6.

Fig. 1. The Architecture of Multi-Core Processors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

182 | P a g e

www.ijacsa.thesai.org

II. PARALLELISM OVER MULTI-CORE PROCESSORS

Multi-core computers are commonly used by individuals
and enterprises. Software which are designed on a sequential
base has become obstructive to performance. In order to make
use of the extra cores, new algorithms must be designed in
parallel bases. Such parallel designs effectively facilitate the
utilization of multi-core processors.

Parallelism is usually presented in the form of threads. This
technique maps independent tasks to threads at the lowest level
[6]. Multithreading techniques aim to improve the performance
of the running processes by allowing proper distribution of
tasks among the available cores in a particular computing unit
[7]. Fig. 2 illustrates the performance gained by applying
multithreading techniques to a multi-core machine.

Fig. 2. Sequential Versus Parallel Execution over Multi-Core Processor.

Multithreading allows algorithms to execute several
instructions per cycle, resulting in higher processor utilization
and significant throughput speedup. Applying parallel
techniques in cryptography has become essential for higher
throughput and improved performance, especially with the
current available resources. Therefore, in this study, we utilize
multi-core technology with multithreading techniques to speed
up the encryption process in stream ciphers, in order to provide
secure and better-performing cryptosystems.

III. SYMMETRIC-KEY ENCRYPTION: STREAM CIPHERS

Stream ciphers are one of the cryptographic primitives that
are used to secure communication over public and unsecured
channels [8]. Stream cipher algorithms generate a
pseudorandom keystream to encrypt a stream of plaintext,
producing a stream of incomprehensible text known as
ciphertext [9], as shown in Fig. 3.

Definition (Encryption): Let be a set of
keystream in the key space , be a set of
plaintext in the plaintext space , and be a set
of ciphertext in the ciphertext space . The encrypted
ciphertext is generated by Equation (1):

 () (1)

From the above definition, the encryption process of a
stream cipher is bijective for every . The plaintext space
and key space are typically represented in bit or byte
representations.

Fig. 3. Stream Cipher Algorithm.

The state of art reveals different designs of stream ciphers.
The majority of existing stream ciphers are designed to run
over single-core processors (e.g. RC4 [10], Sosemanuk [11]).
Very few stream ciphers are designed to support parallelism.
Examples of parallelized stream ciphers include Salsa20 [12]
and ChaCha [13], DSP-128 [14] and ECSC-128 [15] stream
ciphers.

However, the parallelized parts of these algorithms are
restricted to some internal sections and do not focus on the
general production of keystreams. In the next section, we
introduce a parallel platform for supporting efficient
parallelization of stream ciphers.

IV. PROPOSED PARALLEL PLATFORM FOR STREAM CIPHERS

The proposed parallel platform is designed to support
stream cipher operations on machines of different numbers of
cores. For instance, the sender may encrypt a text on a machine
with two cores, while the receiver may decrypt the text on a
machine with any number of cores. The platform works
flexibly regardless the number of cores on both sides. Our
parallel platform is presented in Fig. 4.

The overall design of the parallel platform is divided into
multiple parts to ensure maximum parallelism and a balanced
workload among the available cores. In addition, the design of
the platform also focuses on avoiding synchronization among
the running threads for higher performance. This is possible
through the use of multiple controllers in the platform.

Fig. 4. The Architecture of the Parallel Platform.

(2.1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

183 | P a g e

www.ijacsa.thesai.org

The parallelized platform shown in Fig. 4 consists of
several components, controllers and detectors. The main
components of the platform are: Parameter Extractor (PEx),
Keystream Generator (KG), Keystream-size Controller (KC)
and Plaintext Encoder (PEn). In addition, the platform uses
three supportive controllers and detectors: Machine Core
Detector (MCD), Thread Creation Controller (TCC) and Bit-
sync Controller (BsC). These controllers and detectors are
designed to achieve the optimum level of performance gained
from the parallel platform.

The parallel platform is also designed such that there is no
direct-dependency among the components. In other words, the
design of these components will enable us to easily parallelize
the workload between the running threads. From another
perspective, we have designed special detectors and controllers
to ensure the consistency and accuracy of the keystream
generation and plaintext encryption process.

As our platform may support different types of stream
ciphers, the parallel platform is able to extract the
corresponding parameters of the corresponding stream cipher.
Accordingly, the Parameter Extractor component (PEx)
extracts the required parameters to be used in other
components, as shown in Fig. 5. The extracted parameters vary
from one keystream generator to another in terms of the
number of parameters, the size of the parameters and the
representation of the parameters. For instance, if the DSP-128
stream cipher is selected, two parameters are extracted:
parameter C (integer) of 128-bit length and parameter 𝕭
(polynomial) of degree 128.

The functionality of the Keystream Generator (KG)
component is the most important part of the platform, whereby
it is responsible for generating sequences of keystream bits. In
this stage, a counter is used to increment the corresponding
parameters, as shown in Fig. 6.

Fig. 5. Parameter Extractor (PEx) Component.

Fig. 6. Parallel Keystream Generated by the Keystream Generator (KG)

Component.

The generation process of the keystream bits is mainly
dependent on the parameters obtained from PEx to be applied
on the mathematical problem being used in the core of the KG
component. Fig. 6 illustrates the process of producing n-
keystreams in n-rounds associated with every increment carried
out by the counter k. Applying parallelism on the KG
component to generate multiple keystreams concurrently is
possible with the existence of controllers, which will be
discussed later in this section. However, the only task that the
KG component has to accomplish at this stage is to generate
multiple keystreams in parallel, based on the incremented value
of the extracted counter parameter, as shown in Fig. 7.

The KG component will use the initial value of the counter
and the thread number (Thread_ID) to increment the value of
the counter. At this stage, the KG component creates n threads
(where n = no. of_cores) to handle the generation of new
keystreams, concurrently.

Variable keystream lengths might be generated from the
KG stage owing to the differences in the deployed stream
cipher. Therefore, the Keystream-size Controller (KC)
component is designed to standardize and control the size of
the generated keystreams and limit their size to a 32-bit length.

As shown in Fig. 8, the keystream controller maps the n-
bits of the reformatted key to a fixed-size key of m–bits length.
The mapping process is known as pre-encryption processing.
The size of the keystream can vary from one byte to five bytes.
If the size of n is greater than 32 bits, KC will truncate the
keystream to 32 bits and uses the rest of the bits in the
following round, as presented by Equation (2):

Knew = Trunc (Ks, m) (2)

Fig. 7. The Code Snippet of KG in the Parallel Platform.

Fig. 8. Keystream-Size Controller (KC) Component.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

184 | P a g e

www.ijacsa.thesai.org

where m is the upper limit of the size of the keystream (e.g.
32-bit). The content of the new keystream is given by Equation
(3):

Knew = Ks[i], for all 0 < i < m (3)

The process of setting up the length of the final keystream
is also known as the pre-encryption process, since the next
component will use this key for data encryption. However, the
importance of this component comes from the process of
standardizing the size of the keystream regardless of the
selected generator, which in turn gives the platform additional
flexibility.

Consequently, the Plaintext Encoder (PEn) component is
carried out. The main task of this component is to encrypt a
sequence of plaintext and produce a corresponding ciphertext.
The input to this component is the keystream generated by the
KG component, as shown in Fig. 9. The encryption process is
performed as follows: One word (32-bit) of plaintext is XORed
with one word of the keystream. When PEn employs all the
bits of the keystream, the KG component will be invoked to
generate a new round of keystreams. Equation (4) forms the
condition which needs to be satisfied when calling for the KG
in a new round:

Call (KG): ∑ ∑ (4)

where refers to the unused (available) bits.

Unlike other components, the encryption component (PEn)
has a direct dependency on the keystream generator in which
PEn must keep checking the number of available bits of the
keystream in order to trigger the KG if the number of bits in
the keystream is insufficient to perform the encryption.

The five components described above form the basic design
of the proposed platform. The next step will parallelize these
components and add other controllers and detectors, while
applying multithreading techniques on multi-core processors
for a fully parallelized platform.

Parallelizing the platform requires a detector called a
Machine Cores Detector (MCD) to detect the number of cores
on the corresponding machine. The MCD works at low
hardware level in which it detects the total number of logical
processors (cores) in a particular machine. We refer to the total
number of cores as the NOC. The MCD is associated with a
Thread Creation Controller (TCC) to create a specific number
of threads, as many as the number of the available cores
detected by the MCD. The other task of the TCC is to bind
each job assigned to a thread with its correspondent core to
isolate any potential concurrency issues (e.g. synchronization,
system bottleneck, etc.) at the thread level. Accordingly, the
TCC allows all jobs to run in parallel, in order to maximize the
performance gains from the multi-core processors.

Binding each thread with one specific core is achieved by
changing the scheduling policy by calling the processor’s
affinity routine. Processor affinity is designed to force threads
to work on a specific core during the run. This is possible by
using the POSIX threading library that provides developers
with the one routine known by pthread_setaffinity_np. The
default scheduling policy usually switches threads from one

core to another during the run of multiple threads. Therefore,
setting the processor affinity is sufficient to avoid thread
switching since thread switching requires copying the thread
instructions from its current L1 cache to the L2 cache of the
new (switched) core.

For instance, in dual-core processors, the thread creation
controller will create two threads and associate them with the
two cores on that machine. The two cores share several
resources and peripherals on a high-speed on-chip bus except
the L1-cache, which is designated for each core. An example
of an MCD and TCC implemented on a dual core processor is
shown in Fig. 10.

For consistency, the keystream generation component and
the plaintext encoder component are associated with an
additional controller to ensure correct data encryption of each
plaintext byte encrypted by its corresponding keystream. We
refer to this controller as a Bit-sync Controller (BsC). This
controller will ensure the synchronization between each bit in
the plaintext with the corresponding keystream bit, for a correct
decryption process. The encryption process E controlled by
BsC is described in Equation (5):

 ()(()) (5)

Fig. 9. Plaintext Encoder (PEn) Component.

Fig. 10. MCD and TCC in Dual-Core Processor.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

185 | P a g e

www.ijacsa.thesai.org

where Ct and Pt are the ciphertext and plaintext bytes

respectively.

The BsC controller associates each 32-bit of plaintext with
each thread so that the parallel threads can run concurrently.
The pseudocode of BsC is shown in Fig. 11, and visualized by
Fig. 12.

This algorithm is applicable to work on n-core processors,
which provides a platform with higher scalability with regards
to the rapid growth of the processor architecture.

Associating the keystream with the running threads is
conceptually controlled in the same way as associating threads
with their corresponding plaintext segment. There are two
important equations used to increment the counter value
associated with each round in the KG component. Let
be the initialized counter extracted in PEx, the new initial value
of is calculated and stored in a new counter denoted
by Ctr as shown by Equation (6):

Ctr0 = + Thread_ID (6)

Fig. 11. The Code Snippet of a BsC Controller.

Fig. 12. Bit-Sync Controller (BsC).

The subsequent rounds will increment the value of Ctr as
shown by Equation (7):

Ctrj+1 = Ctrj + NOC (7)

When the keystream generation component is requested to
perform a new round, calculating Ctr by Equation (7) will be
carried out. Table I shows an illustration of the associated
counter values and plaintext segments with corresponding
threads for three rounds of generating new keystreams in an 8-
core processor. Let = 0, the incremented Ctr with its
associated plaintext segments will be as follows:

Based on Table I, the thread with ID 1 will call KG three
times and it will accordingly use the values 1, 9 and 17 as its
counter values to generate three new 32-bit keystreams. The
three generated keystreams by thread 1 will be associated with
bits 1 to 32 (1-32), 257-288 and 513-544 of the plaintext,
respectively. The functionality of the BsC controller is
described in Fig. 13 where each KG component is associated to
each of the existing cores.

Note that the plaintext segments are associated with a
specific keystream generated by its corresponding counter.

However, the design of the platform and the plaintext
encoder will ensure the correct sequence of the ciphertext
segments, as shown in Fig. 14.

TABLE. I. ASSOCIATION TABLE BETWEEN THE COUNTER, PLAINTEXT

SEGMENT AND THREAD ID

Thread_ID 1 2 3 4 5 6 7 8

Ctr0 1 2 3 4 5 6 7 8

Plaintext
Bits

1-32 33-64
65-
96

97-
128

129-
160

161-
192

193-
224

225-
256

Ctr1 9 10 11 12 13 14 15 16

Plaintext

Bits

257-

288

289-

320

321-

352

353-

384

385-

416

417-

448

449-

480

481-

512

Ctr2 17 18 19 20 21 22 23 24

Plaintext

Bits

513-

544

545-

576

577-

608

609-

640

641-

672

673-

704

705-

736

737-

768

Fig. 13. Parallel Keystream Generation Controlled by BsC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

186 | P a g e

www.ijacsa.thesai.org

Fig. 14. Concurrency and Consistency in Parallel Keystream.

Fig. 14 illustrates the process of generating multiple
independent and parallel counters by multiple threads.
Technically, a copy of selected generator KG is associated to
each core of the multi-core processor. Accordingly, each copy
of the generator will use these independent counters to generate
sequences of keystreams.

In this research, we present a high scalable platform that is
capable of working on different numbers of cores on multi-core
processor. The uniqueness of this parallel platform is that one
can encrypt a stream of plaintext on n-core processors and
decrypt the ciphertext on m-core processors (where n ≠ m), as
illustrated in Fig. 15 and 16 (for n=2 and m=4 respectively).
This is due to the flexibility and the design of the platform’s
structure, which ensure the correctness of the encryption and
decryption processes on any number of cores.

The process of matching a specific keystream sequence for
a specific plaintext segment is a critical task that depends on
the appropriate use of the counters. This task must be designed
properly owing to its importance in allowing users to encrypt
and decrypt their data on different numbers of cores. The
following is an example (Example 1) of encrypting plaintext
bits using keystreams generated by the keystream generator.
The encryption is performed on a dual-core processor, while
the decryption is performed on a quad-core processor
(Example 2).

Fig. 15. Encryption Performed on Dual-Core Processor.

Fig. 16. Decryption Performed on Quad-Core Processor.

Example 1: Let be the plaintext with length of five bytes
(40 bits) such that =
1101110111011011111000000111111110011111. The
encryption of on a dual-core processor with an 8-bit segment
is performed as follows:

First, we divide the plaintext into segments of 8-bit length
as follows:

Subsequently, each thread associated with its

corresponding core will generate a unique value of the counter
C to be later used to encrypt a specific segment of the plaintext,
as shown in Table II.

The resulting ciphertext is formed such that the position of
the ciphered segment in the final ciphertext is based on the
order of its corresponding counter. The ciphertext will be in
the following form:

TABLE. II. GENERATING NEW COUNTER VALUE FOR ENCRYPTION ON

EACH THREAD

Core

Number

Counter

C

KG

Ciphertext

Segment

Plaintext

Thread

(1)
1 1 10101101

Segment (1)

11011101
01110000

Thread

(1)
1 3 00100111

Segment (5)

11100000
11000111

Thread

(2)
1 5 11110111

Segment (2)

10011111
01101000

Thread

(3)
2 2 00010011

Segment (3)

11011011
11001000

Thread

(4)
2 4 11000101

Segment (4)
01111111

10111010

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

187 | P a g e

www.ijacsa.thesai.org

One can see the association between the threads and the
cores, such that thread 1 with counters 1, 3 and 5 will be
executed on core 1, while thread 2 with counters 2 and 4 will
be executed on core 2. Another important issue is related to the
association between counter C, keystream and plaintext
segments. This association will assure the consistency and
coherence between the interchangeable encryption/decryption
processes on a different number of cores.

However, decrypting the ciphertext above on quad-core
processor is possible, and the following example (Example 2)
shows the relation between the running threads and the
ciphertext segments.

Example 2: Let be the ciphertext of five bytes (1 byte =
8bits) such that = 01110000110010001100011110111010
1101000. The decryption of on a quad-core processor with
an 8-bit/segment is performed as in Table III:

Similar to the encryption process in Example 1, the
plaintext is formed such that the position of the plaintext
segment in the final plaintext is based on the order of its
corresponding counter. The plaintext will be in the
following form:

Fig. 17 visualizes the relationship between multiple threads
associated with multiple cores performing data encryption and
decryption. However, the previous sub-sections have discussed
the functionality of each component in order to understand the
connection between those components running on multiple
threads, forming a parallelized platform.

The proposed platform is mainly targeted for stream
ciphers based on complex mathematical problems due to their
high security attributes. The platform is designed to provide the
opportunity for a more secure stream cipher to be designed
regardless of the speed since the platform is able to provide
those stream ciphers with higher efficiency and throughput.
The platform is practical and has a great impact on the field of
information security systems and cryptography.

TABLE. III. GENERATING NEW COUNTER VALUE FOR DECRYPTION ON

EACH THREAD

Core

Number

Counter

C

KG

Ciphertext

Segment

Plaintext

Thread

(1)
1 1 10101101

Segment (1)

01110000
11011101

Thread

(1)
1 5 11110111

Segment (5)

01101000
10011111

Thread

(2)
2 2 00010011

Segment (2)
11001000

11011011

Thread

(3)
3 3 00100111

Segment (3)

11000111
01111111

Thread

(4)
4 4 11000101

Segment (4)

10111010
10011111

Fig. 17. Performing Encryption and Decryption on a different Number of

Cores.

V. SECURITY AND PERFORMANCE ANALYSIS

Evaluating the efficiency of our parallel platform is
measured against a set of stream ciphers. These stream ciphers
are divided into two categories: parallelized and sequential
ciphers. The chosen ciphers in our experiments are summarized
in Table IV. The main reason of choosing these two categories
of stream cipher is to examine the efficiency of these
algorithms in utilizing the capabilities of the parallel platform.

The parallel platform is also measured from the security
perspective. We analyze the impact of the parallel platform on
the security attributes of the stream ciphers running over the
platform. The platform is designed such that it does not affect
the security attributes of the plugged-in stream ciphers, since
each core is responsible for executing its own workload
independently. Hence, there will be no interaction or
dependency between any two or more keystream generators
running over multiple cores, due to the avoidance of using
global shared variables between the running threads.

The security level of the parallelized keystream generation
on independent cores is similar to the security level of the
sequential version of the stream ciphers. Technically, there are
no shared parameters among the cores, which prevents any
attempt to criticize the parallel platform on the security of the
stream ciphers.

For testing purposes, we ran our model on two
workstations. The first workstation (denoted by DualC) used an
Intel Core 2 Duo ® E6400 processor of CPU speed 2.13 GHz,
L2 cache memory of size 2MB, RAM of size 2GB. The second
machine (denoted by QuadC) used an Intel Core 2 Quad ®
Q6600 processor of CPU speed 2.40 GHz, L2 cache memory
of size 8MB, RAM of size 2GB. The parallel platform was
coded in C++ using MinGW-2.05 and tested on Microsoft
Windows XP® operating system. POSIX-2.8.0 (Pthread)
library was used to handle thread-related functions of the
model.

Our testing started by examining the performance of the
selected stream ciphers over DualC and QuadC machines. The
results presented in Fig. 18 and 19 illustrate the performance of
the stream cipher running over DualC and QuadC, respectively.
Four sets of plaintext have been considered, of the sizes: 100,
500, 1000 and 2000 Mbits.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

188 | P a g e

www.ijacsa.thesai.org

TABLE. IV. LIST OF STREAM CIPHERS CONSIDERED IN PERFORMANCE

ANALYSIS

Stream ciphers Category

Salsa20 Parallelized

DSP-128 Parallelized

ECSC-128 Parallelized

RC4 Sequential

Sosemanuk Sequential

Fig. 18. Performance of Stream Ciphers over DualC Machine.

Fig. 19. Performance of Stream Ciphers over QuadC Machine.

Obviously, ECSC-128 is the slowest algorithm among the
other algorithms. The results also show that little difference
was found on the performance of the stream ciphers running on
the quad-core machine compared to the encryption rates
obtained on dual-core machines. The utilization of the two
extra cores is not well identified by the selected stream ciphers.
Table V presents the performance enhancements gained on the
QuadC machine compared to the DualC machine.

On the next step, we plugged in the stream ciphers to our
parallel platform (denoted by P(stream cipher)) to examine the
impact of the platform on enhancing the encryption rates of
these ciphers. Fig. 20 and 21 presents the results of running the
five stream ciphers over the DualC and QuadC machines,
respectively.

According to the performance analysis, we found that the
parallel platform managed to support the parallelizable stream
ciphers to utilize the two cores available on the DualC machine.
Table VI shows that the parallel platform was able to enhance
the encryption of the three parallelizable stream ciphers
dramatically. The encryption rates of Salsa20, DSP-128 and
ECSC-128 are enhanced by approximately 31%, 28% and 34%,
respectively. However, the sequential stream ciphers are not
capable of utilizing the support of the parallel platform.

TABLE. V. ENHANCEMENT RATIO GAINED FOR THE ORIGINAL STREAM

CIPHERS RUNNING OVER QUADC MACHINE COMPARED TO DUALC MACHINE

Stream cipher Enhancement Ratio

Salsa20 11%

DSP-128 6%

ECSC-128 2%

RC4 8%

Sosemanuk 9%

Fig. 20. Performance of Plugged Stream Ciphers on the Parallelized Platform

over the DualC Machine.

Fig. 21. Performance of Plugged Stream Ciphers on the Parallelized Platform

over the QuadC Machine.

TABLE. VI. ENHANCEMENT RATIO GAINED FOR THE STREAM CIPHERS

PLUGGED INTO THE PARALLEL PLATFORM AND RUNNING OVER DUALC

MACHINE

Stream cipher Enhancement Ratio

Salsa20 31%

DSP-128 28%

ECSC-128 34%

RC4 6%

Sosemanuk 10%

Similarly, the performance analysis shows that the parallel
platform managed to support the parallelizable stream ciphers
to utilize the four cores available on the QuadC machine.
Table VII shows that the parallel platform was able to
significantly enhance the encryption of the three parallelizable
stream ciphers. The encryption rates of Salsa20, DSP-128 and
ECSC-128 were enhanced by approximately 64%, 55% and
62%, respectively. However, the sequential stream ciphers are
not capable of utilizing the support of the parallel platform.

To examine the efficiency of the parallel platform in
utilizing the extra cores of QuadC compared to DualC, we
compare the efficiency of the parallel platform over DualC and
QuadC machines. Unlike the sequential stream ciphers (RC4
and Sosemanuk), results in Table VIII shows that an extra two
cores doubled the encryption speed of the other parallelizable
stream ciphers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

189 | P a g e

www.ijacsa.thesai.org

TABLE. VII. ENHANCEMENT RATIO GAINED FOR THE STREAM CIPHERS

PLUGGED INTO THE PARALLEL PLATFORM AND RUNNING OVER QUADC

MACHINE

Stream cipher Enhancement Ratio

Salsa20 64%

DSP-128 55%

ECSC-128 62%

RC4 7%

Sosemanuk 17%

TABLE. VIII. ENHANCEMENT RATIO GAINED BY THE PARALLEL PLATFORM

RUNNING OVER QUADC COMPARED TO DUALC MACHINES

Stream cipher Enhancement Ratio

Salsa20 33%

DSP-128 27%

ECSC-128 28%

RC4 1%

Sosemanuk 7%

We conclude that the design of the stream ciphers plays an
important role in utilizing multi-core processors. The parallel
platform is able to enhance the encryption rate significantly on
the QuadC machine with four cores, while the sequential
stream ciphers failed to utilize such computing resources.
Fig. 22-26 illustrates the efficiency of the stream ciphers over
different environments, where Seq-DualC and Seq-QuadC
refer to running the original stream ciphers on DualC and
QuadC machines, and Parallel(DualC) and Parallel(QuadC)
refers to running the stream ciphers with the support of the
parallel platform on DualC and QuadC machines.

Fig. 22. Performance Efficiency of Salsa20 for different Environments.

Fig. 23. Performance Efficiency of DSP-128 for different Environments.

Fig. 24. Performance Efficiency of ECSC-128 for different Environments.

Fig. 25. Performance Efficiency of RC4 for different Environments.

Fig. 26. Performance Efficiency of Sosemanuk for different Environments.

VI. CONCLUSION

In this paper we present a novel parallel platform to
enhance the performance of stream ciphers. The underlying
architecture of the platform relies on the use of multithreading
technology. The platform is designed to be scalable and
adaptable to the increasing number of cores in the future.
Parallelism on our platform is implemented at two levels: task
and data parallelism. Task parallelism is achieved by dividing
the workload among the available cores in the corresponding
machine, where each core will have its own components and
parameters set. On the other hand, data parallelism is achieved
by encrypting smaller sets of plaintext in multiple cores,
concurrently.

The experiments’ results show that parallel stream ciphers
(Salsa20, DSP-128, ECSC-128) are capable of achieving
higher performance on the parallel platform. The results also

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

190 | P a g e

www.ijacsa.thesai.org

show that increasing the number of cores from two to four
cores has doubled the performance of these three algorithms.
This is due to the parallelizable design of these ciphers.
However, sequential stream ciphers (RC4, Sosemanuk) are not
able to utilize the support of the parallel platform running over
the quad-core machine.

From the security perspective, the underlying architecture
of the parallel platform is constructed to avoid the existence of
shared global of local attributes between the running keystream
generators. Each core is associated with one independent set of
data and operates over separate input keys and counters.
Accordingly, the parallel platform does not affect the security
of the plugged-in stream ciphers.

ACKNOWLEDGMENT

The author would like to express her thanks to Arab Open
University, Saudi Arabia for supporting this study.

REFERENCES

[1] Nutaro, J., and B. Zeigler. "How to apply Amdahl’s law to
multithreaded multicore processors." Journal of Parallel and Distributed
Computing 107: 1-2, 2017.

[2] Dang, H., M. Snir, and W. Gropp. "Eliminating contention bottlenecks
in multithreaded MPI." Parallel Computing 69: 1-23. 2017.

[3] Thébault, L., and E. Petit. "Asynchronous and multithreaded
communications on irregular applications using vectorized divide and
conquer approach." Journal of Parallel and Distributed Computing 16-
27: 16-27. 2018.

[4] Soni, V., A. Hadjadj, O. Roussel, and G. Moebs. "Parallel multi-core
and multi-processor methods on point-value multiresolution algorithms
for hyperbolic conservation laws." Journal of Parallel and Distributed
Computing 123: 192-203. 2019.

[5] Ogiela, M. "Cognitive solutions for security and cryptography."
Cognitive Systems Research 55: 258-261. 2019.

[6] Hiscock, T., O. Savry, and L. Goubin. "Lightweight instruction-level
encryption for embedded processors using stream ciphers."
Microprocessors and Microsystems 64: 43-52. 2019.

[7] CharlesLai, B., K. Li, and C. Chiang. "Self adaptable multithreaded
object detection on embedded multicore systems." Journal of Parallel
and Distributed Computing 78: 25-38. 2015.

[8] Crainicu, B. "Unified Formal Model for Synchronous and Self-
Synchronizing Stream Ciphers." Procedia Engineering 181: 620-625.
2017.

[9] Khelifi, F. "On the security of a stream cipher in reversible data hiding
schemes operating in the encrypted domain." Signal Processing 143:
336-345. 2018.

[10] Rivest, R. The RC4 Encryption Algorithm. RSA. Document No. 003-
013005-100-000000, USA: Data Security Inc. 1992.

[11] Berbain, C., O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,
A. Gouget, et al. "Sosemanuk, A Fast Software-oriented Stream Cipher."
Accessed June 22, 2019. http://www.ecrypt.eu.org/stream/p3ciphers/
sosemanuk/sosemanuk_p3.pdf. 2005.

[12] Bernstein, D. "The Salsa20 Family of Stream Ciphers." In New Stream
Cipher Designs, 84-97. Berlin: Springer-Verlag. 2008.

[13] Bernstein, D. "The ChaCha family of stream ciphers." D. J. Bernstein's
webpage. Accessed June 20, 2019. http://cr.yp.to/chacha.html. 2005.

[14] Suwais, K., and A. Samsudin. "DSP-128: Stream Cipher Based On
Discrete Log Problem And Polynomial Arithmetic." American Journal
of Applied Sciences 5 (7): 896-904. 2008.

[15] Suwais, K., and A. Samsudin. "ECSC-128: New Stream Cipher Based
on Elliptic Curve Discrete Logarithm Problem." First International
Conference on Security of Information and Networks. Famagusta. 13-
23. 2007.

http://cr.yp.to/chacha.html

