
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

258 | P a g e

www.ijacsa.thesai.org

An Empirical Comparison of Machine Learning

Algorithms for Classification of Software

Requirements

Law Foong Li
1
, Nicholas Chia Jin-An

2

Department of Computing

School of Computing and Creative Media

UOW Malaysia KDU University College

40150 Glenmarie Shah Alam, Malaysia

Zarinah Mohd Kasirun
3

Department of Software Engineering

Faculty of Computer Science and Information Technology

University of Malaya

50603 Kuala Lumpur, Malaysia

Chua Yan Piaw
4

Institute of Educational Leadership

Faculty of Education, University of Malaya

50603 Kuala Lumpur, Malaysia

Abstract—Intelligent software engineering has emerged in

recent years to address some difficult problems in requirements

engineering. Requirements are crucial for software development.

Moreover, the classification of natural language user

requirements into functional and non-functional requirements is

a fundamental challenge as it defines the fulfillment criteria of

the users’ expected needs and wants. Therefore the research of

this article aims to explore and compare random forest algorithm

and gradient boosting algorithm to determine the accuracy of

functional requirements and non-functional requirements in the

process of requirements classification through the conduct of

experiments. Random forest and gradient boosting are ensemble

algorithms in machine learning that combines the decisions from

several base models to improve the prediction performance.

Experimental results show that the gradient boosting algorithm

yields improved prediction performance when classifying non-

functional requirements, in comparison to the random forest

algorithm. However, the random forest algorithm is more

accurate to classify functional requirements.

Keywords—Machine learning; ensemble algorithms;

requirements classification; functional requirements; non-

functional requirements

I. INTRODUCTION

Requirements are introductory building blocks for
developing software projects. They are often classified into
functional and non-functional requirements [1], [2]. In
definition, functional requirements describe the system
functionality whilst non-functional requirements describe
system properties and constraints. This distinction has
determined how requirements are being handled in practice;
during elicitation, documentation, and validation [3].

Additionally, requirements are crucial in determining the
success of a project; as it establishes a formal agreement
between client and software provider working towards the
same goal. However, the task of requirements categorization
normally expends significant human effort and time when

performed manually [4], [5]. The field of software engineering
(SE) has witnessed remarkable progress in the past two
decades attributable to the advancement of machine learning
[6] and natural language processing.

Machine learning in natural language processing has
become ever more accessible, leading to more innovations in
software engineering. Many techniques and algorithms have
been created and adapted into different systems, which has
improved performance and overall computational efficiency.
Numerous attempts have been made to construct automation
for the assistance of extraction and classification of
requirements using supervised [7], [8], [9] and semi-supervised
learning techniques [10].

This paper aims to explore and compare the machine
learning algorithms of random forest algorithm and gradient
boosting algorithm. Both algorithms are employed to predict
respective labelled data of the functional and non-functional
requirements.

This paper is organized as follows: Section II describes the
background and Section III discusses the related works.
Followed by, Section IV presents the research methodology
used. Section V exhibits the results of the study. Section VI
presents the findings of the study. Section VII highlights the
limitations of the study. Section VIII outlines future work to be
undertaken. Finally, Section IX concludes the presented work.

II. BACKGROUND

There are two primary types of learning schemes in
machine learning: supervised learning, where the output has
been given a priori labelled or the learner has some prior
knowledge of the data; and unsupervised learning, where no
prior information is given to the learner regarding the data or
the output [11]. The following terms and tools employed in the
study are briefly described as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

259 | P a g e

www.ijacsa.thesai.org

A. Python Pandas

Pandas is a software library written for the Python
programming language intended for data manipulation and
analysis. It is built on the Numpy package and its key data
structure is called the DataFrame. DataFrames store and
manipulate tabular data in rows of observations and columns of
variables [11].

B. Scikit Learn

Scikit Learn is one of the most popular Python toolboxes. It
provides a wide selection of supervised and unsupervised
learning algorithms. It has advanced functions not commonly
offered by other libraries including ensemble methods. Both
random forest and gradient boosting are ensemble methods
[11]. Both algorithms predict (regression or classification) by
combining the outputs from individual trees.

C. Label

Label, also known as target array, defined as the number of
categories the machine learning algorithm has to predict. It is
generally contained in a NumPy array or Pandas Series [12].
For the purpose of this study, the algorithm of A1 only has two
(2) labels which are functional or non-functional requirements.
The algorithm of A2 has more than two (2) labels, also known
as multiple labels, such as security, performance, usability, etc.

D. n-gram

In the fields of computational linguistics and probability, an
n-gram is a contiguous sequence of n-items from a text or
speech corpus [11]. The items can be phonemes, syllables,
letters, words or base pairs. The n-gram, n=1 is referred to as a
"unigram"; n=2 as a "bigram"; and n=3 as a "trigram". For
instance:

n-gram 1 = the, phone, rang

n-gram 2 = the phone, phone rang

n-gram 3 = the phone rang

E. Accuracy

Accuracy is one metric for evaluating classification models.
This is the measure of the correct number of classifications
divided by the total number of classifications [11].

III. RELATED WORKS

Machine learning has increasingly gained attention in
software engineering. However, there are insufficient research
works available in scholarly literature regarding carrying out an
accurate comparison of machine learning algorithms for
classification of software requirements, which could be used as
a reference to conduct similar works in the future. These
studies [7], [9], [10] concentrate on the classification of
software requirements by tackling the machine learning
approach through different models. Furthermore none of these
studies will use the ensemble approach.

Kurtanović and W. Maalej [7] classified requirements as
functional and non-functional requirements using support
vector machine, abbreviated as SVM algorithm. Most present
studies focuses on the classification of either functional or non-
functional requirements. For example, Slankas and Williams
[9] evaluated multiple classifiers to identify non-functional

requirements and found the support vector machine had the
highest effectiveness.

The approach proposed by Casamayor et al. [10] for the
non-functional requirements identification is focused on semi-
supervised text classification. The accuracy rates are above
70% for this proposed approach, significantly higher than the
results obtained through the supervised method of using the
standard collection of documents.

Instead, this study provides an implication for deciding
accurate algorithm to categorize functional and non-functional
requirements individually by attempting the ensemble
approach which makes allowance for better predictions
compared to a single model in order to close the research gap
as mentioned earlier in this section.

IV. RESEARCH METHODOLOGY

A mixture of natural language processing algorithms and
machine learning algorithms was used in the study. The
machine learning algorithms were used to predict functional
and/or non-functional labelled data, as well as labels such as
security, usability, efficiency, etc. Alternatively, the natural
language processing algorithms were used to generate a
sentence(s) from the user requirements.

The main emphasis of this article is the machine learning
algorithms. Therefore, no natural language processing
algorithms will be discussed. In this article, algorithm A1
represents the algorithm that classifies the functional
requirements and algorithm A2 represents the algorithm that
classifies the non-functional requirements. Experiments are
conducted to determine the machine learning algorithms. The
random forest and gradient boosting algorithms was used to
predict the respective labelled data of functional and non-
functional requirements.

A. Data Preparation

The raw data was formatted and vectorised before passed
into the random forest algorithm and the gradient boosting
algorithm to perform model fitting and prediction. Then, the
data frames were sorted with the relevant data to be used by the
natural language processing algorithms at the next stage.

Once the file was read, it began to format the input data
into a standard format. A few steps were taken to convert the
raw data into a standard format as follows:

1) Remove all punctuations from the text.

2) Convert the text into lowercase.

3) Add a full-sentence column into the data frame.

4) Remove stop words.

The following vectorization steps were conducted to
prepare the data for use by the algorithm (after the raw data has
been formatted):

1) Create a new data frame that has only the required

columns for the algorithm.

2) Split the training and test data into x and y coordinates

respectively.

3) Vectorise the data to be used by the algorithm. This

means that the words would be converted into unique

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

260 | P a g e

www.ijacsa.thesai.org

identifiers for the algorithm since the algorithm only accepts

numerical data. For example, yes => 0 and no => 1.

4) Concatenate any features into the vectorised data.

B. Experimental Instruments

Python Pandas is well suited for different kinds of data.
Furthermore, the DataFrame of Python Pandas can be created
by loading datasets from existing external storage such as a
SQL database, CSV files, list of dictionary, etc. Thus, the
Python Pandas DataFrame is designated for the data
manipulation in this study.

On the other hand, Scikit Learn was also chosen as a tool in
this study because it is built on top of common data and Python
Math Libraries. The design makes for ease of integration,
whereby numpy arrays and pandas data frames can pass
directly to the machine language (ML) algorithms of Scikit. In
addition, it features numerous classification, regression, and
clustering algorithms including support vector machines,
random forest, gradient boosting, etc. Hence, two (2) ML
algorithms in Python, which are random forest and gradient
boosting, have been chosen for this study to classify functional
requirements and non-functional requirements in turn.

C. Experimental Procedure

This section outlines the experimental procedure that
classifies software requirements into two (2) different types,
which are functional and non-functional requirements.

Fig. 1 illustrates the model fitting outline before model
prediction. First, the system will read the selected file and
check for errors in the file type chosen. When errors are found,
it will prompt the user with an error message and allow for file
re-selection. Once all errors are expunged, the system will
format and prepare the data for use by algorithm A1 and A2.
Following, the system will perform the model fitting, followed
by the model prediction. Finally, the model predictions of
algorithm A1 and algorithm A2 will be saved. The system will
then return to the user, the trained or fitted model of algorithm
A1 and algorithm A2 to make the prediction.

The purpose of conducting experiments on both algorithms
is to determine which algorithm; random forest or gradient
boosting is more accurate for algorithm A1 and algorithm A2.
As mentioned at the beginning of this section, algorithm A1
represents the algorithm that classifies functional requirements
and algorithm A2 represents the algorithm that classifies non-
functional requirements.

There will be two (2) experiments in this study. Each
experiment will have different sets of data. For example, a file
that comprises a mixture of functional requirements and non-
functional requirements will be used in conducting the first
experiment to determine which algorithm, random forest or
gradient boosting, is more accurate for algorithm A1.
Objectively, the purpose of conducting the second experiment
is to determine which algorithm, random forest or gradient
boosting, is more accurate for algorithm A2. Hence, a file that
consists of only non-functional requirements with their sub-
category(s) will be employed to realize the purpose of the
second experiment.

Fig. 1. Experimental Procedure of this Study.

In practice, a two (2) test per model configuration change is
conducted in each experiment. The two (2) tests are as below:

1) The first test will be conducted five (5) times for each

n-gram range and the averages are collected to find out which

of the n-gram ranges are more accurate.

2) The second test will be conducted ten (10) times for

each n-gram range and the averages are collected to reduce

any variances that could come from the data splitting

processes.

Nonetheless, there might be the circumstance of a new
setting that leads to retesting the n-gram range to determine
which n-gram range is most accurate. In such circumstance,
more tests, to be conducted repetitively, was required. Such
circumstance could also be a test to find a new setting, such as
the number of estimators, also known as the number of
decision trees built by the algorithm, or the depth of the
decision trees. So, whenever a change is made in the number or
depth of estimators, for example, the n-gram test needs to be
conducted again to see the implications on the n-gram range.

V. RESULTS OF STUDY

The results of algorithm A1 that applied random forest and
gradient boosting technique with two parameters which are the
number of trees and maximum depth of the trees are shown
respectively in Table I and Table II. Separately, Table III and
Table IV illustrates the results of algorithm A2 that applied the
same technique and parameters as presented in Table I and
Table II. There are some null values of maximum depth of the
trees appears in Table I and Table III which means no limits or
infinite depth of the trees.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

261 | P a g e

www.ijacsa.thesai.org

The final results of algorithm A1 and A2 are revealed in
Table V and Table VI. Table V shows that the random forest
technique has an advantage in the average accuracy compared
with the gradient boosting algorithm. The random forest
algorithm achieved a higher average accuracy which is 0.826
in comparison with the gradient boosting algorithm which is
0.789. Thus, the measured values deviated by the range of
0.037. It can be concluded that the random forest is more
accurate for algorithm A1, which is responsible to classify
functional requirements.

In contrast, Table VI illustrates that the gradient boosting
algorithm is more accurate for algorithm A2. The gradient
boosting algorithm obtained a higher average accuracy which
is 0.591 compared to the random forest algorithm which only
has 0.582 of the average accuracy.

It is noteworthy to indicate that the number of labels of raw
data has influenced the average accuracy of the algorithm
significantly. In this study, the random forest and gradient
boosting algorithms was used in the first experiment to predict
functional and non-functional labelled data. Meanwhile, the
random forest and gradient boosting algorithms was used in the
second experiment to predict non-functional labelled data such
as security, usability, efficiency, and so on. The efforts to
predict multiple labels of raw data in the second experiment is
tougher than that of the binary labels in the first experiment.
The machine learning algorithms had to predict binary labels of
raw data such as functional requirements and non-functional
requirements in the first experiment, which would give 50%
accuracy through blind guessing. In contrast, multiple labels of
raw data from different categories of non-functional
requirements, for instance, ten (10) labels, needed to be
predicted in the second experiment which gave 10% accuracy
through the prediction process. This is because the algorithm
was required to choose from the available labels rather than to
perform blind guessing. It also sets the baseline for comparing
the accuracy of the algorithms.

In summary, the results of this study shows that the random
forest algorithm is more accurate for algorithm A1 whereas the
gradient boosting algorithm is more suited for algorithm A2
due to accuracy.

TABLE. I. RESULT OF ALGORITHM A1 USING RANDOM FOREST WITH

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS

SETTING

Number

of Trees

Maximum

Depth of

the Trees

Precision Recall Accuracy
Predict

Time

50 40 0.892 1 0.915 0.106

200 0.892 1 0.915 0.103

100 40 0.900 1 0.894 0.104

50 30 0.868 1 0.894 0.108

100 30 0.868 1 0.894 0.104

100 0.889 0.970 0.894 0.104

200 40 0.868 1 0.894 0.104

50 30 0.878 1 0.894 0.104

100 0.878 1 0.894 0.104

200

0.919 0.944 0.894 0.104

TABLE. II. RESULT OF ALGORITHM A1 USING GRADIENT BOOSTING WITH

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS

SETTING

Number of

Trees

Maximum

Depth of

the Trees

Precision Recall Accuracy
Predict

Time

150 11 0.914 0.970 0.915 0.001

150 3 0.889 0.970 0.894 0.001

150 11 0.912 0.939 0.894 0.001

300 3 0.889 0.970 0.894 0.001

300 11 0.912 0.939 0.894 0.001

450 11 0.889 0.970 0.894 0.001

450 3 0.848 1.000 0.894 0.001

450 3 0.935 0.879 0.872 0.001

150 7 0.886 0.939 0.872 0.001

300 7 0.910 0.909 0.872 0.001

TABLE. III. RESULT OF ALGORITHM A2 USING RANDOM FOREST WITH

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS

SETTING

Number

of Trees

Maximum

Depth of the

Trees

Precision Recall Accuracy
Predict

Time

50 20 0.586 0.586 0.586 0.125

50 40 0.621 0.621 0.621 0.109

50 0.621 0.621 0.621 0.123

100 20 0.586 0.586 0.586 0.110

100 40 0.621 0.621 0.621 0.121

100 0.655 0.655 0.655 0.120

200 20 0.621 0.621 0.621 0.109

200 40 0.655 0.655 0.655 0.110

200 0.586 0.586 0.586 0.109

50 20 0.621 0.621 0.621 0.109

TABLE. IV. RESULT OF ALGORITHM A2 USING GRADIENT BOOSTING WITH

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS

SETTING

Number

of Trees

Maximum

Depth of

the Trees

Precision Recall Accuracy
Predict

Time

150 11 0.586 0.586 0.586 0.001

300 11 0.621 0.621 0.621 0.001

450 11 0.621 0.621 0.621 0.001

600 11 0.517 0.517 0.517 0.001

750 11 0.586 0.586 0.586 0.002

900 11 0.655 0.655 0.655 0.002

1050 11 0.552 0.552 0.552 0.002

150 11 0.517 0.517 0.517 0.001

300 11 0.586 0.586 0.586 0.001

450 11 0.586 0.586 0.586 0.001

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

262 | P a g e

www.ijacsa.thesai.org

TABLE. V. FINAL RESULTS OF ALGORITHM A1

Setting
Average

Precision

Average

Recall

Average

Accuracy

Predict

Time

Random Forest 0.802 0.965 0.826 0.111

Gradient Boosting 0.809 0.882 0.789 0.658

TABLE. VI. FINAL RESULTS OF ALGORITHM A2

Setting
Average

Precision

Average

Recall

Average

Accuracy

Predict

Time

Random Forest 0.582 0.582 0.582 0.105

Gradient Boosting 0.591 0.591 0.591 0.131

VI. DISCUSSION

There are several tuning parameters important for random
forests and gradient boosting algorithm, however, only two
parameters which are the number of trees and the tree depth
were chosen in this discussion. Generally, a higher number of
trees increased the performance and made the predictions more
stable which could result in better accuracy. In comparison,
more trees also meant more computational cost and after a
certain number of trees, the improvement was negligible. The
results in Table I show that there was no significant
improvement on the accuracy; for example, the first and
second record obtained the same accuracy rate which was
0.915, but both had different number of trees 50 and 200 for
the first and second record respectively. It is concluded that as
the number of trees grows, it does not always mean the
performance of the forest is significantly better than previous
forests which had fewer trees. The results of Table I indicates
that the addition of trees is insignificant. This result is aligned
with the previous studies finding [14] revealing that the
smallest number of trees is sufficient to obtain the same level
of accuracy. Barman et al. [15] also discovered that there is no
significant difference between using a number of trees, and
larger number of trees in a forest will not significantly improve
the performance but in contrary, it will increase its
computational cost.

Table II shows that the first record gained the highest
accuracy which was 0.915 with 150 number of trees and 11
depth of the trees. The results in Table II yet again shows that
larger number of trees has no significant improvement on the
accuracy.

Table III displayed that the eighth record listed has the
highest accuracy value of 0.6555 in contrast to the seventh and
ninth record listed which possesses the same number of trees,
but have differing depth of trees which are 20, 40 and infinite
depth of trees respectively. The results indicate that depth of
the trees has a significant effect on the accuracy. As the depth
increases, the stability of prediction will decrease as each
model tends to cause overfitting [16]. The depth of the tree
meaning length of tree. Larger tree helps to convey more
information whereas smaller tree gave less precise information.
Hence, there needed to be a balanced ratio within the depth of
trees to gain a better performance.

Alternatively, the findings in Table IV indicate the number
of trees will determine the accuracy of prediction when the

depth of the trees value is constant. The sixth record listed in
Table IV gained the highest accuracy which was 0.655.

The parameters in random forest and gradient boosting are
either to increase the predictive power of the model or to make
it easier to train the model. Important parameters to fine tune
would be the number of trees, the depth of trees and the
number of features used for a split. However, the number of
trees and the depth of trees were selected to perform the fine
tuning the models of this study. Optimistically this article has
given essential understanding to begin using the random forest
and gradient boosting on projects.

VII. LIMITATION OF STUDY

As with all research, there were a few limitations to this
study that must be acknowledged. Firstly, the system is limited
by the amount of data due to the issue of confidentiality;
similar to that encountered in similar research [13]. As more
quality data is collected, the accuracy of algorithm A1 and
algorithm A2 will increase. Secondly, the system has a
limitation on the format of data read, as it requires data to be in
a specific format to function properly. It is also limited by its
inability to determine how many separate requirements there
are in a sentence, as well as its inability to read from .docx and
.txt files.

VIII. FUTURE WORK

With the limitations of study stated in Section VII. For
future work, the following aspects are identified:

1) Collect more data to be used in experiments.

2) Generalize the reading format to allow the reading of

data in a more general format.

3) Implement a function to determine how many different

requirements exist in a sentence.

IX. CONCLUSION

This article explores and compares the random forest
algorithm and the gradient boosting algorithm to discover
which is more accurate to classify functional requirements and
non-functional requirements, by conducting experiments.
Among the investigated machine learning algorithms, the
results of this study have shown empirically that the gradient
boosting algorithm yields better prediction performance in
terms of accuracy when sorting non-functional requirements, in
comparison to the random forest algorithm.

For future work, more machine learning algorithms will be
investigated by engaging the ensemble strategy in order to
improve the overall classification accuracy.

ACKNOWLEDGMENT

This project has received funding from the KDU Research
Grant under grant no. KDURG/2017/010.

REFERENCES

[1] G. Kotonya, & I. Sommerville, Requirements engineering with
viewpoints, Software Engineering Journal, 11(1), 5-18, 1996.

[2] R. Y. Lee, Requirements Elicitation Software Engineering: A Hands-On
Approach (pp.81-102). Paris: Atlantis Press, 2013.

[3] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc. , “The detection and
classification of non- functional requirements with application to early

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

263 | P a g e

www.ijacsa.thesai.org

aspects”. In 14th IEEE International Requirements Engineering
Conference (RE'06). IEEE, 2006. pp. 38-49.

[4] J. Cleland-Huang, R. Settimi, X. Zou, & P. Solc, Automated
classification of non-functional requirements. Requirements
Engineering, 12(2), 103-120, 2007.

[5] A. Rashwan, O. Ormandjieva, & R. Witte, “Ontology-based
classification of non-functional requirements in software specifications:
a new corpus and svm-based classifier”. In 2013 IEEE37th Annual
Computer Software and Applications Conference. IEEE, July 2013. pp.
381-386.

[6] D. Zhang, & J. J. Tsai, Machine learning and software engineering,
Software Quality Journal, 11(2), 87-119, 2003.

[7] Z. Kurtanović and W. Maalej, "Automatically Classifying Functional
and Non-functional Requirements Using Supervised Machine
Learning," In 2017 IEEE 25th International Requirements Engineering
Conference (RE). IEEE, September 2017, pp. 490-495.

[8] M. Lu, & P. Liang, Automatic classification of non-functional
requirements from augmented app user reviews. In Proceedings of the
21st International Conference on Evaluation and Assessment in
Software Engineering. ACM, June 2017. pp. 344-353.

[9] J. Slankas, & L. Williams, Automated extraction of non-functional
requirements in available documentation. In 2013 1st International
Workshop on Natural Language Analysis in Software Engineering
(NaturaLiSE). IEEE, May 2013, pp. 9-16.

[10] A. Casamayor, D. Godoy, & M. Campo, Identification of non-functional
requirements in textual specifications: A semi-supervised learning
approach, Information and Software Technology, 52(4), 436-445, 2010.

[11] I. Laura and S. Santi, Introduction to Data Science A Python Approach
to Concepts, Techniques and Applications. Springer, Switzerland, 2017.

[12] V.Jake, Python Data Science Handbook. O'Reilly Media, Inc,
Sebastopol, United States, 2016.

[13] B. Athuraliya and C. Farook, "“Revyew” Hotel Maintenance Issue
Classifier and Analyzer using Machine Learning and Natural Language
Processing," In 2018 IEEE 9th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON). IEEE,
2018, pp. 274-280.

[14] P. Latinne, O. Debeir, & C. Decaestecker, Limiting the number of trees
in random forests. In International workshop on multiple classifier
systems. Springer, Berlin, Heidelberg, July 2001. pp. 178-187.

[15] T. M. Oshiro, P. S. Perez, & J. A. Baranauskas, How many trees in a
random forest? In International workshop on machine learning and data
mining in pattern recognition .Springer, Berlin, Heidelberg, 2012, July.
pp. 154-168.

[16] C. B. Liu, B. P. Chamberlain, D. A. Little, & Â. Cardoso, Generalising
random forest parameter optimisation to include stability and cost. In
Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, Cham. 2017, September. pp. 102-113.

