
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

307 | P a g e

www.ijacsa.thesai.org

Cloud- Edge Network Data Processing based on User

Requirements using Modify MapReduce Algorithm

and Machine Learning Techniques

Methaq Kadhum
1
, Saher Manaseer

2
, Abdel Latif Abu Dalhoum

3

King Abdullah II School for Information Technology

The University of Jordan, Amman, Jordan

Abstract—Edge computing extends cloud computing to

enhancing network performance in terms of latency and network

traffic of many applications such as: The Internet of Things

(IoT), Cyber-Physical Systems (CPS), Machine to Machine

(M2M) technologies, Industrial Internet, and Smart Cities. This

extension aims at reducing data communication and transmission

through the network. However, data processing is the main

challenge facing edge computing. In this paper, we proposed a

data processing framework based on both edge computing and

cloud computing, that is performed by partitioning (classification

and restructuring) of data schema on the edge computing level

based on feature selection. These features are detected using

MapReduce algorithm and a proposed machine learning

subsystem built on user requirements. Our approach mainly

relies on the assumption that the data sent by edge devices can be

used in two forms, as control data (i.e. real-time analytics) and as

knowledge extraction data (i.e. historical analytics).We evaluated

the proposed framework based on the amount of transmitted,

stored data and data retrieval time, the results show that both the

amount of sending data was optimized and data retrieval time

was highly decreased. Our evaluation was applied experimentally

and theoretically on a hypothetical system in a kidney disease

center.

Keywords—Edge computing; cloud computing; data

processing; data partitioning; MapReduce; machine learning;

feature selection; user requirement

I. INTRODUCTION

Recently many applications seek to improve society by
sharing distributed devices and processing their data, such as
the Internet of Things (IoT) [1], Cyber-Physical Systems
(CPS) [2], Machine to Machine (M2M) technologies [3],
Industrial Internet [4], and Smart Cities [5].

However, there are great challenges to efficiently process,
store, and manage the data collected by these applications.
Since cloud computing (CC) has virtually an unlimited
capacity in terms of storage and processing power; hence,
cloud computing provides an opportunity to properly approach
these tasks by integrating these networks and cloud computing
[6].

To cope with these problems, Edge computing architecture
has been proposed to support the CC applications and their
requirements [7]. Edge computing can be considered as a layer
or gateway between the applications’ device’s layer (edge
devices) and the cloud layer (server in the cloud). This layer

allows for speedy and direct processing of data produced by
edge devices, rather than sending them to the central cloud
infrastructure, enabling the CC applications to impose smaller
latencies and to alleviate the traffic overhead on the network
to the cloud [8]. Moreover, this layer has the power to process
data and make intelligent decisions according to the data
produced by the edge devices even before the data is
processed by the cloud [7]. Consequently, the main
functionality of an Edge Computing layer, when integrated
with Cloud networks, is improving performance in terms of
latency, and network traffic load through processing the data;
hence, data processing is the main issue in edge computing
[8]. Data processing in the edge layer is a relatively new topic,
few studies have focused on this topic, although, there are still
many open issues [9]. However, many researchers have
addressed the issue of improving network performance in
different ways to improve the quality of service and network
performance in edge cloud networks [10]. Consequently, we
observe that some of these researchers employed edge as a
service [11] while others employed it to reduce the overload
data with deep learning [12], and others use the edge as a
fundamental tool [13]. Du B, et al. (2018) [11] designed
Things-edge-cloud computing architecture to enable edge
servers to cooperatively work with the cloud and achieve
traffic-data as a service. Xu, X. et al. (2017)[14] presented
edge Analytics as a service; rule-based analytics model
equipped to edge node to prop the management of real-time
analytic on edge. Alturki, B et al. (2017) [15] leveraged edge
computing to provide low latency and network traffic by using
confusion technique to preprocessing data in edge layer and
Fu, J. et al, (2018) [13]proposed data processing schemes that
combine fog computing and cloud computing to improve the
quality of service in terms of latency, security, and flexibility
and build object-oriented index to enhance data retrieval.

The main issues in CC that are faced by edge computing
are storage, bandwidth, and real-time data analytics; this work
presents a new method for improving edge cloud network’s
performance through data processing in the edge layer before
sending it to the cloud. This is performed by processing the
data schema on the edge computing level. Basically, the
proposed technique of data processing is Data Partitioning,
this procedure involves classifying the data and restructuring
the data schema based on feature selection techniques. The
objective of Data Partitioning is to partition the table into
smaller tables in a manner, to allow the queries which access

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

308 | P a g e

www.ijacsa.thesai.org

only a fraction of the data to run faster because there are fewer
data to scan, as well as to allow knowledge extraction data to
be transmitted to the cloud, with low transmission time and
low cost of bandwidth, because there are fewer data to load.
Without loss of generality, we assume that smaller tablets are
more likely to be located as close as possible to the CPU in the
memory hierarchy, i.e, in the cache or the main memory.

Feature selection is a data preprocessing strategy based on
dimension reduction, it directly selects a subset of relevant
features, by removing irrelevant, redundant and noisy features
from data; hence, preventing sending unnecessary data to the
cloud to reduce the utilization of resources in the cloud (i.e.
storage, bandwidth) as well as providing lower latency with
data retrieval by only choosing relevant features [16], Feature
selection techniques reduce storage and computational costs
while avoiding significant loss of information [17]. Feature
selection algorithms can be divided into wrapper, filter, and
embedded methods. [18]. Wrapper Methods generate models
with subsets of features and gauge their model performances.
In this work, we presented a solution based on the forward
search wrapper method.

In our proposed, features are detected using a modify
MapReduce algorithm (M-MapReduce) and proposed a novel
machine learning subsystem that are applied on user
requirements (also called functional specifications in software
engineering) [19]. These requirements reflect expectations for
a new or modified product, requirements should be
quantifiable, relevant and detailed.

The importance of this work is reflected from the main
contribution of this paper, which is to develop a data
processing framework based on both edge computing and
cloud computing, by integrating the functions of data
preprocessing that involves classifying, restructuring, storage,
and retrieval. Therefore, this work focuses on the structure of
the stored data as well as the transmitted data.

The infrastructure of the proposed framework consists of
five main components as shown in Fig. 1: cloud-computing
layer, edge computing layer, edge device layer, cloud
computing queries, and edge device queries.

 Edge device collects data and then sends the data to the
edge layer. In this work we assume that the data sent
by edge devices can be used in both control data (i.e.
real-time analytics) as well as knowledge extraction
data (i.e. historical analytics). Control data is the
streaming data that is processed in real time or time-
limited data, on those data parts, real-time decisions are
made e.g. monitoring, detecting fraud. While, Knowledge

Extraction Data is the data stored for mining purposes
and analyzing for support decision e.g. run reports,
queries, and inferences from historical data [13].

 Edge layer where data is partitioned into control data
(time-limited data) and knowledge extraction data;
control data are extracted and processed in this layer.
On the other hand, knowledge extraction data is
uploaded to the cloud server layer. Thus edge layer is
assumed to be stronger in both power and computing
capability for model construction as well as the

preprocessing and real-time analytics of the raw data
sent by the edge device.

 Cloud computing layer for the data mining purpose and
machine learning.

 Edge device queries are the search process in the
device layer that is responsible for real-time decision
making, constitute the queries in this layer (i.e. user
requirements in devices layer such as control data).
These queries are sent to a feature selection algorithm
based on machine learning concepts, in order to extract
key features that will assist in defining the real-time data.

 Cloud computing queries are the queries in the cloud
layer that are executed for the mining process to extract
knowledge from the data in the cloud layer (e.g. user
requirements, data warehouse and data cube) that
serves in other applications such as decision support
systems. Moreover, these queries are also sent to the
machine learning features extraction tool, in order to
update feature extraction rules in order to accurately
select features data to be sent to the cloud.

The proposed method in this paper fundamentally relies on
the following assumptions:

First, the way we access data can help to restructure the
data in a way that improves its locality characteristics such
that the transaction time is reduced. In this work, we take note
of the fact that data which exhibits good locality structure can
be accessed in a much better way than data with the poor
locality. By locality, we refer to a particular access pattern that
can improve the efficiency of local memory (main memory or
cache) in any system [20].

Second, the space-time product of a task or a set of tasks is
inversely proportional to the throughput of the system [21].

Consequently, the main issues in the process of designing
our framework are the detecting of accurate features for
partitioning (classification and restructuring) the data without
losing information, and implementing an efficient
restructuring data algorithm. To illustrate our approach, we
apply it on an imaginary system in a kidney disease center.
We assumed that the edge cloud system is deployed in a
chronic kidney disease center to monitor the patient’s status
and we use data from the UCI repository for chronic kidney
disease (CKD) [22].

Fig. 1. The System of Preprocessing Data Classification, Restructuring,

Storage and Retrieval.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

309 | P a g e

www.ijacsa.thesai.org

The paper is organized as follows: Section 2 summarizes
the edge computing, Section 3 presents the related work
followed by a description of the proposed framework
architecture in Section 4. Section 5 lists the details of the
experiment environment and discusses the obtained results.
Finally, Section 6 concludes the paper.

II. EDGE COMPUTING

With virtually unlimited computing power and storage
resources, clouds are conceived to be the perfect platform for
large-scale data analytics, while storage efficiencies also
provide easy management of different applications. However,
with cloud-based applications, most data must be sent to the
data centers in the Cloud [23]. During the expansion of these
applications, the volume of data increases and a large amount
of data from these applications (e.g., IoT devices) are moved
to the Cloud causing network bottlenecks due to bandwidth
constraints. As time-sensitive and location-aware applications
are developed (e.g., patient monitoring, real-time applications,
transportation systems), the remote cloud will fail to fulfill the
low-latency requirements of these applications; the round trip
delay is too great [24].

Edge computing (e.g., Cloudlet, Mobile Edge Computing,
and fog computing)[25][26] is proposed to overcome the
problems faced by cloud-based applications [27] by offloading
computing tasks to the edge of the cloud network. Using
installed computing resources and intelligence at the network
edge layer, a prompt response can be delivered to applications
and the transmission of redundant data to remote clouds is
avoided [28]. One more feature of edge computing is its
distributed mode and support for device mobility inside
heterogeneous network [29].

The Edge computing layer lies between cloud and end
edge network devices; however, there is no commonly agreed-
upon framework to capture the functionality of this computing
paradigm. Recently, IBM and some researchers have proposed
a three-layer paradigm as the high-level architectures, this is
illustrated in Fig. 2 [30] [31].

Edge computing [32] is introduced for extending the Cloud
Computing paradigm to the edge of the network to support
many of cloud application (IoT, M2M, and CPS). Many
characteristics have been found in edge computing, including
low-latency, location awareness, mobility, and wide-spread
geographical distribution, etc. These features make Edge
computing suitable for different cloud applications.

Fig. 2. An Example of an Edge Computing Architecture.

III. RELATED WORK

Recently, many applications developed are internet-
enabled such as surveillance, virtual reality, and real-time
systems (e.g. monitoring)requiring fast processing and quick
response time [33][34] . The core service and processing of
these applications are performed on cloud servers; cloud
computing provides an opportunity to these applications via an
unlimited capacity in terms of storage and processing [6].
These applications produce a significant amount of data. This
creates a number of challenges, such as high communication
latency, and network traffic overhead, which is raised by
transmitting all data to the cloud for processing and analysis.
To overcome these challenges edge computing has been
[35][36][37] proposed to extend the cloud computing
paradigm to the edge of the network, consequently, the data
processing is the main challenge posed by integrating cloud
computing with edge computing, it demands researchers to
discuss and develop high-performance data processing
architectures.

Many researchers provide a hybrid approach between edge
computing and cloud computing such as, Du B, et al.
(2018)[38] designed Things-edge-cloud computing
architecture to enable edge servers to cooperatively work with
the cloud and achieve traffic-data as a service. Xu, X. et al.
(2017) [14]presented edge Analytics as a service; rule-based
analytics model equipped to edge node to prop the
management of real-time analytic on edge. Alturki, B et al.
(2017)[15] leveraged edge computing to provide low latency
and network traffic by using confusion technique to
preprocessing data in edge layer and (Fu, J. et al, 2018) [13]
proposed data processing schemes which combine the fog
computing and cloud computing to improve the quality of
service in terms of latency, security, and flexibility and build
object-oriented index to enhance data retrieval. They also
discuss the impact of distributed services between Fog and
cloud Architecture for IoT; four types of architectures have
been evaluated with three types of datasets. This evaluation
displays the importance of distributed services between fog
nodes and cloud computing. In Bittencourt, L. et al, (2018)
[39] they discussed the integration of IoT-Fog-Cloud system
and provided a review for different aspects such a system are
organized managed, and how applications can benefit from it.

Others researchers presented the functionality that edge
computing should provide it. Consequently, In (Ai Y et al,
2018) [40], the authors comprehensively present a tutorial on
three typical edge computing technologies, namely Mobile
Edge Computing, Cloudlets, and Fog computing. In particular,
the standardization efforts, principles, architectures, and
applications of these three technologies are summarized and
compared. From the viewpoint of radio access network, the
differences between mobile edge computing and the fog
computing are highlighted, and the characteristics of the fog
computing-based radio access network are discussed. Finally,
open issues and future research directions are identified as
well.

Machine learning has an essential role in edge computing
thus, Yuuichi Teranishi et al (2017)[41] propose a novel
dynamic data flow platform for Internet of Things (IoT)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

310 | P a g e

www.ijacsa.thesai.org

applications in edge computing environments. To avoid the
overloads on network and computational resources that are
caused by IoT applications, the proposed platform replicates
processes and changes the structure of the data flow
dynamically on the distributed computational resources
located at network edges and data centers. M. Mahdavinejad
et al. (2018) [42] assesses the various machine learning
methods that deal with the challenges presented by IoT data
by considering smart cities as the main use case. The key
contribution of this study is the presentation of the taxonomy
of machine learning framework explaining how different
techniques are applied to data in order to extract higher level
information. The potential and challenges of machine learning
for IoT data analytics are also addressed. Sneha Sureddy et al.
(2018) [43] present a proposal of Flexible Edge Computing
(FEC) architecture as a flexible system to perform edge
computing using deep learning in IoT. Combination of these
two models that are deep learning and flexible edge
computing significantly improve the performance of the
system and optimize the task assignment between edge layer
and cloud layer.

IV. DATA PARTITIONING FRAMEWORK

The main functionality of an Edge Computing layer, when
integrated with Cloud network, is to improve performance in
terms of latency, and network traffic load through processing
data. Hence, data processing is the main issue in edge
computing in cloud computing real-time application networks
such as IoT, CPS, and M2M [44].

In an attempt to overcome the data processing issue, we
construct data processing framework over the Edge-cloud
network by integrating the function of data partitioning,
restructuring, storing and retrieving, to enhance the
performance of Edge-cloud network in terms of lower latency
level and network traffic. The architecture of the proposed
framework consists of three main layers as presented in the
flowchart shown in Fig. 3, These layers are edge device layer,
edge computing layer, cloud layer.

 Edge device layer: in this layer, several devices are
connected and employed for different purposes and
these devices are responsible for the aggregation and
integration of the data in order to be delivered to the
edge node via wireless or wired communication by
using a suitable routing algorithm. We also propose
that the data sent by edge devices can be used in both
control data (i.e. real-time analytics) as well as
knowledge extraction data (i.e. historical analytics).

 Edge computing layer: is a communication layer
between cloud and end device levels, it is connected to
the cloud server through the Internet. This layer
receives raw data from the edge device and inputs this
data into a uniform preprocessing procedure that issues
both cleaning and integration of data. This
preprocessed data would form a schema i.e. is stored in
a database that facilities data access and search. After
that, this schema is partitioned (classified and
restructured) based on the features that are selected
from user requirements to permit fast access and search
on the database as well as to reduce the amount of data

transmitted to cloud computing and for saving the
bandwidth resources and storage in the cloud layer.

 Cloud layer is employed to perform several processes,
such as:

a) Store the transformed data in the cloud data center.

b) Mining tools execute the search operations on data to

extract knowledge and new patterns. Data analytic tool are

used on historical data for support decision.

c) Analytic tools execute the search operations on data

to support decisions.

d) In the training phase, the training classifier and

feature selection algorithm are executed at the cloud layer.

e) Queries are updated and added to the queries

accumulator accordingly.

f) Control attributes are imposed on the network to

provide higher quality of results.

In the following we describe the design issues and
constraints on the implementation of the framework and
present the data workflow also the network throughput
calculation.

Fig. 3. The Proposed Framework Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

311 | P a g e

www.ijacsa.thesai.org

A. Design Issues

Before implementing our framework, there are three
important design issues that should be addressed, the
requirements analysis to selected features, data classification
as control data and knowledge extraction, and the extraction of
the subset of features to restructure data schema. These issues
are discussed for our proposed framework as follows:

1) Requirements analysis: the requirements analysis issue,

as mentioned above, features are selected from user

requirements, these requirements can be obtained from a given

stream of queries generated over a time period for existing

systems or from queries generated by network requirements

for a new system. It is the responsibility of the system analysts

to extract and detect the features and relationships among

them for many large problems.

It is important to mention that user requirements can be
past referenced behavior for existing systems; the past
referenced behavior is obtained from a given stream of queries
generated over a time period. While the requirement for
building a new system, are obtained from the users'
requirements and network analysis, thus a large sequence of
queries can be generated by these requirements, which
represents the system referencing behavior.

However, when the requirements queries’ size grows too
big, the process of analyzing the requirements queries for
detecting the features and their frequency is excessively
prohibitive. Hence, MapReduce [45] technique was used to
overcome this issue.

a) Modify MapReduce algorithm: The traditional

MapReduce a programming model [46] was inspired from the

Functional Programming model introduced by Google, which

uses the Divide and Conquer technique to process large

amounts of data. It works in three functions [47]: the map

function, the Shuffle Function and the reduce function. The

Mapper stage splits the queries into features by whitespaces,

and the output of the Mapper is the pair of features with their

frequencies known as (key, value) pair, where key is the

feature and value is a count of features. Then, in the

intermediate phase, Shuffle sorts the (key, value) pair

according to the key and sends it to the Reducer. Pairs that

have the same key go to the same Reducer.

The Reducer stage collects all (key, value) pairs with the
same key and sums the values for each key.

In this paper, we modify the MapReduce algorithm to
support our work to find features from user requirements by
resetting all values for each key to one as shown in
algorithm 1, we reset list (count) number for each feature
(attribute) to one, to avoid the duplication of features in one
query. The output of this stage is a list that combines the
feature with its total frequency where is the location of
the attribute.

2) Data classification: The second issue is the

classification of accumulated data into control data and

knowledge extraction data based on feature extraction from

user requirements. Thus, we used extreme learning classifier

with feature selection to classify our data.

Algorithm 1: M-MapReduce algorithm.

1.map(file, queries) {

 for each features in queries. Split(){

 output (word, 1);

 }

}

2. Reduce (word, list (count)) {

 Reset all # in list (count) to 1

 Output (word, sum (count));

}

3) Features subset extraction: The third issue is extracting

the subset of features that have an inherent locality structure,

in other words, grouping the features that form temporal

locality in the same subset. The features that are requested in

the same query, construct temporal locality. The locality

structure is discussed in detail in the next subsection. In this

dissertation, we proposed using the k-mean algorithm [48][49]

[50] which is modified according to our approach, combined

with the features selection Wrapper methods which is

performed in a new way to cope with our approach as shown

in Fig. 4 [51] [52]. This combination provides a machine

learning subset system that is used to find a subset of features.

a) Machine Learning Subset System: In this dissertation

a machine learning subset system was used in establishing a

subset of features; it groups features into subsets according to

their frequency.

The traditional k-means algorithm consists of two stages.
The first stage adjusts k based on the number of groups

[49][50]. The second stage detects initial centroid randomly
from the dataset for each group. In this dissertation, we used
k-means with modifying its stages (M_k-means), where the
initial centroid is determined based on a features frequency
(i.e., taking the higher and lower frequency) and the number
of groups K determines based on used a wrapper feature
selection method. However, we illustrated the steps of this
system as follows:

The M Κ-means algorithm as shown in Algorithm 2 in
uses iterative refinement to produce a final result. The
algorithm inputs are the number of groups Κ and the data set.
The data set is a collection of features (data attributes) and
frequency for each feature. The algorithm starts with two
groups; the first group takes the high value of a feature
frequency as a centroid while the second group takes the lower
value of a feature frequency as a centroid. The initial value of
group centroid(fai) was defined to avoid the oscillation with
iterative refinement to produce a final result.

Modify k-mean algorithm: The K means algorithm is used
to establish a subset of features, it groups features into subsets
according to their frequency [49][50]. Traditional K means

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

312 | P a g e

www.ijacsa.thesai.org

algorithm consists of two stages. The first stage adjusts k
based on the number of groups. The second stage detects
initial centroid randomly from the dataset for each group. In
this paper, we used k-means with modifying the second stage
(M_k-means), where the initial centroid is determined based
on feature’s frequency (i.e. taking the higher and lower
frequency) as shown in algorithm 2.

Algorithm 3.2: M_ K-means Algorithm

Input:

F = {f1a1, fa2,......,fnai} // fai is a feature frequency ,i

is a feature # and n is the number of feature.

k // Number of desired subset

Output:

A set of k subset.

Steps:

Phase 1: Determine the initial centroids of the subset

(group) by taking high and low frequency (fnai).

 Phase 2: Calculate new mean for each cluster;

Until convergence criteria is met.

The algorithm iterates between three steps and iterates
among these steps until a stopping criterion is met. These
steps illustrated in detail as follows:

Data Assignment Step 1

In this step, each data point is assigned to its nearest
centroid, based on its frequency fi. More formally, if is the
centroid in cluster , then each data point x is assigned to a
cluster based on the following:

 (1)

Where (·) is the difference between the feature’s
frequency and cluster’s centroid. Let the number of features
assignments for each cluster centroid is Si.

Centroids Update Step 2:

In this step, the centroids are recomputed. This is done by
taking the mean of all frequency of features to that centroid’s
cluster.

| |
∑ (2)

Choosing K Step 3:

In the previous two steps, the clusters and data set labels
were found for a particular pre-chosen k. In this step, we
discuss how wrapper feature selection is used in a new method
to choose the number of clusters K.

Some of the techniques that are commonly used to find k
are: cross-validation, information criteria, the information-
theoretic jump method, the silhouette method, and the G-
means algorithm. In this dissertation we proposed a new
method of wrapper feature selection to find the value of k.

The wrapper is a feature selection method, that evaluates
feature subsets by the quality of the performance on a
modeling algorithm, which is taken as a black box evaluation
[51] [52]. In our approach, the wrapper will evaluate subsets

based on the performance of executing queries on the new
tables that are built on the feature subset.

Fig. 4. Our Approach Wrapper Feature Selection.

The evaluation is repeated for each subset and the subset
generation is dependent on the k-means algorithm as shown in
Fig. 4.

B. Data Scheme Partitioning Workflow

The Preprocessing data scheme was partitioned by some
processes as shown in the flowchart in Fig. 3 which is
assigned by a dotted line. These processes and their design
issues can be described in the following two parts. First,
requirement analysis (feature selection) and Second,
partitioning data schema.

1) Requirement analysis (feature selection): This part is

responsible for detecting the locality structure of control data

and knowledge extraction data; it relies heavily on user

requirements or query stream analysis.

The objective of this part is to group attributes, which are
likely to be referenced together , in a partition or table. The
more frequently the attributes are referenced together, the
more likely for them to belong to one locality structure. for
example, in a monitaring system in a factory, the monitoring
devices share the same identifier, also in medical systems the
diseases may be chronic or not chronic.

Query stream analysis is used to find the frequency of a
given query execution and the frequency of attributes
requested within the same query. Furthermore, query analysis
is used to detect the adjacency of attributes, where adjacency
is defined as the attributes referenced within the same query.
Attribute Ai is said to be adjacent to Aj: AJ (Ai,Aj) if Ai and
Aj are requested within the same query Qk. By default,
adjacent attributes form a temporal locality, since they are
referenced within the same query and their access to the data
storage falls within the same time period. Note that adjacent
attributes Ai and Aj may or may not be stored within the same
virtual page or in close space proximity.

For example, assume that query Qk is used to select
attribute Ai and attribute Aj from table T1. Thus, the attributes
Ai and Aj are adjacent within the query Q. Ai and Aj certainly
form a temporal locality, in the sense that both are referenced
within the same period. The system will access both Ai and Aj
and return their values as requested. However, Ai and Aj may
be very well located in different memory regions, or more

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

313 | P a g e

www.ijacsa.thesai.org

precisely could be located in two different pages in the virtual
space. If Qk is referenced n times, then it is only reasonable to
have Ai and Aj stored in close proximity, e.g., in the same page
or the same page block, such that when the page or page block
is transferred from virtual storage to main memory or cache,
then the requested items Ai and Aj will have been located in
main memory already.

For illustration purposes, assume that the data table has 10
9

which is ≈ (2
30

) records, and attributes Ai and Aj are both of
type real with 8 bytes each. This means that each column
representing attributes Ai and Aj is 2

33
 bytes. Assume further

that a page size (using virtual memory paging representation),
is 1024 Kbytes (2

20
 bytes). Thus the number of pages

representing each attribute is given by 2
33

/2
20

 = 2
13

 pages (≈ 8
GBytes). If attributes Ai and Aj are requested as adjacent
attributes frequently, i.e., they appear in the same query or in
different queries N times, where N is relatively large, then it is
worthwhile to convert the temporal locality of Ai and Aj to
spatial locality, in the sense that Ai and Aj should be adjacent
in space allocation scheme. Fig. 5 shows a temporal and
spatial locality example.

Consequently, data are restructured based on adjacency of
attributes where the unrelated attributes are removed.
Furthermore, these steps’ outline is illustrated in Algorithm 3.

Moreover, the attributes that have the highest frequency
value (Ati) will be collected in the same new table.

2) Partitioning data scheme: This part is responsible for

partitioning the dataset based on features that are selected in

the previous part. Partitioning aims to classify the data in

order to remove unrelated data to reduce the size of data. As

well as grouping a set of attributes in a subset, where the

subset will be used to create a new table of data with the

attributes given in the subset. In essence, the process of

partitioning leads to the auto reconstructing of the original

schema, which was originally used to represent the data. This

part includes the following steps.

a) Classifying the data as controlling data and

knowledge extraction data using feature selection in part 1.

Machine learning classification algorithm (classifier) with

feature selection is used to classify the data instance, this

classifier learning in the cloud layer is based on features that

were selected from user requirements. Then it is used to

classify data in the edge layer.

Fig. 5. Temporal and Spatial Locality Example.

ALGORITHM 3: GENERATE ATTRIBUTE ADJACENCY

1. Generate and collect a set of queries

{Q1}{q1}&{q2}. // Requirements analysis

(Requirements engineering).

2. Analyze queries and extract the following

parameters:

a. For each query (q), find the frequency of its

execution f(q).

b. Build adjacency matrix for all attributes

contained within the set of queries {Q}.

i. Two attributes Ai and Aj are said to be

adjacent if both attributes are referenced

within the same query.

ii. The number of attributes Ai that is shared

between the query Qi and Qi, is given by the

similarity S (q).

iii. The number of appearance Ai within

different queries is given by fai.

iv. The total frequency of an attribute Ati = fqi *

fai

3. Build adjacency list for features selected from q1

contained within the set of queries {Q1}.

4. Build adjacency list for features select from q2

contained within the set of queries {Q2}.

b) For the control data, create a new table for each

subset in the set Si, these new tables are stored in the edge

layer for real-time analysis. For this step, we develop

algorithm 3.

c) Creating a new table for the knowledge extraction

data is suitable for the data mining technique using feature

selection from q2 and uploading to the cloud layer for storing

and analysis.

These steps are performed on our framework by applying
algorithms 4.

C. Network Throughput

Without loss of generality and accuracy, we will ignore the
complexity of algorithms 3.3 and 3.4, since they will be
performed one time whenever the structuring of the DB
schema is required. Henceforth, we are not concerned with the
complexity of the algorithms; rather our concern is with the
complexity of the data access time as well as data transmission
time before and after partitioning.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

314 | P a g e

www.ijacsa.thesai.org

Algorithm 4 Partitioning Data Schema

1) Create list A of attribute and frequency (,).

2) Sort Ai in list A according to largest frequency .

3) Using the wrapper feature selection method with the

execution time of query as an evaluation strategy.

a) Running k-means algorithm to Grouping attribute in

a subset Si = {s1, s2…sn}.

b) Evaluate Si using the evaluation function

c) While (stopping function not met)

d) Fined new Si

e) Evaluate function

f) End while

g) Output: the best Si

4) If Have new query go to step 1

5) Terminate Algorithm.

Assume that the DB tables are stored in a column wise
schema, where the data belonging to one attribute are stored
sequentially. Then to retrieve one record in a table, it is
required to scan all attributes in the record. Given that the
number of attributes in a table is N; this leads us to consider
the space occupied by the table as a major cost of the system.
When multiplied by the overall time required executing a
query, or the time required transmitting this table the
complexity naturally lends itself to the space time product as
the main tuning parameter.

It has been shown that the space-time product of a task or a
set of tasks is inversely proportional to the throughput of the
system (Denning & Buzen, 1978). In other words, if we want
to maximize the throughput (X), which is defined as the
number of tasks performed within a time period(T), then we
have to minimize the space-time cost (Y), i.e., the total space
(S) consumed by the tasks within the same time period (T).
This implies the following relationship.

X ≈ 1/Y, where Y = S*T (3)

1) Data retrieval complexity: In term of data access time

and reduce latency, for a given query (Qi), the space consumed

during the query execution equals the space of the tables

referenced by Qi. For example, assume that Qi has the

following structure:

Qi  ({Ai}) from Tables {Tk}

Where a set of attributes Ai , i =1, .. n are referenced in
tables Tk, k = 1, … m

The space occupied by Qi is thus given by Equation 2

S(Qi) = ΣS(Tk) , k = 1,… m (4)

And the time required to execute the queries is given by:

T = t*An (5)

Where An is the number of attributes referenced in Qi and t
is the time required to process each attribute.

Thus the space time cost of a query Qi is given by:

Y = Ti*S (6)

If the frequency of Qi is f then the total space time cost for
Qi is given by:

Y = f* Ti*Si (7)

2) Data transmission complexity: While, in term of data

transmission time, for transmitted a table Tk, the transmission

time is related to the space of the table. For example assume

that the table T has Ai attributes where Ai , i =1, n are

referenced in tables and Rj records, j= 1…..m

The space occupied by T is given by equation 6

S(T)= Σ Rj Ai (8)

And time required to transmit the table Tk is Tt

Tt= t* An (9)

where An is the number of attributes referenced in Tk and t
is the time required to transmit each attribute.

Thus, the space time cost of a table Tk is given by:

Y = Tt*S(T) (10)

The objective of the proposed method is to maximize the
throughput of the system by minimizing the space-time
product for the data access (i.e., reduce latency), and data
transmission (i.e., saving bandwidth). Therefore, the
throughput is increased with decreasing space (S).

V. ANALYSIS AND RESULTS

To verify the performance of the proposed framework of
data partitioning, we assumed there is an edge cloud network
deployed in a chronic kidney disease center to monitor the
patient’s status. We experimented our proposed framework on
this network and compared it to the same network, without our
framework. We compared between these networks in term of
data transmission amount, storage space and queries execution
time (data retrieval efficiency). The proposed framework is
experimented with different queries and different sizes of data.
The utilized dataset, experiment environment, queries
generation, and the results with their discussion are given as
follows.

This verification takes on two aspects:

 Experimental Verification which begins by defining the
experiment processes, dataset used, environment, and
query generation, followed by a discussion of the
results in Section A.

 Theoretical Verification which covers the theoretical
verification for the proposed framework on this
network and is discussed in Section B.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

315 | P a g e

www.ijacsa.thesai.org

A. Experimental Verification

This section describes, in detail, the experiment performed
to verify our framework.

1) Processes

a) Requirements analysis with M-MapReduce.

b) Data classification using ELM classifier.

c) Data restructuring using our subsystem machine

learning.

d) Generation of queries executed against the new data

schema.

2) Dataset: In this research, we use data from the UCI

repository. The data collected from the Apollo Hospital, India

by b. Jerlin Rubini. The number of instances in the dataset are

400 instances with 25 attributes (including attribute classes),

where 250 instances include those who have chronic kidney

disease (ckd) and the remaining 150 who did not have chronic

kidney disease (notckd) as in Table I.

3) Environment: In this experiment, our edge server

consisted of a laptop computer with a 2.6 GHz Intel Core

processor, Window 7 operating system and 4 GB of RAM. As

discussed previously, the edge server handles running the

network and analyses the pre-processed data. Our cloud server

was a desktop computer with a 3.6 GHz Intel Core processor,

Windows 7 operating system and 8 GB of RAM.

The edge server connects to the cloud server through the
Internet and pre-processes the raw data. We used MATLAB

®

R2018b extreme learning machine (ELM) libraries for the
classification methods and a k-means function for the
clustering method.

The MapReduce algorithm is used to identify suitable
features. We first taught the classifier in the cloud server, and
then applied steps one and two in the previous section on our
data to define the features that are used in restructuring the
data. We also created the database structures necessary for the
new tables that are created.

4) Edge layer query generation and cloud layer feature

selection: Based on the users’ requirements, we generated

random queries to apply our approach. Specifically, from the

users’ requirements in the edge layer, 120 queries are

generated randomly. In Table II, the 10 edge layer generation

queries that had the highest frequency are listed. From the

expert and user requirements in the cloud layer, we can extract

and select relevant feature subsets. These subsets, shown in

Table III, are used to restructure the data passed to the cloud

layer.

Based on the requirements noted above, as well as from
network requirements, we selected the features that classified
the data into two groups: CKD, and not CKD. The ELM,
using a wrapper method for feature selection, was used to
classify this data [53][54].

We applied Algorithm 3 on the generated queries, to select
the features to use in restructuring the data. Table IV (an
adjacency matrix for all the attributes within the set of queries

and a list for each attribute with its frequency), Table V and
Table VI illustrate the features for the controlling data and
knowledge extraction data, respectively. After the feature
selection, we performed the following two steps.

TABLE. I. ATTRIBUTES OF CKD DATASET

No. Code Parameter Value

1 Age Age In the year

2
Blood
pressure

Blood pressure In mm/Hg

3
Specific

gravity
Specific gravity

(1.005,1.010,1.015,1.020,1.

025)

4 Albumin Albumin (0,1,2,3,4,5)

5 Sugar Sugar (0,1,2,3,4,5)

6
Red blood

cells
Red blood cells Normal / Abnormal

7 Pus cell Pus cell Normal / Abnormal

8
Pus cell
clumps

Pus cell clumps Present / NotPresent

9 ba Bacteria Present / NotPresent

10 bgr Blood glucose random In mgs/dl

11 bu Blood urea In mgs/dl

12 sc Serum creatinine In mgs/dl

13 sod Sodium In mEq/L

14 pot Potassium In mE1/L

15 hemo Hemoglobin In gms

16 pcv Packed cell volume In %

17 wc White blood cell count In cells/cumm

18 rc Red blood cell count In millions/cmm

19 htn Hypertension Yes / No

20 dm Diabetes mellitus Yes / No

21 cad Coronary artery disease Yes / No

22 appet Appetite Good / Poor

23 pe Pedal edema Yes / No

24 ane Anemia Yes / No

25 Class Class Ckd, notckd

TABLE. II. EDGE LAYER GENERATION QUERIES

Q1 bp, sg, bu, sod, pot, hemo, ckd Q7 bp, bu, sod, hemo, ckd

Q2 bp, sg, bu, sc, sod, hemo, ckd Q8 bp, sg, pot, hemo, ckd

Q3 bp, sg, bu, sc, sod, ckd Q9 bp, sg, bu, sc, pot, ckd

Q4 bp, sg, bu, sod, hemo, ckd Q10 sg, bu,sod

Q5 bp, bu, sc, sod, pot, hemo, ckd
Q11 pb, sg, bu, sc, sod, pot, hemo,

ckd

Q6 bp, sc, sod, pot, ckd ----

TABLE. III. CLOUD LAYER GENERATION QUERIES

Q1Hypertension, CKD

Q2Diabetes mellitus, Hypertension, CKD

Q3Diabetes mellitus, CKD

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

316 | P a g e

www.ijacsa.thesai.org

TABLE. IV. FEATURES OF CONTROLLING DATA (ADJACENCY MATRIX)

 Attr

Q
A

g
e

B
p

sg

al

su

rb
c

P
c

p
cc

b
a

b
g

r

B
u

sc

so
d

p
o
t

H
em

o

p
cv

W
c

R
c

h
tn

D
m

ca
d

ap
p

et

p
e

an
e

F

q

Q1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 4

Q2 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 4

Q3 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3

Q4 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 4

Q5 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 3

Q6 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 3

Q7 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 4

Q8 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 3

Q9 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 4

Q10 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3

Q11 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
4
8

for 120

q

5 93 97 5 16 17 5 5 16 5
10

3
94 96 98 96 18 20 8 17 15 16 15 19 19

TABLE. V. FEATURE OF KNOWLEDGE EXTRACTION DATA

Hypertension

Diabetes mellitus

Class

TABLE. VI. KNOWLEDGE EXTRACTION DATA SCHEMA

Hypertension Diabetes mellitus

TABLE. VII. CONTROLLING DATA SCHEMA

Blo

od

Speci
fic-

Gravi

ty

Blo
od-

Ure

a

Serum

Creati
nine

Sodi

um

Potass

ium

Hemogl

obin

Firstly, we restructured the knowledge extraction data in
one table by using the features in Table V and buffered it for
transmission to the cloud. This table schema is shown in
Table VI.

Secondly, we used Algorithm 4 on Table IV to restructure
new tables for the controlling data. The k-means algorithm
was applied twice, once with k = 2 and again with k = 3. A
superior subset was achieved with k = 3. The algorithm
provided three subsets, and two of these subsets contained
features with low frequency. Consequently, we built only one
table using the subset that contained features with high
frequency, and that represented the controlling data which is
then stored in the edge layer. The schema of this new table is
shown in Table VII.

5) Results: As previously mentioned, our framework is

tested for data transmission time, storage space and queries

execution time (i.e., data retrieval efficiency).

a) Data Transmission Time and Storage Space: As

mentioned above, from user requirements and network

requirements, the pre-processing data were separated into two

classes: CKD, and not CKD. Only the CKD class is relevant.

Thus, the amount of the processing data was reduced. This

conclusion is supported by Fig. 6 which shows both the

original data and relevant classification data plots. The

classification data clearly required a lower amount of storage

and analysis.

Fig. 7(a) compares the amount of data transmitted over the
network from the edge layer to the cloud layer for storage. The
two bars represent the two datasets: the red bar for original
dataset before any partitioning, and the blue bar for the dataset
after partitioning (classification and restructuring, as shown in
Table VI). Clearly the volume of data transmitted over the
network for the original dataset is extremely high relative to
the volume transmitted over the network for the dataset after
partitioning. Fig. 7(b) portrays the corresponding transmission
times of the two datasets. This result confirms that a network
with our framework can reduce network resource
requirements (i.e., bandwidth and storage space) and, as a
direct consequence, reduce network traffic because of the
increased rate of data transmission.

In Fig. 7(a) the plotted bar of stored value indicates the
amount of stored data is 92 KB for the network for the original
dataset and only 6.95 KB for our partitioned dataset. This
represents a 92.4% reduction in storage space required.
Similarly, in Fig. 7(b), the plotted bar of stored value indicates
the amount of transmission time is 0.007376 S for the original
dataset and only 0.000556 S our partitioned dataset. This
represents a 92.5% reduction in time required for
transmission.

b) Query Execution Time (Data Retrieval Efficiency): In

this section, we compare the execution time of the 11 queries

in Table II with different size datasets, and examine the

outcome for two additional queries in Table VIII on both the

original dataset and our new schema dataset(partitioning

dataset) (see Table VII).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

317 | P a g e

www.ijacsa.thesai.org

Fig. 6. Data Classification Amount.

Fig. 7. (a) Data Storage Space and (b) Transmission Time.

Table VIII shows the execution time of the 11 queries in
both our schema dataset and the original dataset. The results
show significant differences in the execution times between
the two datasets. Obviously, our schema dataset requires a
shorter execution time than the original dataset because it has
a smaller size as well as greater spatial locality of reference. In
other words, the network with our framework has low latency
and high performance. These differences can be shown by
analyzing the bar chart in Fig. 8. Furthermore the average
execution time for these 11 queries was decreased by
79.841%.

An interesting observation is the execution time of the Q5
which is low in both datasets because the temporal locality of
the query schema is virtually identical to the spatial locality of
both types of data schema.

Table IX shows the execution times produced using a
relatively large dataset. By comparing Table IX with
Table VIII, we observe that the proposed framework
consistently has the shorter execution time despite the change
in data size. Fig. 9 illustrates graphically that the difference
between execution times persists in spite of the change in the
dataset size.

We conclude that changes in dataset size do not adversely
affect the results, meaning our proposed framework can
achieve its objectives in different networks with different
dataset sizes.

Fig. 10 compares the execution times of the two additional
queries in Table X against each of the two sizes of dataset.
Again, the proposed framework has a consistently shorter
execution time compared to the original system.

TABLE. VIII. QUERY EXECUTION TIME FOR NORMAL SIZE DATASET

Query
Execution Time with Our

Schema

Execution Time with

Original Data

Q1 0.0025 0.0027

Q2 0.0020 0.0025

Q3 0.0015 0.0025

Q4 0.0023 0.0025

Q5 0.0005 0.0010

Q6 0.0022 0.0025

Q7 0.0020 0.0025

Q8 0.0015 0.0025

Q9 0.0020 0.0025

Q10 0.0012 0.0025

Q11 0.0025 0.0026

Fig. 8. Query Execution Times.

TABLE. IX. QUERY EXECUTION TIMES FOR LARGE SIZE DATASET

Query
Execution Time with Our

Schema

Execution Time with Original

Data

Q1 0.0040003 0.0080003

Q2 0.0050003 0.0070003

Q3 0.0040003 0.0060005

Q4 0.0030003 0.0040003

Q5 0.0022000 0.0030003

Q6 0.0025000 0.0030000

Q7 0.0030000 0.0040000

Q8 0.0030003 0.0035000

Q9 0.0040001 0.0045005

Q10 0.0025005 0.0030000

Q11 0.0040000 0.0060005

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

318 | P a g e

www.ijacsa.thesai.org

Fig. 9. Query Execution Times (Large Dataset).

Fig. 10. Queries Execution Time.

TABLE. X. TWO SUGGESTED QUERIES

Q1
Blood, Specific_Gravity, Blood_Urea, Sodium, Potassium,

Hemoglobin where Specific_Gravity like "1"

Q2 Blood group by Hemoglobin

B. Theoretical Analysis and Verification

This section describes the use of the throughput calculation
functions in Section IV to theoretically evaluate our
framework in the proposed system. This calculation involves
two elements, provided by Equations 5 and 7: the first element
is the measurement of data access time, performed by
calculating the space-time for demand query. The second
element is to calculate the data transmission volume,
performed by computing the space-time product for data
moving through the network.

1) Dataset access time: As mention before, the original

dataset of our system has 400 instances and 25 attributes.

Considering our approach, this dataset after classification and

restructuring to identify a controlling dataset, a new dataset

was built. This new dataset has 250 instances and 7 attributes

as shown in Table VII.

Table XI displays the results of performing equation 5
(i.e., Y = f * Ti * Si) on the queries in Table II, to calculate the
space-time product of the proposed network with and without
our framework.

As shown in Table XI, where the first column identifies
the query, the second column shows the space-time product
for the original dataset, and the third column displays the
space-time product for the new dataset. Our proposed
framework consistently showed a more favorable result. This
conclusion is further reinforced when examining the bar chart
shown in Fig. 8 showing execution times for both the original
dataset and new dataset. Indeed, a lower latency is invariably
achieved by our approach. The average execution time was
reduced by 98%.

The storage of data is critical to the process of retrieving
data in real-time. By extension, it necessarily has a material
impact on network latency. The result in Table IX shows that
best throughput is achieved with our approach when the data
storage is considered and takes into account the fact that data
which exhibits good locality structure can be accessed more
easily than data with poor locality.

2) Data transmission time: The original dataset of our

system has 400 instances and 25 attributes. Using our

approach, this dataset, after classification and restructuring to

establish a knowledge extraction dataset, a new dataset was

built containing 250 instances and only two attributes.

Thus, the data transmission space-time before partitioning
data may be expressed by the following equation:

Y = T * S(T)

Y = 400 * 25 * t = 10000 t

The data transmission space-time after partitioning data is
expressed as follows:

Y = 250 * 2 * t = 500 t

According to the results of the space-time product of
transmission data, our framework proves a better approach for
analyzing the dataset. This is confirmed by observing the chart
in Fig. 6 which shows the amount of data transmitted to the
cloud layer and stored there as well the time required to
transmit the data. The space-time product of transmission data
rate was reduced by 95%

TABLE. XI. CALCULATION OF SPACE-TIME PRODUCT

Query

Number

Space-Time Product of

Original Dataset

Space-Time Product of New

Dataset

Q1 4 * 6 * 400 * 25 =240 000 4 * 6 * 250 * 7 = 42 000

Q2 4 * 6 * 400 * 25 =240 000 4 * 6 * 250 * 7 = 42 000

Q3 3 * 5 * 400 * 25 =150 000 3 * 5 * 250 * 7 = 26 250

Q4 4 * 5 * 400 * 25 =200 000 4 * 5 * 250 * 7 = 35 000

Q5 3 * 6 * 400 * 25 =180 000 3 * 6 * 250 * 7 = 31 500

Q6 3 * 4 * 400 * 25 =120 000 3 * 4 * 250 * 7 = 21 000

Q7 7 * 4 * 400 * 25 =280 000 7 * 4 * 250 * 7 = 49 000

Q8 3 * 4 * 400 * 25 =120 000 3 * 4 * 250 * 7 = 21 000

Q9 4 * 5 * 400 * 25 =200 000 4 * 5 * 250 * 7 = 35 000

Q10 3 * 3 * 400 * 25 =90 000 3 * 3 * 250 * 7 = 15 750

Q11
48 * 7 * 400 * 25 =3 360
000

48 * 7 * 250 * 7 = 588 000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

319 | P a g e

www.ijacsa.thesai.org

Network throughput quantifies the amount of data, during
a defined time interval that a network can send or receive.
Throughput must take into account the entire network
overhead as well as contention on the transmission links.
Multiple data flows on a link will each use some percentage of
the overall bandwidth, thereby reducing the total throughput
of each. It follows that increasing data flow causes an increase
in both network traffic and contention on the links.

Bandwidth is the number of bits per second that a link can
send or receive, including all flows. Data rate (or data transfer
rate) is the volume of data transferred through a connection
within one second. The data rate cannot exceed the bandwidth
of the connection; data rate is closer to bandwidth. Thus, the
reducing the required data rate reduced traffic overhead on the
network; in other words, a reduced data rate leads to a reduce
bandwidth requirement.

VI. CONCLUSION

In this paper, efficient data storage and retrieval
frameworks are proposed based on both the edge computing
and cloud computing techniques. The main challenges in
terms of data partitioning and requirements analysis are
summarized, and appropriate solutions are also provided.
Specifically, the data partitioning (classification and
restructuring) framework is provided to support low latency
and save network bandwidth based on MapReduce algorithms,
wrapper feature selection method and a machine learning
proposed subsystem, in addition, a new algorithm for
restructuring the data was proposed.

The components of the proposed framework flowchart are
discussed; data partitioning (knowledge extraction and control
data) and requirements generation are presented from a wider
view. The functionalities of each point of the proposed
framework are displayed in detail.

The framework is verified on a case study and approved its
efficiency that is evaluated using Data time, storage space, and
data retrieval time.

For future work, other data restructuring algorithms can be
used and other types of requirements analysis models can be
explored.

REFERENCES

[1] K.-D. Kang, D. S. Menasche, G. Küçük, T. Zhu, and P. Yi, “Edge
computing in the Internet of Things,” Int. J. Distrib. Sens. Networks,
vol. 13, no. 9, p. 155014771773244, 2017.

[2] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, and S. A. Malik,
“Fog/Edge Computing-based IoT (FECIoT): Architecture, Applications,
and Research Issues,” IEEE Internet Things J., no. October, 2018.

[3] D. Boswarthick, O. Elloumi, and O. Hersent, M2M communications: a
systems approach. John Wiley & Sons, 2012.

[4] P. C. Evans and M. Annunziata, “Industrial internet: pushing the
boundaries of minds and machines, 2012,” Available(accessed 4.10.
2016) https//www. ge. com/docs/chapters/Industrial_Internet. pdf, 2015.

[5] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–
32, 2014.

[6] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,”
in IEEE International Conference on Cloud Computing, 2009, pp. 626–
631.

[7] N. Takahashi, H. Tanaka, and R. Kawamura, “Analysis of process
assignment in multi-tier mobile cloud computing and application to edge

accelerated web browsing,” in 2015 3rd IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering, 2015, pp. 233–
234.

[8] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey
on Internet of Things: Architecture, Enabling Technologies, Security
and Privacy, and Applications,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, 2017.

[9] 2016.

[10] Y. Zhang, H. Wang, J. Zhao, and B. An, “SeCEE: Edge Environment
Data Sharing and Processing Framework with Service Composition,” in
International Conference of Pioneering Computer Scientists, Engineers
and Educators, 2018, pp. 33–47.

[11] B. Du, R. Huang, Z. Xie, J. Ma, and W. Lv, “KID Model-Driven
Things-Edge-Cloud Computing Paradigm for Traffic Data as a Service,”
IEEE Netw., vol. 32, no. 1, pp. 34–41, 2018.

[12] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing,” IEEE Netw., vol. 32, no.
1, pp. 96–101, 2018.

[13] J. S. Fu, Y. Liu, H. C. Chao, B. K. Bhargava, and Z. J. Zhang, “Secure
Data Storage and Searching for Industrial IoT by Integrating Fog
Computing and Cloud Computing,” IEEE Trans. Ind. Informatics, vol.
14, no. 10, pp. 4519–4528, Oct. 2018.

[14] X. Xu, S. Huang, L. Feagan, Y. Chen, Y. Qiu, and Y. Wang, “EAaaS:
Edge Analytics as a Service,” Proc. - 2017 IEEE 24th Int. Conf. Web
Serv. ICWS 2017, no. 1, pp. 349–356, 2017.

[15] B. Alturki, S. Reiff-Marganiec, and C. Perera, “A hybrid approach for
data analytics for internet of things,” in Proceedings of the Seventh
International Conference on the Internet of Things, 2017, p. 7.

[16] J. Li and H. Liu, “Challenges of feature selection for big data analytics,”
IEEE Intell. Syst., vol. 32, no. 2, pp. 9–15, 2017.

[17] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction:
foundations and applications, vol. 207. Springer, 2008.

[18] Z. Hu, Y. Bao, T. Xiong, and R. Chiong, “Hybrid filter–wrapper feature
selection for short-term load forecasting,” Eng. Appl. Artif. Intell., vol.
40, pp. 17–27, 2015.

[19] K. Pohl, Requirements engineering: fundamentals, principles, and
techniques. Springer Publishing Company, Incorporated, 2010.

[20] R. Bunt and C. Williamson, Temporal and spatial locality: A time and a
place for everything. na, 2003.

[21] P. J. Denning and J. P. Buzen, “The operational analysis of queueing
network models,” ACM Comput. Surv, vol.10, no.3, pp. 225–261, 1978.

[22] A. S. Levey and J. Coresh, “Chronic kidney disease,” Lancet, vol. 379,
no. 9811, pp. 165–180, 2012.

[23] B. Ravandi and I. Papapanagiotou, “A self-learning scheduling in cloud
software defined block storage,” in 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), 2017, pp. 415–422.

[24] B. Zhang et al., “The cloud is not enough: Saving iot from the cloud,” in
7th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 15), 2015.

[25] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and E.
Benkhelifa, “The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing,” in 2016 23rd International
conference on telecommunications (ICT), 2016, pp. 1–5.

[26] M. Satyanarayanan, “The emergence of edge computing,” Computer
(Long. Beach. Calif)., vol. 50, no. 1, pp. 30–39, 2017.

[27] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Comput., no.
4, pp. 14–23, 2009.

[28] C. M. S. Magurawalage, K. Yang, L. Hu, and J. Zhang, “Energy-
efficient and network-aware offloading algorithm for mobile cloud
computing,” Comput. Networks, vol. 74, pp. 22–33, 2014.

[29] K. Dolui and S. K. Datta, “Comparison of edge computing
implementations: Fog computing, cloudlet and mobile edge computing,”
in 2017 Global Internet of Things Summit (GIoTS), 2017, pp. 1–6.

[30] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog
computing: Focusing on mobile users at the edge,” arXiv Prepr.
arXiv1502.01815, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

320 | P a g e

www.ijacsa.thesai.org

[31] M. Taneja and A. Davy, “Resource aware placement of data analytics
platform in fog computing,” Procedia Comput. Sci., vol. 97, pp. 153–
156, 2016.

[32] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[33] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The Role of
Edge Computing in Internet of Things,” IEEE Commun. Mag., vol. 56,
no. 11, pp. 110–115, 2018.

[34] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Distributed
resource allocation in blockchain-based video streaming systems with
mobile edge computing,” IEEE Trans. Wirel. Commun., vol. 18, no. 1,
pp. 695–708, 2018.

[35] P. Wang, C. Yao, Z. Zheng, G. Sun, and L. Song, “Joint Task
Assignment, Transmission, and Computing Resource Allocation in
Multilayer Mobile Edge Computing Systems,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 2872–2884, 2018.

[36] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving
low latency in collaborative edge computing,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 3512–3524, 2018.

[37] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-
computing based architecture for mobile augmented reality,” IEEE
Netw., 2019.

[38] B. Du, R. Huang, Z. Xie, J. Ma, and W. Lv, “KID model-driven things-
edge-cloud computing paradigm for traffic data as a service,” IEEE
Netw., vol. 32, no. 1, pp. 34–41, 2018.

[39] L. F. Bittencourt et al., “The Internet of Things, Fog and Cloud
Continuum: Integration and Challenges,” 2018.

[40] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
Internet of Things: a primer,” Digit. Commun. Networks, vol. 4, no. 2,
pp. 77–86, 2018.

[41] Y. Teranishi, T. Kimata, H. Yamanaka, E. Kawai, and H. Harai,
“Dynamic Data Flow Processing in Edge Computing Environments,”
Proc. - Int. Comput. Softw. Appl. Conf., vol. 1, pp. 935–944, 2017.

[42] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis: a
survey,” Digit. Commun. Networks, vol. 4, no. 3, pp. 161–175, 2018.

[43] S. Sureddy, K. Rashmi, R. Gayathri, and A. S. Nadhan, “Flexible Deep
Learning in Edge Computing for IoT,” Int. J. Pure Appl. Math., vol. 119,
no. 10, pp. 531–543, 2018.

[44] V. C.P and D. A. A. Chikkamannur, “IOT future in Edge Computing,”
Int. J. Adv. Eng. Res. Sci., vol. 3, no. 12, pp. 148–154, 2016.

[45] R. Grossman and Y. Gu, “Data mining using high performance data
clouds: experimental studies using sector and sphere,” in Proceedings of
the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2008, pp. 920–927.

[46] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[47] A. F. Gates et al., “Building a high-level dataflow system on top of
Map-Reduce: the Pig experience,” Proc. VLDB Endow., vol. 2, no. 2,
pp. 1414–1425, 2009.

[48] Y. Kim, W. N. Street, and F. Menczer, “Evolutionary model selection in
unsupervised learning,” Intell. data Anal., vol. 6, no. 6, pp. 531–556,
2002.

[49] K. A. A. Nazeer and M. P. Sebastian, “Improving the Accuracy and
Efficiency of the k-means Clustering Algorithm,” in Proceedings of the
world congress on engineering, 2009, vol. 1, pp. 1–3.

[50] C. Slamet, A. Rahman, M. A. Ramdhani, and W. Darmalaksana,
“Clustering the Verses of the Holy Qur’an using K-Means Algorithm,”
Asian J. Inf. Technol., vol. 15, no. 24, pp. 5159–5162, 2016.

[51] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “MIFS-ND: A mutual
information-based feature selection method,” Expert Syst. Appl., vol.
41, no. 14, pp. 6371–6385, 2014.

[52] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance
and redundancy,” J. Mach. Learn. Res., vol. 5, no. Oct, pp. 1205–1224,
2004.

[53] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–
501, 2006.

[54] H. A. Wibawa, I. Malik, and N. Bahtiar, “Evaluation of Kernel-Based
Extreme Learning Machine Performance for Prediction of Chronic
Kidney Disease,” in 2018 2nd International Conference on Informatics
and Computational Sciences (ICICoS), 2018, pp. 1–4.

