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Abstract—Edge computing extends cloud computing to 

enhancing network performance in terms of latency and network 

traffic of many applications such as: The Internet of Things 

(IoT), Cyber-Physical Systems (CPS), Machine to Machine 

(M2M) technologies, Industrial Internet, and Smart Cities. This 

extension aims at reducing data communication and transmission 

through the network. However, data processing is the main 

challenge facing edge computing. In this paper, we proposed a 

data processing framework based on both edge computing and 

cloud computing, that is performed by partitioning (classification 

and restructuring) of data schema on the edge computing level 

based on feature selection. These features are detected using 

MapReduce algorithm and a proposed machine learning 

subsystem built on user requirements. Our approach mainly 

relies on the assumption that the data sent by edge devices can be 

used in two forms, as control data (i.e. real-time analytics) and as 

knowledge extraction data (i.e. historical analytics).We evaluated 

the proposed framework based on the amount of transmitted, 

stored data and data retrieval time, the results show that both the 

amount of sending data was optimized and data retrieval time 

was highly decreased. Our evaluation was applied experimentally 

and theoretically on a hypothetical system in a kidney disease 

center. 
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I. INTRODUCTION 

Recently many applications seek to improve society by 
sharing distributed devices and processing their data, such as 
the Internet of Things (IoT) [1], Cyber-Physical Systems 
(CPS) [2], Machine to Machine (M2M) technologies [3], 
Industrial Internet [4], and Smart Cities [5]. 

However, there are great challenges to efficiently process, 
store, and manage the data collected by these applications. 
Since cloud computing (CC) has virtually an unlimited 
capacity in terms of storage and processing power; hence, 
cloud computing provides an opportunity to properly approach 
these tasks by integrating these networks and cloud computing 
[6]. 

To cope with these problems, Edge computing architecture 
has been proposed to support the CC applications and their 
requirements [7]. Edge computing can be considered as a layer 
or gateway between the applications’ device’s layer (edge 
devices) and the cloud layer (server in the cloud). This layer 

allows for speedy and direct processing of data produced by 
edge devices, rather than sending them to the central cloud 
infrastructure, enabling the CC applications to impose smaller 
latencies and to alleviate the traffic overhead on the network 
to the cloud [8]. Moreover, this layer has the power to process 
data and make intelligent decisions according to the data 
produced by the edge devices even before the data is 
processed by the cloud [7]. Consequently, the main 
functionality of an Edge Computing layer, when integrated 
with Cloud networks, is improving performance in terms of 
latency, and network traffic load through processing the data; 
hence, data processing is the main issue in edge computing 
[8]. Data processing in the edge layer is a relatively new topic, 
few studies have focused on this topic, although, there are still 
many open issues [9]. However, many researchers have 
addressed the issue of improving network performance in 
different ways to improve the quality of service and network 
performance in edge cloud networks [10]. Consequently, we 
observe that some of these researchers employed edge as a 
service [11] while others employed it to reduce the overload 
data with deep learning [12], and others use the edge as a 
fundamental tool [13]. Du B, et al. (2018) [11] designed 
Things-edge-cloud computing architecture to enable edge 
servers to cooperatively work with the cloud and achieve 
traffic-data as a service. Xu, X. et al. (2017)[14] presented 
edge Analytics as a service; rule-based analytics model 
equipped to edge node to prop the management of real-time 
analytic on edge. Alturki, B et al. (2017) [15] leveraged edge 
computing to provide low latency and network traffic by using 
confusion technique to preprocessing data in edge layer and 
Fu, J. et al, (2018) [13]proposed data processing schemes that 
combine fog computing and cloud computing to improve the 
quality of service in terms of latency, security, and flexibility 
and build object-oriented index to enhance data retrieval. 

The main issues in CC that are faced by edge computing 
are storage, bandwidth, and real-time data analytics; this work 
presents a new method for improving edge cloud network’s 
performance through data processing in the edge layer before 
sending it to the cloud. This is performed by processing the 
data schema on the edge computing level. Basically, the 
proposed technique of data processing is Data Partitioning, 
this procedure involves classifying the data and restructuring 
the data schema based on feature selection techniques. The 
objective of Data Partitioning is to partition the table into 
smaller tables in a manner, to allow the queries which access 
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only a fraction of the data to run faster because there are fewer 
data to scan, as well as to allow knowledge extraction data to 
be transmitted to the cloud, with low transmission time and 
low cost of bandwidth, because there are fewer data to load. 
Without loss of generality, we assume that smaller tablets are 
more likely to be located as close as possible to the CPU in the 
memory hierarchy, i.e, in the cache or the main memory. 

Feature selection is a data preprocessing strategy based on 
dimension reduction, it directly selects a subset of relevant 
features, by removing irrelevant, redundant and noisy features 
from data; hence, preventing sending unnecessary data to the 
cloud to reduce the utilization of resources in the cloud (i.e. 
storage, bandwidth) as well as providing lower latency with 
data retrieval by only choosing relevant features [16], Feature 
selection techniques reduce storage and computational costs 
while avoiding significant loss of information [17]. Feature 
selection algorithms can be divided into wrapper, filter, and 
embedded methods. [18]. Wrapper Methods generate models 
with subsets of features and gauge their model performances. 
In this work, we presented a solution based on the forward 
search wrapper method. 

In our proposed, features are detected using a modify 
MapReduce algorithm (M-MapReduce) and proposed a novel 
machine learning subsystem that are applied on user 
requirements (also called functional specifications in software 
engineering) [19]. These requirements reflect expectations for 
a new or modified product, requirements should be 
quantifiable, relevant and detailed. 

The importance of this work is reflected from the main 
contribution of this paper, which is to develop a data 
processing framework based on both edge computing and 
cloud computing, by integrating the functions of data 
preprocessing that involves classifying, restructuring, storage, 
and retrieval. Therefore, this work focuses on the structure of 
the stored data as well as the transmitted data. 

The infrastructure of the proposed framework consists of 
five main components as shown in Fig. 1: cloud-computing 
layer, edge computing layer, edge device layer, cloud 
computing queries, and edge device queries. 

 Edge device collects data and then sends the data to the 
edge layer. In this work we assume that the data sent 
by edge devices can be used in both control data (i.e. 
real-time analytics) as well as knowledge extraction 
data (i.e. historical analytics). Control data is the 
streaming data that is processed in real time or time-
limited data, on those data parts, real-time decisions are 
made e.g. monitoring, detecting fraud. While, Knowledge 

Extraction Data is the data stored for mining purposes 
and analyzing for support decision e.g. run reports, 
queries, and inferences from historical data [13]. 

 Edge layer where data is partitioned into control data 
(time-limited data) and knowledge extraction data; 
control data are extracted and processed in this layer. 
On the other hand, knowledge extraction data is 
uploaded to the cloud server layer. Thus edge layer is 
assumed to be stronger in both power and computing 
capability for model construction as well as the 

preprocessing and real-time analytics of the raw data 
sent by the edge device. 

 Cloud computing layer for the data mining purpose and 
machine learning. 

 Edge device queries are the search process in the 
device layer that is responsible for real-time decision 
making, constitute the queries in this layer (i.e. user 
requirements in devices layer such as control data). 
These queries are sent to a feature selection algorithm 
based on machine learning concepts, in order to extract 
key features that will assist in defining the real-time data. 

 Cloud computing queries are the queries in the cloud 
layer that are executed for the mining process to extract 
knowledge from the data in the cloud layer (e.g. user 
requirements, data warehouse and data cube) that 
serves in other applications such as decision support 
systems. Moreover, these queries are also sent to the 
machine learning features extraction tool, in order to 
update feature extraction rules in order to accurately 
select features data to be sent to the cloud. 

The proposed method in this paper fundamentally relies on 
the following assumptions: 

First, the way we access data can help to restructure the 
data in a way that improves its locality characteristics such 
that the transaction time is reduced. In this work, we take note 
of the fact that data which exhibits good locality structure can 
be accessed in a much better way than data with the poor 
locality. By locality, we refer to a particular access pattern that 
can improve the efficiency of local memory (main memory or 
cache) in any system [20]. 

Second, the space-time product of a task or a set of tasks is 
inversely proportional to the throughput of the system [21]. 

Consequently, the main issues in the process of designing 
our framework are the detecting of accurate features for 
partitioning (classification and restructuring) the data without 
losing information, and implementing an efficient 
restructuring data algorithm. To illustrate our approach, we 
apply it on an imaginary system in a kidney disease center. 
We assumed that the edge cloud system is deployed in a 
chronic kidney disease center to monitor the patient’s status 
and we use data from the UCI repository for chronic kidney 
disease (CKD) [22]. 

 

Fig. 1. The System of Preprocessing Data Classification, Restructuring, 

Storage and Retrieval. 
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The paper is organized as follows: Section 2 summarizes 
the edge computing, Section 3 presents the related work 
followed by a description of the proposed framework 
architecture in Section 4. Section 5 lists the details of the 
experiment environment and discusses the obtained results. 
Finally, Section 6 concludes the paper. 

II. EDGE COMPUTING 

With virtually unlimited computing power and storage 
resources, clouds are conceived to be the perfect platform for 
large-scale data analytics, while storage efficiencies also 
provide easy management of different applications. However, 
with cloud-based applications, most data must be sent to the 
data centers in the Cloud [23]. During the expansion of these 
applications, the volume of data increases and a large amount 
of data from these applications (e.g., IoT devices) are moved 
to the Cloud causing network bottlenecks due to bandwidth 
constraints. As time-sensitive and location-aware applications 
are developed (e.g., patient monitoring, real-time applications, 
transportation systems), the remote cloud will fail to fulfill the 
low-latency requirements of these applications; the round trip 
delay is too great [24]. 

Edge computing (e.g., Cloudlet, Mobile Edge Computing, 
and fog computing)[25][26] is proposed to overcome the 
problems faced by cloud-based applications [27] by offloading 
computing tasks to the edge of the cloud network. Using 
installed computing resources and intelligence at the network 
edge layer, a prompt response can be delivered to applications 
and the transmission of redundant data to remote clouds is 
avoided [28]. One more feature of edge computing is its 
distributed mode and support for device mobility inside 
heterogeneous network [29]. 

The Edge computing layer lies between cloud and end 
edge network devices; however, there is no commonly agreed-
upon framework to capture the functionality of this computing 
paradigm. Recently, IBM and some researchers have proposed 
a three-layer paradigm as the high-level architectures, this is 
illustrated in Fig. 2 [30] [31]. 

Edge computing [32] is introduced for extending the Cloud 
Computing paradigm to the edge of the network to support 
many of cloud application (IoT, M2M, and CPS). Many 
characteristics have been found in edge computing, including 
low-latency, location awareness, mobility, and wide-spread 
geographical distribution, etc. These features make Edge 
computing suitable for different cloud applications. 

 

Fig. 2. An Example of an Edge Computing Architecture. 

III. RELATED WORK 

Recently, many applications developed are internet-
enabled such as surveillance, virtual reality, and real-time 
systems (e.g. monitoring )requiring fast processing and quick 
response time [33][34] . The core service and processing of 
these applications are performed on cloud servers; cloud 
computing provides an opportunity to these applications via an 
unlimited capacity in terms of storage and processing [6]. 
These applications produce a significant amount of data. This 
creates a number of challenges, such as high communication 
latency, and network traffic overhead, which is raised by 
transmitting all data to the cloud for processing and analysis. 
To overcome these challenges edge computing has been 
[35][36][37] proposed to extend the cloud computing 
paradigm to the edge of the network, consequently, the data 
processing is the main challenge posed by integrating cloud 
computing with edge computing, it demands researchers to 
discuss and develop high-performance data processing 
architectures. 

Many researchers provide a hybrid approach between edge 
computing and cloud computing such as, Du B, et al. 
(2018)[38] designed Things-edge-cloud computing 
architecture to enable edge servers to cooperatively work with 
the cloud and achieve traffic-data as a service. Xu, X. et al. 
(2017) [14]presented edge Analytics as a service; rule-based 
analytics model equipped to edge node to prop the 
management of real-time analytic on edge. Alturki, B et al. 
(2017)[15] leveraged edge computing to provide low latency 
and network traffic by using confusion technique to 
preprocessing data in edge layer and (Fu, J. et al, 2018) [13] 
proposed data processing schemes which combine the fog 
computing and cloud computing to improve the quality of 
service in terms of latency, security, and flexibility and build 
object-oriented index to enhance data retrieval. They also 
discuss the impact of distributed services between Fog and 
cloud Architecture for IoT; four types of architectures have 
been evaluated with three types of datasets. This evaluation 
displays the importance of distributed services between fog 
nodes and cloud computing. In Bittencourt, L. et al, (2018) 
[39] they discussed the integration of IoT-Fog-Cloud system 
and provided a review for different aspects such a system are 
organized managed, and how applications can benefit from it. 

Others researchers presented the functionality that edge 
computing should provide it. Consequently,  In (Ai Y et al, 
2018) [40], the authors comprehensively present a tutorial on 
three typical edge computing technologies, namely Mobile 
Edge Computing, Cloudlets, and Fog computing. In particular, 
the standardization efforts, principles, architectures, and 
applications of these three technologies are summarized and 
compared. From the viewpoint of radio access network, the 
differences between mobile edge computing and the fog 
computing are highlighted, and the characteristics of the fog 
computing-based radio access network are discussed. Finally, 
open issues and future research directions are identified as 
well. 

Machine learning has an essential role in edge computing 
thus, Yuuichi Teranishi et al (2017)[41] propose a novel 
dynamic data flow platform for Internet of Things (IoT) 
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applications in edge computing environments. To avoid the 
overloads on network and computational resources that are 
caused by IoT applications, the proposed platform replicates 
processes and changes the structure of the data flow 
dynamically on the distributed computational resources 
located at network edges and data centers. M. Mahdavinejad 
et al. (2018) [42] assesses the various machine learning 
methods that deal with the challenges presented by IoT data 
by considering smart cities as the main use case. The key 
contribution of this study is the presentation of the taxonomy 
of machine learning framework explaining how different 
techniques are applied to data in order to extract higher level 
information. The potential and challenges of machine learning 
for IoT data analytics are also addressed. Sneha Sureddy et al. 
(2018) [43] present a proposal of Flexible Edge Computing 
(FEC) architecture as a flexible system to perform edge 
computing using deep learning in IoT. Combination of these 
two models that are deep learning and flexible edge 
computing significantly improve the performance of the 
system and optimize the task assignment between edge layer 
and cloud layer. 

IV. DATA PARTITIONING FRAMEWORK 

The main functionality of an Edge Computing layer, when 
integrated with Cloud network, is to improve performance in 
terms of latency, and network traffic load through processing 
data. Hence, data processing is the main issue in edge 
computing in cloud computing real-time application networks 
such as IoT, CPS, and M2M [44]. 

In an attempt to overcome the data processing issue, we 
construct data processing framework over the Edge-cloud 
network by integrating the function of data partitioning, 
restructuring, storing and retrieving, to enhance the 
performance of Edge-cloud network in terms of lower latency 
level and network traffic. The architecture of the proposed 
framework consists of three main layers as presented in the 
flowchart shown in Fig. 3, These layers are edge device layer, 
edge computing layer, cloud layer. 

 Edge device layer: in this layer, several devices are 
connected and employed for different purposes and 
these devices are responsible for the aggregation and 
integration of the data in order to be delivered to the 
edge node via wireless or wired communication by 
using a suitable routing algorithm. We also propose 
that the data sent by edge devices can be used in both 
control data (i.e. real-time analytics) as well as 
knowledge extraction data (i.e. historical analytics). 

 Edge computing layer: is a communication layer 
between cloud and end device levels, it is connected to 
the cloud server through the Internet. This layer 
receives raw data from the edge device and inputs this 
data into a uniform preprocessing procedure that issues 
both cleaning and integration of data. This 
preprocessed data would form a schema i.e. is stored in 
a database that facilities data access and search. After 
that, this schema is partitioned (classified and 
restructured) based on the features that are selected 
from user requirements to permit fast access and search 
on the database as well as to reduce the amount of data 

transmitted to cloud computing and for saving the 
bandwidth resources and storage in the cloud layer. 

 Cloud layer is employed to perform several processes, 
such as: 

a) Store the transformed data in the cloud data center. 

b) Mining tools execute the search operations on data to 

extract knowledge and new patterns. Data analytic tool are 

used on historical data for support decision. 

c) Analytic tools execute the search operations on data 

to support decisions. 

d) In the training phase, the training classifier and 

feature selection algorithm are executed at the cloud layer. 

e) Queries are updated and added to the queries 

accumulator accordingly. 

f) Control attributes are imposed on the network to 

provide higher quality of results. 

In the following we describe the design issues and 
constraints on the implementation of the framework and 
present the data workflow also the network throughput 
calculation. 

 

Fig. 3. The Proposed Framework Architecture. 
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A. Design Issues 

Before implementing our framework, there are three 
important design issues that should be addressed, the 
requirements analysis to selected features, data classification 
as control data and knowledge extraction, and the extraction of 
the subset of features to restructure data schema. These issues 
are discussed for our proposed framework as follows: 

1) Requirements analysis: the requirements analysis issue, 

as mentioned above, features are selected from user 

requirements, these requirements can be obtained from a given 

stream of queries generated over a time period for existing 

systems or from queries generated by network requirements 

for a new system. It is the responsibility of the system analysts 

to extract and detect the features and relationships among 

them for many large problems. 

It is important to mention that user requirements can be 
past referenced behavior for existing systems; the past 
referenced behavior is obtained from a given stream of queries 
generated over a time period. While the requirement for 
building a new system, are obtained from the users' 
requirements and network analysis, thus a large sequence of 
queries can be generated by these requirements, which 
represents the system referencing behavior. 

However, when the requirements queries’ size grows too 
big, the process of analyzing the requirements queries for 
detecting the features and their frequency is excessively 
prohibitive. Hence, MapReduce [45] technique was used to 
overcome this issue. 

a) Modify MapReduce algorithm: The traditional 

MapReduce a programming model [46] was inspired from the 

Functional Programming model introduced by Google, which 

uses the Divide and Conquer technique to process large 

amounts of data. It works in three functions [47]: the map 

function, the Shuffle Function and the reduce function. The 

Mapper stage splits the queries into features by whitespaces, 

and the output of the Mapper is the pair of features with their 

frequencies known as (key, value) pair, where key is the 

feature and value is a count of features. Then, in the 

intermediate phase, Shuffle sorts the (key, value) pair 

according to the key and sends it to the Reducer. Pairs that 

have the same key go to the same Reducer. 

The Reducer stage collects all (key, value) pairs with the 
same key and sums the values for each key. 

In this paper, we modify the MapReduce algorithm to 
support our work to find features from user requirements by 
resetting all values for each key to one as shown in 
algorithm 1, we reset list (count) number for each feature 
(attribute) to one, to avoid the duplication of features in one 
query. The output of this stage is a list that combines the 
feature    with its total frequency where   is the location of 
the attribute. 

2) Data classification: The second issue is the 

classification of accumulated data into control data and 

knowledge extraction data based on feature extraction from 

user requirements. Thus, we used extreme learning classifier 

with feature selection to classify our data. 

Algorithm 1: M-MapReduce algorithm. 

1.map(file, queries) { 

  for each features in queries. Split(){ 

 output (word, 1); 

 } 

}  

2.  Reduce (word, list (count)) { 

 Reset all # in list (count) to 1 

 Output (word, sum (count)); 

} 

3) Features subset extraction: The third issue is extracting 

the subset of features that have an inherent locality structure, 

in other words, grouping the features that form temporal 

locality in the same subset. The features that are requested in 

the same query, construct temporal locality. The locality 

structure is discussed in detail in the next subsection. In this 

dissertation, we proposed using the k-mean algorithm [48][49] 

[50] which is modified according to our approach, combined 

with the features selection Wrapper methods which is 

performed in a new way to cope with our approach as shown 

in Fig. 4 [51] [52]. This combination provides a machine 

learning subset system that is used to find a subset of features. 

a) Machine Learning Subset System: In this dissertation 

a machine learning subset system was used in establishing a 

subset of features; it groups features into subsets according to 

their frequency. 

The traditional k-means algorithm consists of two stages. 
The first stage adjusts k based on the number of groups

 

[49][50]. The second stage detects initial centroid randomly 
from the dataset for each group. In this dissertation, we used 
k-means with modifying its stages (M_k-means), where the 
initial centroid is determined based on a features frequency 
(i.e., taking the higher and lower frequency) and the number 
of groups K determines based on used a wrapper feature 
selection method. However, we illustrated the steps of this 
system as follows: 

The M Κ-means algorithm as shown in Algorithm 2 in 
uses iterative refinement to produce a final result. The 
algorithm inputs are the number of groups Κ and the data set. 
The data set is a collection of features (data attributes) and 
frequency for each feature. The algorithm starts with two 
groups; the first group takes the high value of a feature 
frequency as a centroid while the second group takes the lower 
value of a feature frequency as a centroid. The initial value of 
group centroid(fai) was defined to avoid the oscillation with 
iterative refinement to produce a final result. 

Modify k-mean algorithm: The K means algorithm is used 
to establish a subset of features, it groups features into subsets 
according to their frequency [49][50]. Traditional K means 
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algorithm consists of two stages. The first stage adjusts k 
based on the number of groups. The second stage detects 
initial centroid randomly from the dataset for each group. In 
this paper, we used k-means with modifying the second stage 
(M_k-means), where the initial centroid is determined based 
on feature’s frequency (i.e. taking the higher and lower 
frequency) as shown in algorithm 2. 

Algorithm 3.2: M_ K-means Algorithm 

Input: 

F = {f1a1, fa2,......,fnai} // fai is a feature frequency ,i 

is a feature # and n is the number of feature. 

k // Number of desired subset 

Output: 

A set of k subset. 

Steps: 

Phase 1: Determine the initial centroids of the subset 

(group) by taking high and low frequency (fnai). 

 Phase 2: Calculate new mean for each cluster; 

Until convergence criteria is met. 

The algorithm iterates between three steps and iterates 
among these steps until a stopping criterion is met. These 
steps illustrated in detail as follows: 

Data Assignment Step 1 

In this step, each data point is assigned to its nearest 
centroid, based on its frequency fi. More formally, if    is the 
centroid in cluster  , then each data point x is assigned to a 
cluster based on the following: 

                         (1) 

Where     (·) is the difference between the feature’s 
frequency and cluster’s centroid. Let the number of features 
assignments for each     cluster centroid is Si. 

Centroids Update Step 2: 

In this step, the centroids are recomputed. This is done by 
taking the mean of all frequency of features to that centroid’s 
cluster. 

    
 

|  | 
∑                     (2) 

Choosing K Step 3: 

In the previous two steps, the clusters and data set labels 
were found for a particular pre-chosen k. In this step, we 
discuss how wrapper feature selection is used in a new method 
to choose the number of clusters K. 

Some of the techniques that are commonly used to find k 
are: cross-validation, information criteria, the information-
theoretic jump method, the silhouette method, and the G-
means algorithm. In this dissertation we proposed a new 
method of wrapper feature selection to find the value of k. 

The wrapper is a feature selection method, that evaluates 
feature subsets by the quality of the performance on a 
modeling algorithm, which is taken as a black box evaluation 
[51] [52]. In our approach, the wrapper will evaluate subsets 

based on the performance of executing queries on the new 
tables that are built on the feature subset. 

 

Fig. 4. Our Approach Wrapper Feature Selection. 

The evaluation is repeated for each subset and the subset 
generation is dependent on the k-means algorithm as shown in 
Fig. 4. 

B. Data Scheme Partitioning Workflow 

The Preprocessing data scheme was partitioned by some 
processes as shown in the flowchart in Fig. 3 which is 
assigned by a dotted line. These processes and their design 
issues can be described in the following two parts. First, 
requirement analysis (feature selection) and Second, 
partitioning data schema. 

1) Requirement analysis (feature selection): This part is 

responsible for detecting the locality structure of control data 

and knowledge extraction data; it relies heavily on user 

requirements or query stream analysis. 

The objective of this part is to group attributes, which are 
likely to be referenced together , in a partition or table. The 
more frequently the attributes are referenced together, the 
more likely for them to belong to one locality structure. for 
example, in a monitaring system in a factory, the monitoring 
devices share the same identifier, also in medical systems the 
diseases may be chronic or not chronic. 

Query stream analysis is used to find the frequency of a 
given query execution and the frequency of attributes 
requested within the same query. Furthermore, query analysis 
is used to detect the adjacency of attributes, where adjacency 
is defined as the attributes referenced within the same query. 
Attribute Ai is said to be adjacent to Aj: AJ (Ai,Aj) if Ai and 
Aj are requested within the same query Qk. By default, 
adjacent attributes form a temporal locality, since they are 
referenced within the same query and their access to the data 
storage falls within the same time period. Note that adjacent 
attributes Ai and Aj may or may not be stored within the same 
virtual page or in close space proximity. 

For example, assume that query Qk is used to select 
attribute Ai and attribute Aj from table T1. Thus, the attributes 
Ai and Aj are adjacent within the query Q. Ai and Aj certainly 
form a temporal locality, in the sense that both are referenced 
within the same period. The system will access both Ai and Aj 
and return their values as requested. However, Ai and Aj may 
be very well located in different memory regions, or more 
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precisely could be located in two different pages in the virtual 
space. If Qk is referenced n times, then it is only reasonable to 
have Ai and Aj stored in close proximity, e.g., in the same page 
or the same page block, such that when the page or page block 
is transferred from virtual storage to main memory or cache, 
then the requested items Ai and Aj will have been located in 
main memory already. 

For illustration purposes, assume that the data table has 10
9
 

which is ≈ (2
30

) records, and attributes Ai and Aj are both of 
type real with 8 bytes each. This means that each column 
representing attributes Ai and Aj is 2

33
 bytes. Assume further 

that a page size (using virtual memory paging representation), 
is 1024 Kbytes (2

20
 bytes). Thus the number of pages 

representing each attribute is given by 2
33

/2
20

 = 2
13

 pages (≈ 8 
GBytes). If attributes Ai and Aj are requested as adjacent 
attributes frequently, i.e., they appear in the same query or in 
different queries N times, where N is relatively large, then it is 
worthwhile to convert the temporal locality of Ai and Aj to 
spatial locality, in the sense that Ai and Aj should be adjacent 
in space allocation scheme. Fig. 5 shows a temporal and 
spatial locality example. 

Consequently, data are restructured based on adjacency of 
attributes where the unrelated attributes are removed. 
Furthermore, these steps’ outline is illustrated in Algorithm 3. 

Moreover, the attributes that have the highest frequency 
value (Ati) will be collected in the same new table. 

2) Partitioning data scheme: This part is responsible for 

partitioning the dataset based on features that are selected in 

the previous part. Partitioning aims to classify the data in 

order to remove unrelated data to reduce the size of data. As 

well as grouping a set of attributes in a subset, where the 

subset will be used to create a new table of data with the 

attributes given in the subset. In essence, the process of 

partitioning leads to the auto reconstructing of the original 

schema, which was originally used to represent the data. This 

part includes the following steps. 

a) Classifying the data as controlling data and 

knowledge extraction data using feature selection in part 1. 

Machine learning classification algorithm (classifier) with 

feature selection is used to classify the data instance, this 

classifier learning in the cloud layer is based on features that 

were selected from user requirements. Then it is used to 

classify data in the edge layer. 

 

Fig. 5. Temporal and Spatial Locality Example. 

ALGORITHM 3: GENERATE ATTRIBUTE ADJACENCY 

1. Generate and collect a set of queries 

{Q1}{q1}&{q2}.  // Requirements analysis 

(Requirements engineering). 

2. Analyze queries  and extract the following 

parameters: 

a. For each query (q), find the frequency of its 

execution f(q). 

b. Build adjacency matrix for all attributes 

contained within the set of queries {Q}. 

i. Two attributes Ai and Aj are said to be 

adjacent if both attributes are referenced 

within the same query. 

ii. The number of attributes Ai that is shared 

between the query Qi and Qi, is given by the 

similarity S (q). 

iii. The number of appearance Ai within 

different queries is given by fai. 

iv. The total frequency of an attribute Ati = fqi * 

fai 

3. Build adjacency list for features selected from q1 

contained within the set of queries {Q1}. 

4. Build adjacency list for features select from q2 

contained within the set of queries {Q2}.  

b) For the control data, create a new table for each 

subset in the set Si, these new tables are stored in the edge 

layer for real-time analysis. For this step, we develop 

algorithm 3. 

c) Creating a new table for the knowledge extraction 

data is suitable for the data mining technique using feature 

selection from q2 and uploading to the cloud layer for storing 

and analysis. 

These steps are performed on our framework by applying 
algorithms 4. 

C. Network Throughput 

Without loss of generality and accuracy, we will ignore the 
complexity of algorithms 3.3 and 3.4, since they will be 
performed one time whenever the structuring of the DB 
schema is required. Henceforth, we are not concerned with the 
complexity of the algorithms; rather our concern is with the 
complexity of the data access time as well as data transmission 
time before and after partitioning. 
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Algorithm 4 Partitioning Data Schema 

 

1) Create list A of attribute    and frequency   (   , ). 

2) Sort Ai in list A according to largest frequency . 

3) Using the wrapper feature selection method with the 

execution time of query as an evaluation strategy. 

a) Running k-means algorithm to Grouping attribute in 

a subset Si = {s1, s2…sn}. 

b) Evaluate Si using the evaluation function 

c) While (stopping function not met) 

d) Fined new Si 

e) Evaluate function 

f) End while 

g) Output: the best Si 

4) If Have new query go to step 1 

5) Terminate Algorithm. 

Assume that the DB tables are stored in a column wise 
schema, where the data belonging to one attribute are stored 
sequentially. Then to retrieve one record in a table, it is 
required to scan all attributes in the record. Given that the 
number of attributes in a table is N; this leads us to consider 
the space occupied by the table as a major cost of the system. 
When multiplied by the overall time required executing a 
query, or the time required transmitting this table the 
complexity naturally lends itself to the space time product as 
the main tuning parameter. 

It has been shown that the space-time product of a task or a 
set of tasks is inversely proportional to the throughput of the 
system (Denning & Buzen, 1978). In other words, if we want 
to maximize the throughput (X), which is defined as the 
number of tasks performed within a time period(T), then we 
have to minimize the space-time cost (Y), i.e., the total space 
(S) consumed by the tasks within the same time period (T). 
This implies the following relationship. 

X ≈ 1/Y, where Y = S*T             (3) 

1) Data retrieval complexity: In term of data access time 

and reduce latency, for a given query (Qi), the space consumed 

during the query execution equals the space of the tables 

referenced by Qi. For example, assume that Qi has the 

following structure: 

Qi  ({Ai}) from Tables {Tk} 

Where a set of attributes Ai , i =1, .. n are referenced in 
tables Tk, k = 1, … m 

The space occupied by Qi is thus given by Equation 2 

S(Qi) = ΣS(Tk) , k = 1,… m            (4) 

And the time required to execute the queries is given by: 

T = t*An              (5) 

Where An is the number of attributes referenced in Qi and t 
is the time required to process each attribute. 

Thus the space time cost of a query Qi is given by: 

Y = Ti*S              (6) 

If the frequency of Qi is f then the total space time cost for 
Qi is given by: 

Y = f* Ti*Si              (7) 

2) Data transmission complexity: While, in term of data 

transmission time, for transmitted a table Tk, the transmission 

time is related to the space of the table. For example assume 

that the table T has Ai attributes where Ai , i =1, n are 

referenced in tables and Rj records, j= 1…..m 

The space occupied by T is given by equation 6 

S(T)= Σ Rj Ai              (8) 

And time required to transmit the table Tk is Tt 

Tt= t* An              (9) 

where An is the number of attributes referenced in Tk and t 
is the time required to transmit each attribute. 

Thus, the space time cost of a table Tk is given by: 

Y = Tt*S(T)            (10) 

The objective of the proposed method is to maximize the 
throughput of the system by minimizing the space-time 
product for the data access (i.e., reduce latency), and data 
transmission (i.e., saving bandwidth). Therefore, the 
throughput is increased with decreasing space (S). 

V. ANALYSIS AND RESULTS 

To verify the performance of the proposed framework of 
data partitioning, we assumed there is an edge cloud network 
deployed in a chronic kidney disease center to monitor the 
patient’s status. We experimented our proposed framework on 
this network and compared it to the same network, without our 
framework. We compared between these networks in term of 
data transmission amount, storage space and queries execution 
time (data retrieval efficiency). The proposed framework is 
experimented with different queries and different sizes of data. 
The utilized dataset, experiment environment, queries 
generation, and the results with their discussion are given as 
follows. 

This verification takes on two aspects: 

 Experimental Verification which begins by defining the 
experiment processes, dataset used, environment, and 
query generation, followed by a discussion of the 
results in Section A. 

 Theoretical Verification which covers the theoretical 
verification for the proposed framework on this 
network and is discussed in Section B. 
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A. Experimental Verification 

This section describes, in detail, the experiment performed 
to verify our framework. 

1) Processes 

a) Requirements analysis with M-MapReduce. 

b) Data classification using ELM classifier. 

c) Data restructuring using our subsystem machine 

learning. 

d) Generation of queries executed against the new data 

schema. 

2) Dataset: In this research, we use data from the UCI 

repository. The data collected from the Apollo Hospital, India 

by b. Jerlin Rubini. The number of instances in the dataset are 

400 instances with 25 attributes (including attribute classes), 

where 250 instances include those who have chronic kidney 

disease (ckd) and the remaining 150 who did not have chronic 

kidney disease (notckd) as in Table I. 

3) Environment: In this experiment, our edge server 

consisted of a laptop computer with a 2.6 GHz Intel Core 

processor, Window 7 operating system and 4 GB of RAM. As 

discussed previously, the edge server handles running the 

network and analyses the pre-processed data. Our cloud server 

was a desktop computer with a 3.6 GHz Intel Core processor, 

Windows 7 operating system and 8 GB of RAM. 

The edge server connects to the cloud server through the 
Internet and pre-processes the raw data. We used MATLAB

®
 

R2018b extreme learning machine (ELM) libraries for the 
classification methods and a k-means function for the 
clustering method. 

The MapReduce algorithm is used to identify suitable 
features. We first taught the classifier in the cloud server, and 
then applied steps one and two in the previous section on our 
data to define the features that are used in restructuring the 
data. We also created the database structures necessary for the 
new tables that are created. 

4) Edge layer query generation and cloud layer feature 

selection: Based on the users’ requirements, we generated 

random queries to apply our approach. Specifically, from the 

users’ requirements in the edge layer, 120 queries are 

generated randomly. In Table II, the 10 edge layer generation 

queries that had the highest frequency are listed. From the 

expert and user requirements in the cloud layer, we can extract 

and select relevant feature subsets. These subsets, shown in 

Table III, are used to restructure the data passed to the cloud 

layer. 

Based on the requirements noted above, as well as from 
network requirements, we selected the features that classified 
the data into two groups: CKD, and not CKD. The ELM, 
using a wrapper method for feature selection, was used to 
classify this data [53][54]. 

We applied Algorithm 3 on the generated queries, to select 
the features to use in restructuring the data. Table IV (an 
adjacency matrix for all the attributes within the set of queries 

and a list for each attribute with its frequency), Table V and 
Table VI illustrate the features for the controlling data and 
knowledge extraction data, respectively. After the feature 
selection, we performed the following two steps. 

TABLE. I. ATTRIBUTES OF CKD DATASET 

No. Code Parameter Value 

1  Age  Age  In the year 

2  
Blood 
pressure  

Blood pressure  In mm/Hg  

3  
Specific 

gravity  
Specific gravity  

(1.005,1.010,1.015,1.020,1.

025)  

4  Albumin  Albumin  (0,1,2,3,4,5)  

5  Sugar  Sugar  (0,1,2,3,4,5)  

6  
Red blood 

cells  
Red blood cells  Normal / Abnormal  

7  Pus cell  Pus cell  Normal / Abnormal  

8  
Pus cell 
clumps  

Pus cell clumps  Present / NotPresent  

9  ba  Bacteria  Present / NotPresent  

10  bgr  Blood glucose random  In mgs/dl  

11  bu  Blood urea  In mgs/dl  

12  sc  Serum creatinine  In mgs/dl  

13  sod  Sodium  In mEq/L  

14  pot  Potassium  In mE1/L  

15  hemo  Hemoglobin  In gms  

16  pcv  Packed cell volume  In %  

17  wc  White blood cell count  In cells/cumm  

18  rc  Red blood cell count  In millions/cmm  

19  htn  Hypertension  Yes / No  

20  dm  Diabetes mellitus  Yes / No  

21  cad  Coronary artery disease  Yes / No  

22  appet  Appetite  Good / Poor  

23  pe  Pedal edema  Yes / No  

24  ane  Anemia  Yes / No  

25 Class Class Ckd, notckd 

TABLE. II. EDGE LAYER GENERATION QUERIES 

Q1 bp, sg, bu, sod, pot, hemo, ckd Q7 bp, bu, sod, hemo, ckd 

Q2 bp, sg, bu, sc, sod, hemo, ckd  Q8 bp, sg, pot, hemo, ckd 

Q3 bp, sg, bu, sc, sod, ckd Q9 bp, sg, bu, sc, pot, ckd 

Q4 bp, sg, bu, sod, hemo, ckd Q10 sg, bu,sod 

Q5 bp, bu, sc, sod, pot, hemo, ckd 
Q11 pb, sg, bu, sc, sod, pot, hemo, 

ckd 

Q6 bp, sc, sod, pot, ckd ---- 

TABLE. III. CLOUD LAYER GENERATION QUERIES 

Q1Hypertension, CKD 

Q2Diabetes mellitus, Hypertension, CKD 

Q3Diabetes mellitus, CKD 
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TABLE. IV.  FEATURES OF CONTROLLING DATA (ADJACENCY MATRIX) 

     Attr 

Q 
A

g
e 

B
p
 

sg
 

al
 

su
 

rb
c 

P
c 

p
cc

 

b
a 

b
g

r 

B
u
 

sc
 

so
d
 

p
o
t 

H
em

o
 

p
cv

 

W
c 

R
c 

h
tn

 

D
m

 

ca
d
 

ap
p

et
 

p
e 

an
e 

F

q 

Q1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 4 

Q2 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 4 

Q3 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3 

Q4 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 4 

Q5 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 3 

Q6 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 3 

Q7 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 4 

Q8 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 3 

Q9 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 4 

Q10 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3 

Q11 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
4
8 

    
for 120 

q 

5 93 97 5 16 17 5 5 16 5 
10

3 
94 96 98 96 18 20 8 17 15 16 15 19 19  

TABLE. V. FEATURE OF KNOWLEDGE EXTRACTION DATA 

Hypertension  

Diabetes mellitus  

Class 

TABLE. VI. KNOWLEDGE EXTRACTION DATA SCHEMA 

Hypertension Diabetes mellitus  

TABLE. VII. CONTROLLING DATA SCHEMA 

Blo

od 

Speci
fic- 

Gravi

ty 

Blo
od- 

Ure

a 

Serum 

Creati
nine 

Sodi

um 

Potass

ium 

Hemogl

obin 

Firstly, we restructured the knowledge extraction data in 
one table by using the features in Table V and buffered it for 
transmission to the cloud. This table schema is shown in 
Table VI. 

Secondly, we used Algorithm 4 on Table IV to restructure 
new tables for the controlling data. The k-means algorithm 
was applied twice, once with k = 2 and again with k = 3. A 
superior subset was achieved with k = 3. The algorithm 
provided three subsets, and two of these subsets contained 
features with low frequency. Consequently, we built only one 
table using the subset that contained features with high 
frequency, and that represented the controlling data which is 
then stored in the edge layer. The schema of this new table is 
shown in Table VII. 

5) Results: As previously mentioned, our framework is 

tested for data transmission time, storage space and queries 

execution time (i.e., data retrieval efficiency). 

a) Data Transmission Time and Storage Space: As 

mentioned above, from user requirements and network 

requirements, the pre-processing data were separated into two 

classes: CKD, and not CKD. Only the CKD class is relevant. 

Thus, the amount of the processing data was reduced. This 

conclusion is supported by Fig. 6 which shows both the 

original data and relevant classification data plots. The 

classification data clearly required a lower amount of storage 

and analysis. 

Fig. 7(a) compares the amount of data transmitted over the 
network from the edge layer to the cloud layer for storage. The 
two bars represent the two datasets: the red bar for original 
dataset before any partitioning, and the blue bar for the dataset 
after partitioning (classification and restructuring, as shown in 
Table VI). Clearly the volume of data transmitted over the 
network for the original dataset is extremely high relative to 
the volume transmitted over the network for the dataset after 
partitioning. Fig. 7(b) portrays the corresponding transmission 
times of the two datasets. This result confirms that a network 
with our framework can reduce network resource 
requirements (i.e., bandwidth and storage space) and, as a 
direct consequence, reduce network traffic because of the 
increased rate of data transmission. 

In Fig. 7(a) the plotted bar of stored value indicates the 
amount of stored data is 92 KB for the network for the original 
dataset and only 6.95 KB for our partitioned dataset. This 
represents a 92.4% reduction in storage space required. 
Similarly, in Fig. 7(b), the plotted bar of stored value indicates 
the amount of transmission time is 0.007376 S for the original 
dataset and only 0.000556 S our partitioned dataset. This 
represents a 92.5% reduction in time required for 
transmission. 

b) Query Execution Time (Data Retrieval Efficiency): In 

this section, we compare the execution time of the 11 queries 

in Table II with different size datasets, and examine the 

outcome for two additional queries in Table VIII on both the 

original dataset and our new schema dataset(partitioning 

dataset) (see Table VII). 
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Fig. 6. Data Classification Amount. 

 

Fig. 7. (a) Data Storage Space and (b) Transmission Time. 

Table VIII shows the execution time of the 11 queries in 
both our schema dataset and the original dataset. The results 
show significant differences in the execution times between 
the two datasets. Obviously, our schema dataset requires a 
shorter execution time than the original dataset because it has 
a smaller size as well as greater spatial locality of reference. In 
other words, the network with our framework has low latency 
and high performance. These differences can be shown by 
analyzing the bar chart in Fig. 8. Furthermore the average 
execution time for these 11 queries was decreased by 
79.841%. 

An interesting observation is the execution time of the Q5 
which is low in both datasets because the temporal locality of 
the query schema is virtually identical to the spatial locality of 
both types of data schema. 

Table IX shows the execution times produced using a 
relatively large dataset. By comparing Table IX with 
Table VIII, we observe that the proposed framework 
consistently has the shorter execution time despite the change 
in data size. Fig. 9 illustrates graphically that the difference 
between execution times persists in spite of the change in the 
dataset size. 

We conclude that changes in dataset size do not adversely 
affect the results, meaning our proposed framework can 
achieve its objectives in different networks with different 
dataset sizes. 

Fig. 10 compares the execution times of the two additional 
queries in Table X against each of the two sizes of dataset. 
Again, the proposed framework has a consistently shorter 
execution time compared to the original system. 

TABLE. VIII. QUERY EXECUTION TIME FOR NORMAL SIZE DATASET 

Query 
Execution Time with Our 

Schema 

Execution Time with 

Original Data 

Q1 0.0025 0.0027 

Q2 0.0020 0.0025 

Q3 0.0015 0.0025 

Q4 0.0023 0.0025 

Q5 0.0005 0.0010 

Q6 0.0022 0.0025 

Q7 0.0020 0.0025 

Q8 0.0015 0.0025 

Q9 0.0020 0.0025 

Q10 0.0012 0.0025 

Q11 0.0025 0.0026 

 

Fig. 8. Query Execution Times. 

TABLE. IX. QUERY EXECUTION TIMES FOR LARGE SIZE DATASET 

Query 
Execution Time with Our 

Schema 

Execution Time with Original 

Data 

Q1 0.0040003 0.0080003 

Q2 0.0050003 0.0070003 

Q3 0.0040003 0.0060005 

Q4 0.0030003 0.0040003 

Q5 0.0022000 0.0030003 

Q6 0.0025000 0.0030000 

Q7 0.0030000 0.0040000 

Q8 0.0030003 0.0035000 

Q9 0.0040001 0.0045005 

Q10 0.0025005 0.0030000 

Q11 0.0040000 0.0060005 
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Fig. 9. Query Execution Times (Large Dataset). 

 

Fig. 10. Queries Execution Time. 

TABLE. X. TWO SUGGESTED QUERIES 

Q1 
Blood, Specific_Gravity, Blood_Urea, Sodium, Potassium, 

Hemoglobin where Specific_Gravity like "1" 

Q2 Blood group by Hemoglobin 

B. Theoretical Analysis and Verification 

This section describes the use of the throughput calculation 
functions in Section IV to theoretically evaluate our 
framework in the proposed system. This calculation involves 
two elements, provided by Equations 5 and 7: the first element 
is the measurement of data access time, performed by 
calculating the space-time for demand query. The second 
element is to calculate the data transmission volume, 
performed by computing the space-time product for data 
moving through the network. 

1) Dataset access time: As mention before, the original 

dataset of our system has 400 instances and 25 attributes. 

Considering our approach, this dataset after classification and 

restructuring to identify a controlling dataset, a new dataset 

was built. This new dataset has 250 instances and 7 attributes 

as shown in Table VII. 

Table XI displays the results of performing equation 5 
(i.e., Y = f * Ti * Si) on the queries in Table II, to calculate the 
space-time product of the proposed network with and without 
our framework. 

As shown in Table XI, where the first column identifies 
the query, the second column shows the space-time product 
for the original dataset, and the third column displays the 
space-time product for the new dataset. Our proposed 
framework consistently showed a more favorable result. This 
conclusion is further reinforced when examining the bar chart 
shown in Fig. 8 showing execution times for both the original 
dataset and new dataset. Indeed, a lower latency is invariably 
achieved by our approach. The average execution time was 
reduced by 98%. 

The storage of data is critical to the process of retrieving 
data in real-time. By extension, it necessarily has a material 
impact on network latency. The result in Table IX shows that 
best throughput is achieved with our approach when the data 
storage is considered and takes into account the fact that data 
which exhibits good locality structure can be accessed more 
easily than data with poor locality. 

2) Data transmission time: The original dataset of our 

system has 400 instances and 25 attributes. Using our 

approach, this dataset, after classification and restructuring to 

establish a knowledge extraction dataset, a new dataset was 

built containing 250 instances and only two attributes. 

Thus, the data transmission space-time before partitioning 
data may be expressed by the following equation: 

Y = T * S(T) 

Y = 400 * 25 * t = 10000 t 

The data transmission space-time after partitioning data is 
expressed as follows: 

Y = 250 * 2 * t = 500 t 

According to the results of the space-time product of 
transmission data, our framework proves a better approach for 
analyzing the dataset. This is confirmed by observing the chart 
in Fig. 6 which shows the amount of data transmitted to the 
cloud layer and stored there as well the time required to 
transmit the data. The space-time product of transmission data 
rate was reduced by 95% 

TABLE. XI. CALCULATION OF SPACE-TIME PRODUCT 

Query 

Number 

Space-Time Product of 

Original Dataset 

Space-Time Product of New 

Dataset 

Q1 4 * 6 * 400 * 25 =240 000 4 * 6 * 250 * 7 = 42 000 

Q2 4 * 6 * 400 * 25 =240 000 4 * 6 * 250 * 7 = 42 000 

Q3 3 * 5 * 400 * 25 =150 000 3 * 5 * 250 * 7 = 26 250 

Q4 4 * 5 * 400 * 25 =200 000 4 * 5 * 250 * 7 = 35 000 

Q5 3 * 6 * 400 * 25 =180 000 3 * 6 * 250 * 7 = 31 500 

Q6 3 * 4 * 400 * 25 =120 000 3 * 4 * 250 * 7 = 21 000 

Q7 7 * 4 * 400 * 25 =280 000 7 * 4 * 250 * 7 = 49 000 

Q8 3 * 4 * 400 * 25 =120 000 3 * 4 * 250 * 7 = 21 000 

Q9 4 * 5 * 400 * 25 =200 000 4 * 5 * 250 * 7 = 35 000 

Q10 3 * 3 * 400 * 25 =90 000 3 * 3 * 250 * 7 = 15 750 

Q11 
48 * 7 * 400 * 25 =3 360 
000 

48 * 7 * 250 * 7 = 588 000 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 12, 2019 

319 | P a g e  

www.ijacsa.thesai.org 

Network throughput quantifies the amount of data, during 
a defined time interval that a network can send or receive. 
Throughput must take into account the entire network 
overhead as well as contention on the transmission links. 
Multiple data flows on a link will each use some percentage of 
the overall bandwidth, thereby reducing the total throughput 
of each. It follows that increasing data flow causes an increase 
in both network traffic and contention on the links. 

Bandwidth is the number of bits per second that a link can 
send or receive, including all flows. Data rate (or data transfer 
rate) is the volume of data transferred through a connection 
within one second. The data rate cannot exceed the bandwidth 
of the connection; data rate is closer to bandwidth. Thus, the 
reducing the required data rate reduced traffic overhead on the 
network; in other words, a reduced data rate leads to a reduce 
bandwidth requirement. 

VI. CONCLUSION 

In this paper, efficient data storage and retrieval 
frameworks are proposed based on both the edge computing 
and cloud computing techniques. The main challenges in 
terms of data partitioning and requirements analysis are 
summarized, and appropriate solutions are also provided. 
Specifically, the data partitioning (classification and 
restructuring ) framework is provided to support low latency 
and save network bandwidth based on MapReduce algorithms, 
wrapper feature selection method and a machine learning 
proposed subsystem, in addition, a new algorithm for 
restructuring the data was proposed. 

The components of the proposed framework flowchart are 
discussed; data partitioning (knowledge extraction and control 
data) and requirements generation are presented from a wider 
view. The functionalities of each point of the proposed 
framework are displayed in detail. 

The framework is verified on a case study and approved its 
efficiency that is evaluated using Data time, storage space, and 
data retrieval time. 

For future work, other data restructuring algorithms can be 
used and other types of requirements analysis models can be 
explored. 
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