
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

420 | P a g e

www.ijacsa.thesai.org

Analysis of Password and Salt Combination Scheme

To Improve Hash Algorithm Security

Sutriman
1
, Bambang Sugiantoro

2

Master of Informatics Department

Sunan Kalijaga Islamic State University

Yogyakarta, Indonesia

Abstract—In system security, hashes play important role in

ensuring data. It remains the secure and the management of

access rights by those entitled to. The increasing power of hash

algorithms, various methods, are carried out one of them using

salting techniques. Salt is usually attached as a prefix or postfix

to the plaintext before hashing. But applying salt as a prefix or

postfix is not enough. There are so many ways to find the

plaintext from the resulting cipher text. This research discusses

the combination scheme other than the prefix and postfix

between password and salt increasing the security of hash

algorithms. There is no truly secure system and no algorithm

that has no loopholes. But this technique is to strengthen the

security of the algorithm. So that, it gives more time if an

attacker wants to break into the system. To measure the strength

generated from each combination scheme, a tool called Hashcat

is used. That is the way known as the best composition in

applying salt to passwords.

Keywords—Security; hash; hashing scheme; salting; password

I. INTRODUCTION

Hash is an algorithm that changes the string becomes a
series of random characters. It is also called a one-way
function, or one-way encryption because it is only able to do
encryption and does not have a key to decrypt. It works by
accepting input strings that are arbitrary in length then
transform it in a string of fixed length which is called hash
value [1][2][3][4].

Hash is often used to provide security to the authentication
process. An authentication is a process of ensuring a property
is genuine, verifiable and trustworthy; deep conviction the
validity of the transmission, message, or sender of the
message. It verifies that the user should input entered from the
system coming from a trusted source [1].

Authentication is one of several concepts needed to ensure
the security of a system. Authentication along the
accountability is the additional concept needed to support the
CIA Triad. CIA Triad is a concept very well-known as the
security, named the Confidentiality, Integrity, and Availability
[1][5]. CIA triad is the basic model of Information Security
and there exist other models that have the attributes of the CIA
triad in common [6]. Despite the use of the CIA to determine
goals security is well established.A few in the security sector
feels that the additional concept is needed to present the
picture completely [1].

Authentication is a very important process because besides
maintaining information from unauthorized users. It also
maintains the integrity data [7][8]. The use of algorithms and
hashing techniques is needed to help the authentication
process so that they can minimize the occurrence of broken
data by the attacker. The authentication process utilizes the
use of algorithms hash including the authentication of login
(password), authentication file authenticity, password storage,
key generation, pseudorandom number generation,
authentication of tokens on services in a distributed system,
digital signature, etc. [9].

In information systems, a hash is used for the
authentication login process. Passwords are changed using
certain hashing methods thus producing unique characters
later stored in the database. Some common hash functions
used include MD5 and SHA1 [3]. A message digest (MD) is
the code which is created algorithmically from the file and
represents that file uniquely. If the file changed, the message
digest will change [10]. Message Digest describes the
mathematical function that can take place on a variable-length
string. The number five (5) simply depicts that MD5 was the
successor of MD4. MD5 is essentially a checksum that is used
to validate the authenticity of a file or a string. It is one of the
most common uses [11]. The MD5 algorithm exhibits a lot of
weaknesses such as its vulnerabilities to different attacks such
as rainbow table, dictionary, birthday, etc. [12]. SHA is a
series of cryptographic hash functions designed by the
National Security Agency (NSA). The weakness in SHA
family originated from this fact that possibility of two
different input value will produce the same output value in the
middle of algorithm and it is important to have a good
diffusion. So, the output in each round will be spreaded out
and not to be equal with the same output in the next coming
stages [13]. MD5 and SHA1 are hash algorithm that do not
recommend. MD5 and SHA1 have many vulnerabilities which
allow attackers to easily get the system user password by
knowing the hash value.

A new hash algorithm appears as time progresses with
better security than the previous algorithm, among them are
SHA2, SHA3, BCrypt, and others. Along with the
development of the era, no doubt the new algorithms even the
vulnerability of attackers will be found.

The use of hashes in the authentication process actually
can reinforce by adding salt to the plaintext password before
the hashing process is carried out. Salt in the cryptography is a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

421 | P a g e

www.ijacsa.thesai.org

random bit that is used as a joint input password before the
hashing process is done. Salt can be added to the hash to
prevent a collision by uniquely identifying a user's password,
even if another user in the system has selected the same
password [14]. Salt is used as prefixed or post fixed against
passwords before entering the process hashing. Each password
has different salt.

The use of salt for passwords can increase password
security in an application, but does not close possibilities that
the attacker can crack against the generated values. Various
kinds of password cracking tools who are currently circulating
in cyberspace started by using password and salt combination
for plaintext password guessing. Giving salt a prefix or postfix
still has a vulnerability.

In [15] is previous research that has been conducted that
discusses the method of exchanging passwords and salt. In
that study, each index in the password and salt was exchanged
and then stored in an array. Unfortunately, the research does
not show the results of strength measurements that could
assess the results of the study clearly. So, raising the question
is a really measured thing. Then it can be added from the other
parameters as a comparison.

II. RELATED WORK

Password is one of the most important components of any
classical security scheme designed to protect sensitive and
confidential information from falling into the wrong person.
Creating a strong password is the first step towards ensuring
the protection of confidential user information [16]. The
purpose is to improve password security and to contribute the
research on password security, including salting techniques.
Salting technique is a hedge against pre-computed dictionary
attacks, the bedrock of which involves concatenating a
random string of letters and numbers, a salt, to the beginning
or end of a password before hashing it [17].

Abdelrahman Karrar et al. have published research on the
security of hash algorithms by swapping every index for
passwords and salts. Swapping Elements in an array algorithm
consists of two main modules, the Hash input structuring
module and the Salt rearrangement module[18].

The previous research on the use of salt strengthen hashes
on passwords has also been carried out by combining with
differential masking techniques [15]. The differential masking
is basically the insertion of fake passwords associated with
each user’s account. When an attacker gets the password list,
he retrieves many password candidates for each account but
cannot be sure about which password is real[19]. The use of
various methods and combinations is needed to increase the
power of hash algorithms. However, only using salt is not
enough because it can still be attacked using the Bruteforce
attack technique for only a little longer. Using two salts, one
public and one private can also protect the password against
offline attacks [20].

III. RESEARCH METHOD

Research methods are a way to collect various data
processed into information. The information is used as
materials to solve the problems studied. The steps taken in this

study include data collection, data grouping, analysis process
and ending with conclusions obtained. The research method
used in this study is shown in Fig. 1.

A. Research Tools

Research tools are used to carry out the research process.
In the testing process, the specifications of the research tool
affect the test results. The research tool used in this study is a
computer laptop with specifications as following:

 Brand/Type : HP / G 240 G7

 Processor : Intel Core i7-8565U

 RAM : 8 GB DDR 4

 Storage : 256 GB SSD

 Operating System : Linux, Xubuntu 18.04

B. Generating Salt Process

In this process, the salt which will be combined with the
password is made. The salt is made using a random function
that is owned by the PHP programming language. It plays an
important role in making hashed passwords stronger. By using
the salt the more unique and the longer, a simple password
will become stronger. In this study, the salt generated is
limited to only 3 character numbers to simplify the testing
process.

C. Rearrangement Process

This process is a process that will be carried out to strong
the hash algorithm. The use of salt is generally only combined
as a prefix or postfix for passwords. In other cases, the use of
salt composition is very dependent on the programmer who
built a system. By doing randomization between passwords
and salt, it is expected that a plaintext will be carried out by
the hashing process. It will be more difficult to describe by the
attacker, but without adding too many characters, it does not
increase the hashing time to be longer.

D. Testing

The tests that will be carried out in this study use a process
that can find the plaintext of the password. The treatment for
each scheme will be different based on each combination.
Each combination will be described, and the time needed to be
able to decipher the ciphertext of the saved password
recorded.

The decomposition process, at this stage of testing, will
use a simple algorithm made in Python language while for the
hash parsing process a password recovery tool will be used,
named OclHashcat. It is the fastest password recovery
program based on GPU, built by atom and can run on GNU or
Linux and MS Windows, 32 and 64 bit [21].

Fig. 1. Research Methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

422 | P a g e

www.ijacsa.thesai.org

IV. RESULTS AND DISCUSSIONS

A. Designing a Password and Salt Combination Scheme

Some draft password and salt combination schemes are
needed to be able to compare the strengths of each design. The
scheme created is a combination of several in the hash process
between passwords and salt. The scheme used in this study
can be seen in Table I:

TABLE. I. PASSWORD AND SALT COMBINATION SCHEME

No Scheme Combination

1 Scheme 1 hash(rearrangement(password, salt))

2 Scheme 2 hash(rearrangement(password, salt)+salt)

3 Scheme 3 hash(hash(rearrangement(password, salt)))

Scheme 1 is the same scheme used by previous
researchers. Schemes 2 and 3 are schemes created as a
comparison by providing additional parameters. In scheme 2,
the salt parameter is added to the exchange result before the
hash process is performed. In scheme 3, a double hash is
performed on the result of changing the password and salt
position.

B. Implementation

Implementation is the process of implementing a scheme
that has been designed into an application. The application
made in this section is a simple application that can display
the cipher text value of each designed combination scheme.

The implementation is done using the PHP and MySQL
database. The use of databases in system implementation aims
to get records of each result that is generated during the
process of collecting data with the application that has been
made.

1) Generating Salt: In this process, the salt which will be

combined with the password is made. Salt is made using a

random function that is owned by the PHP programming

language. Salt plays an important role in making hashed

passwords stronger. By using salt the more unique and the

longer, a simple password will become stronger.

In this study, the salt was generated using the mt_rand()
function that is already available in the PHP programming
language and limited to only 3 character numbers to simplify
the testing process. The mr_rand() function is used to generate
a random number value between the given range. The function
used to generate salt in its entirety can be seen in the program
code below:

function randomSalt($length) {
$result = '';

for($i = 0; $i < $length; $i++) {

$result .= mt_rand(0, 9);
}

return $result;

}

Script. 1. Generating Salt Function

2) Rearrangement Process: This process will be carried

out to strengthen the hash algorithm. The use of salt is

generally combined as a prefix or postfix for passwords. In

other case, the use of salt composition is very dependent on

the programmer built a system. By doing randomization

between passwords and salt, it will be carried out by the

hashing process will be more difficult to describe by the

attacker without adding too many characters so that it does not

increase the hashing time to be longer.

function rearrange ($arr1, $arr2, $n1, $n2){
 $i = 0;

 $j = 0;

 $k = 0;
 $arr3 = array();

 while ($i < $n1 && $j < $n2){

 $arr3[$k++] = $arr1[$i++];

 $arr3[$k++] = $arr2[$j++];

 }

 while ($i < $n1)
 $arr3[$k++] = $arr1[$i++];

 while($j < $n2)

 $arr3[$k++] = $arr2[$j++];
 $result = array();

 for ($i = 0; $i < ($n1 + $n2); $i++)

 array_push($result, $arr3[$i]);
 return implode("", $result);}

Script. 2. Rearrangement Function

The rearrangement() function above is called by including
4 parameters. The first and second parameters, namely $arr1
and $arr2 are passwords and salts. The third and fourth
parameters namely $n1 and $n2 are the length of the password
and salt. The above function works by rearranging the
password and salt. For example, the password that is owned is
abcdef and salt 123. It will produce an a1b2c3def string.

3) Data Collection: Data retrieval is the process of

recording each cipher text value of each combination scheme

for each predetermined password. The password used is a

weak password taken from Splash Data’s Top 100 Worst

Passwords. From the collection of passwords found. The ones

used in this study are those that match the criteria which are 6

characters long. The passwords used can be seen in Table II.

TABLE. II. SAMPLE PASSWORD

No Password

1 qwerty

2 monkey

3 abc123

4 123123

5 dragon

6 qazwsx

7 654321

8 harley

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

423 | P a g e

www.ijacsa.thesai.org

C. Testing

In this test, it is assumed that the examiner who acts as an
attacker knows the combination scheme model and length and
the type of data used for passwords and salts used as tested
material. This aims are to limit research because the attacking
process is very dependent on information and analysis
obtained by the attacker. Thus, what was tested in this study
was pure to measure the effect of the combination scheme on
the strength of the hash algorithm.

1) Testing using Hashcat: Hash cat is a penetration testing

tool that can be used to decrypt cipher text results from the

hashing process. Hash cat has variety of attack methods with

various hash decrypted models. In the testing phase of this

study, what will be used is the Mask Attack model.

Mask Attack is an attack mode that uses a combination of
characters to guess the plaintext sought. The Mask Attack on
the Hashcat is similar to Brute force Attack. In traditional
brute force mode, a character set is needed that contains all
uppercase letters, all lowercase letters and all digits (mix
alpha-numeric). So, it takes a long time.

In a Mask Attack mode, character sets can be arranged
based on information about the target that has been obtained.
In this test, not all mix alpha-numeric characters are used to
carry out attacks but can be adjusted to the desired attack
pattern based on the information that has been obtained. One
example of the command used on Attack Mask Attack using
Hashcat is as follows:

hashcat -a 3 -m 0 scheme3_monkey.txt ?l?d?l?d?l?d?l?l?l -

-force

For,

hashcat : Unique key used to call
applications

-a : Attack Mode (3 to define the
Mask Attack mode)

-m : Hash Type (0 to define that the
target hash is MD5)

scheme3_monkey.txt : Chipertext as the target

?l?d?l?d?l?d?l?l?l : Characters used to determine the
attack pattern,? l for letters a-z,? d for numbers 0-9.

2) Reverse Rearrangement Process: This stage is used

because schemes that uses the rearrangement function before

the plaintext is converted to the Ciphertext in the hashing

process need to be rearrange. At this stage, the special scripts

are created with python language which can be seen in the

following script:

def main():

 input_string = raw_input("Input your string: ")

 start_time = time.time()

 start_time_print = time.strftime('%d/%m/%Y %H:%M:%S')

 plaintext_length = 6

 salt_length = 3

 string_to_list = list(input_string)

 list_of_result = []

 for x in xrange(0,len(input_string)):

 new_index = x

 if x != 1 and x != 3 and x != 5:

 list_of_result.insert(new_index,string_to_list[x])

 result = ''.join(list_of_result)

 print result

 print("\n\n\n--- start time: %s" % start_time_print)

 print("--- stop time: %s" % time.strftime('%d/%m/%Y %H:%M:%S'))

 print("--- time estimated %s seconds" % (time.time() - start_time))

Script. 3. Script for Reverse Rearrangement.

In the above function, the input string is a password and
salt combination string. This function works by looping with
the password length and salt parameters that were previously
known. In the looping process, characters identified as part of
the password stored in the new list and displayed as a result.

3) Test Results: The main purpose of the testing process is

the time needed to get the plaintext for each scheme. The

results of this test will then be analyzed in the next step. The

test results are shown in the following Tables III, IV and V.

TABLE. III. TEST RESULT FOR SCHEME 1

No Password Salt
Time

Cracking Hash Reverse Rearrangement Total

1 qwerty 857 1h7m57s 0.000262975692749s 1h7m57.0003s

2 monkey 047 1h4m57s 0.00019907951355s 1h4m57.0003s

3 abc123 565 7s 0.000290155410767s 7.0003s

4 123123 345 5s 0.000843048095703s 5.0008s

5 dragon 372 1m16s 0.000288963317871s 1m16.0003s

6 qazwsx 512 3h35m17s 0.000334024429321s 3h35m17.0003s

7 654321 782 8s 0.000181913375854s 8.0002s

8 harley 456 1h6m14s 0.000261068344116s 1h6m14.0003s

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

424 | P a g e

www.ijacsa.thesai.org

TABLE. IV. TEST RESULT FOR SCHEME 2

No Password Salt
Time

Cracking Hash Reverse Rearrangement Total

1 qwerty 857 2h12m36s 0.000263929367065s 2h12m36.0003s

2 monkey 047 2h9m1s 0.000308990478516s 2h9m1.0003s

3 abc123 565 17s 0.000260829925537s 17.0003S

4 123123 345 16s 0.000319004058838s 16.0003s

5 dragon 372 12m33s 0.000279903411865s 12m33.0003s

6 qazwsx 512 4h18m40s 0.000226020812988s 4h18m40.0002s

7 654321 782 35s 0.000211000442505s 35.0002s

8 harley 456 1h50m22s 0.0001380443573s 1h50m22.0001s

TABLE. V. TEST RESULT FOR SCHEME 3

No Password Salt
Time

Cracking Hash Reverse Rearrangement Total

1 qwerty 857 1h48m39s 0.000224113464355s 1h48m39.0002s

2 monkey 047 1h57m11s 0.000231027603149s 1h57m11.0002s

3 abc123 565 18s 0.000243902206421s 18.0002s

4 123123 345 16s 0.000253200531006s 16.0002s

5 dragon 372 12m18s 0.000326156616211s 12m18.0003s

6 qazwsx 512 4h8m59s 0.000308990478516s 4h8m59.0003s

7 654321 782 29s 0.000277996063232s 29.0003s

8 harley 456 1h49m40s 0.000302791595459s 1h49m40.0003s

D. Data Analysis

At this step, the test results will be processed to be more
informative. Data samples are eight (8) in total for each
combination scheme. It was looked for an average value so
that they can be easily compared with other combination
schemes.

1) Look for the average value of each combination

scheme: Before the process is done to find the average value,

the total value of time which is still in the form of hours,

minutes and seconds must be equalized in the form of

seconds. The average is found by dividing the number of

values from the entire data in one combination scheme, the

amount of data, or the number of samples used. The formula

used is as follows:

𝑥̅ =
∑𝑥

𝑁

For,

 𝑥̅ = Average value

 ∑𝑥 = Total value of x

 N = the amount of data

The results of the average calculation for each scheme can
be seen in Table VI.

2) Average Graph: In Table VI we can see the

comparison of the average time needed to get the plaintext

from each scheme. The average time indicates how strong the

scheme has been designed. The higher required time can be

interpreted the stronger the scheme.

The average time graph from Table 6 can be seen in Fig. 2
below:

TABLE. VI. THE AVERAGE ATTACK TIME FOR EACH SCHEME

No. Scheme Average Time (s)

1 1 3120.12

2 2 4832.50

3 3 4483.75

Fig. 2. The Average Attack Time for Each Scheme.

0

1000

2000

3000

4000

5000

6000

Scheme 1 Scheme 2 Scheme 3

The average attack time for each scheme

The average attack time for each scheme

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

425 | P a g e

www.ijacsa.thesai.org

V. CONCLUSIONS

In this paper, we evaluate the strength of several
combination schemes between passwords and salts. The
scheme is tested based on the arrangement of the position
exchange of each index between the password and the salt.
With this research, it is hoped that knowledge can be obtained.
The preparation and the addition of a few parameters can
significantly increase the strength of the hash algorithm.

The hope for the future, there is further research on this
field. For example, by adding another scheme, other
parameters or with a truly random arrangement. Because this
research is important in data security.

REFERENCES

[1] W. Stallings and L. Brown, Computer Security: Principles and Practice,
Global Edition. 2015.

[2] N. Mouha, M. S. Raunak, D. Richard Kuhn, and R. Kacker, “Finding
Bugs in Cryptographic Hash Function Implementations,” IEEE Trans.
Reliab., vol. 67, no. 3, pp. 870–884, 2018.

[3] P. P. Pittalia, “A Comparative Study of Hash Algorithms in
Cryptography,” vol. 8, no. 6, pp. 147–152, 2019.

[4] M. Cindy, A. Kioon, Z. Wang, and S. D. Das, “Security Analysis of
MD5 Algorithm in Password Storage Security Analysis of MD5
algorithm in Password Storage,” no. February 2013, 2015.

[5] S. Qadir and S. M. K. Quadri, “Information Availability: An Insight into
the Most Important Attribute of Information Security,” J. Inf. Secur.,
vol. 07, no. 03, pp. 185–194, 2016.

[6] J. Andress and S. Winterfeld, “The Basics of Information Security:
Understanding the Fundamentals of InfoSec in Theory and Practice:
Second Edition,” pp. 1–217, 2014.

[7] P. Ramos Brandão, “The Importance of Authentication and Encryption
in Cloud Computing Framework Security,” Int. J. Data Sci. Technol.,
vol. 4, no. 1, p. 1, 2018.

[8] M. Trnka, T. Cerny, and N. Stickney, “Survey of Authentication and
Authorization for the Internet of Things,” Secur. Commun. Networks,
2018.

[9] A. Sahu, “Review Paper on Secure Hash Algorithm With Its Variants
International Journal of Technical Innovation in Modern Engineering &
Science (IJTIMES) Review Paper on Secure Hash Algorithm With Its
Variants,” no. May 2017, pp. 0–7, 2018.

[10] R. Mohanty, N. Sarangi, and S. K. Bishi, “A secured Cryptographic
Hashing Algorithm,” Analysis, p. 4, 2010.

[11] A. K. Kasgar, M. K. Dhariwal, N. Tantubay, and H. Malviya, “A
Review Paper of Message Digest 5 (MD5),” Int. J. Mod. Eng. Manag.
Res., vol. 1, no. 4, 2013.

[12] A. Bhandari, M. Bhuiyan, and P. W. C. Prasad, “Enhancement of MD5
Algorithm for Secured Web Development,” J. Softw., vol. 12, no. 4, pp.
240–252, 2017.

[13] H. Mirvaziri, K. Jumari, M. Ismail, and Z. M. Hanapi, “A new hash
function based on combination of existing digest algorithms,” 2007 5th
Student Conf. Res. Dev. SCORED, no. December, pp. 1–6, 2007.

[14] P. N. Patel, J. K. Patel, and P. V Virparia, “A Cryptography Application
using Salt Hash Technique,” Int. J. Appl. or Innov. Eng. Manag., vol. 2,
no. 6, pp. 236–239, 2013.

[15] S. Kharod, N. Sharma, and A. Sharma, “An improved hashing based
password security scheme using salting and differential masking,” 2015
4th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir.
ICRITO 2015, pp. 1–5, 2015.

[16] E. M. W. R. Chowdhury, M. S. Rahman, A. B. M. A. Al Islam, and M.
S. Rahman, “Salty Secret: Let us secretly salt the secret,” Proc. 2017 Int.
Conf. Networking, Syst. Secur. NSysS 2017, pp. 115–123, 2017.

[17] J. Zhang and S. Boonkrong, “Dynamic salt generating scheme using
seeds warehouse table coordinates,” 2015 IEEE 2nd Int. Conf.
InformationScience Secur. ICISS 2015, 2016.

[18] A. Karrar, T. Almutiri, S. Algrafi, N. Alalwi, and A. Alharbi,
“Enhancing Salted Password Hashing Technique Using Swapping
Elements in an Array Algorithm,” vol. 8491, pp. 21–25, 2018.

[19] D. Mirante and J. Cappos, “Understanding Password Database
Compromises Technical Report,” Tech. Rep. TR-CSE-2013-02,
Polytech. Inst. NYU, 2013.

[20] K. Chanda, “Password Security: An Analysis of Password Strengths and
Vulnerabilities,” Int. J. Comput. Netw. Inf. Secur., vol. 8, no. 7, pp. 23–
30, 2016.

[21] Radix, “Hashcat User Manual,” no. August, 2011.

