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Abstract—Graphical methods are intended to be introduced 

in hydrology for visualizing functional data and detecting outliers 

as smooth curves. These proposed methods comprise of a 

rainbow plot for visualization of data in large amount and 

bivariate and functional bagplot and boxplot for detection of 

outliers graphically. The bagplot and boxplot are composed by 

using first two score series of robust principal component 

following Tukey’s depth and regions of highest density. These 

proposed methods have the tendency to produce not only the 

graphical display of hydrological data but also the detected 

outliers. These outliers are intended to be compared with outliers 

obtained from several other existing nongraphical methods of 

outlier detection in functional context so that the superiority of 

the proposed graphical methods for identifying outliers can be 

legitimated. Hence present paper aims to demonstrate that the 

graphical methods for detection of outliers are authentic and 

reliable approaches compare to those methods of outlier 

detection that are nongraphical. 

Keywords—Rainbow plot; bivariate bagplot; functional 

bagplot; bivariate boxplot; functional boxplot 

I. INTRODUCTION 

Methods of visualization help in exploring those 
characteristics which might have been neglected when using 
summary statistics and mathematical models. This area of 
study did not receive much attention when analysing data in a 
functional context. 

Reference [1] bought this matter under consideration and 
introduced graphical tools for visualizing functional data and 
detecting functional outliers. These proposed graphical tools 
include three new methods the rainbow plot, the bagplot and 
the boxplot for displaying functional data graphically since it 
was aimed to make a contribution to the analytic toolbox of 
functional data. The bagplot and boxplot have the benefit of 
identifying outliers graphically which might not be visible 
through the original data plot. Curves of outliers may either 
located outside the data range and represent “magnitude 
outliers” or they may locate within the data range but having 
different shape compare to other existing curves and appear as 
“shape outliers” or they might exhibit due to these combined 
features. Outliers of all types should be dealt while attempting 
to identify curves of outliers. The proposed graphical methods 
were also legitimated as the better approaches for detecting 
outliers by comparing them with various other existing 
nongraphical methods of outlier detection. 

The proposed graphical methods for data visualization and 
outlier detection were practised by [2-4] on hydrological data. 
Hence the work of [1, 2] is intended to be implemented on a 
daily flow series of Taunsa Barrage on Indus river in Pakistan. 

II. LITERATURE REVIEW 

Functional data are gaining immense importance in 
numerous fields, therefore latest statistical tools are required to 
be developed so that functional data can be analysed. Hence, 
the analysis of data comprises of the smooth curve are of 
interest in the present paper. Authors in [5-7] present surveys 
in detail regarding many nonparametric techniques to analyse 
functional data. 

Most of the studies emphasis on functional data clustering, 
modelling and forecasting with visualization having a minor 
role to play. The phase-plane plot and the rug plot presented by 
[8] and [9], respectively, are of notable exceptions for 
highlighting characteristics of important distributions using 
first and second functional data derivatives. A plot of singular 
value decomposition introduced by [10] is another exception, 
which shows the latent component changes due to an increase 
in the dimensionality or sample size. 

The work of [1] has been extended for identification of 
outlier curves with respect to shape or magnitude or 
combination of magnitude-shape features. Outliergram was 
introduced by [11] for detecting shape outliers, [12] presented 
functional outliers taxonomy by proposing methods of 
visualization for detecting outliers whereas [13] introduced 
plots for displaying outlier curves having combined magnitude-
shape features. Several other methods have also been recently 
developed by [14-17] for data visualization and outlier 
detection in functional framework. The study conducted by [2] 
in hydrology has been employed for classification of 
hydrograph by [18] and for the purpose of streamflow 
forecasting by [19]. 

This paper is organized as follows: Section 2 contains the 
discussion about graphical and nongraphical functional 
methods. The description of employed hydrological data is 
presented in Section 3. Section 4 contains the application, 
discussion and results of the discussed methods on the 
employed hydrological data and the corresponding conclusion 
are presented in Section 5. 
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III. METHODOLOGY 

This section represents a functional graphical method for 
visualizing data and also functional graphical and nongraphical 
methods for detecting and computing outliers, respectively. 
The rainbow plot provides data visualization graphically 
whereas bagplot and boxplot are graphical methods for outlier 
detection. Outliers are computed nongraphically using 
functional mathematical methods which include methods of 
likelihood ratio test, integrated error square, functional depth 
and robust Mahalanobis distances. 

A. Functional Graphical Methods for Data Visualization and 

Outlier Detection 

Outliers are observations which are unusual and required to 
be detected and treated [20]. A crucial phase before modelling 
in data analysis is to detect and treat outliers since outliers also 
affect the analysis, modelling and forecasting of data in 
hydrology, therefore detailed study in this regard was 
conducted by [2] in hydrology. Hence, the present section 
contains functional graphical methods for outlier detection to 
explore and analyse unusual observations. 

Various methods were presented in some works of 
literature of functional context for outlier detection by [21-23]. 
However, [1] introduced new tools for detection of outliers 
which do not only identify outliers accurately and have fast 
computing speed but also provide a graphical presentation of 
outliers to observe the behaviour of unusual observations. 
These proposed graphical approaches contain rainbow plot for 
visualization of data pattern whereas bagplot and boxplot are 
the tools for identifying outliers graphically. The observations 
or curves which locate within or outside the range of data due 
to unusual structure or shape are identified as outliers. 
Practically, results may vary between the two methods 
proposed for outlier detection depending on the nature of 
employed data. 

1) Rainbow plot: The rainbow plot introduced by [1] and 

implemented by [2,4] in hydrology for the purpose of 

visualizing a complete set of employed data through a single 

plot having a distinct feature of displaying data curves using 

rainbow colour palette following data order. Two indices are 

used for data ordering that are functional depth and data 

density. The bivariate score depth and kernel density estimates 

are used for computation of the data ordering indices. The 

bivariate score depth is written as 

     (    )                                 (1) 

where        is the function of half-space depth introduced 
by [24]. Depth function by Tukey for bivariate score series    

of first two principal components is defined as the amount of 
smallest observations present in closed half-space with    

points on the boundary. The observations arrange decreasingly 
following depth values     order. The first curve according to 

the depth order is the median curve having highest     whereas 

curve having lowest     is the outermost curve. The median 

curve based on Tukey’s depth function is obtained using a 
bivariate score series    as observations of the curve which is 

adopted as an alternate approach to original data for 

simplification. The series    as observations of functional data 

are also ordered using kernel density estimate [25] as follows: 

     ̂(  )  
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where K(.) is a kernel function and smoothing parameter    
is a bandwidth of kth point     . The observations are arranged 
decreasingly following     order. Hence, the mode curve is 

the first curve containing the highest OD whereas the curve 
containing the lowest OD is an outlying curve. The curves 
ordered according to OT and OD are displayed according to 
order of rainbow colour in such a way that the curves closest to 
median or mode appear in red whereas outlying curves appear 
in violet colour. 

2) Functional bagplot: The bivariate bagplot based on 

half-space depth function was introduced by [26]. This plot 

was employed in multivariate and functional context by [27] 

and [2,4] respectively in hydrology using streamflow data. 

The functional bagplot is obtained following the pattern of 

bivariate bagplot which is composed using the first two score 

series                of principal components in such a way 

that each bivariate bagplot point correspond to each functional 

bagplot curve. Three elements that are the central median 

curve surrounded by inner region enclosed in an outer region 

cause the formation of bivariate bagplot which also contribute 

to the composition of functional bagplot. The inner region 

captures total observation of 50 per cent and surrounded by 95 

or 99 per cent of total observation bounded by the outer region 

which is formed by inflating inner region according to ρ 

factor. Author in [1] suggested ρ value 1.96 for 95 per cent 

inflation and 2.58 for 99 per cent inflation since the standard 

normal distribution is followed by score series   . Finally, the 

points appear outside the inflated outer region are outliers. 

3) Functional boxplot: The bivariate boxplot based on 

highest density region is composed by the first two    score 

vector of the principal component was introduced by [28]. The 

pattern employed for the formation of bivariate boxplot is 

followed for the composition of a functional boxplot. The 

detailed study regarding functional boxplot was organized by 

[1] and practised by [2,4] in hydrology. Recently, applications 

of boxplot in functional context have been conducted by 

[29,30]. 

As discussed in subsequent section, three elements 
correspond to bivariate boxplot, combine to compose a 
functional boxplot such that mode curve is formed in the centre 
of inner region containing 50 per cent data observations 
enclosed in an outer region having 95 or 99 per cent of total 
observation while the observations not bounded by outer 
region and located outside the region are outliers. 

The difference in outliers obtained by bagplot and boxplot 
are due to the approaches used for establishing inner and outer 
regions since median and depth function belong to bagplot 
whereas mode and density estimate belong to boxplot. Hence, 
outliers displayed by bagplot are unusual observations 
compared to median whereas boxplot display outliers which 
are unusual with respect to mode. 
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B. Detection of Outliers using Nongraphical Functional 

Methods 

Reference [1] proposed the comparison of graphical 
methods (i.e. bagplot & boxplot) with various nongraphical 
methods for detecting functional outliers, performed on 
discretized functions. The graphical method has been 
legitimated better able to detect outliers than other 
nongraphical methods. The nongraphical methods for detecting 
functional outliers are as follows: 

1) Method of likelihood ratio test: Reference [22] 

proposed a method for detecting outlier which calculates a 

statistic of likelihood ratio test for each       curve. An 

outlier is a value when most of the test statistics exceed a 

given ᴄ critical value. This outlier value is then removed and 

the new outlier is obtained from the remaining data. This 

process stops when no more values of outliers are detected. 

Following equation based on depth function is used for this 

test 

   ∫ (     )                (3) 

A univariate measure of depth for a particular x value is 

 (     ). According to this definition, the curves are ordered 

increasingly by an order of     , such that a curve with the 

lowest depth function is the first curve whereas a curve with 
the highest depth function is the last curve. 

2) Method of integrated error square: Author in [31] 

proposed a method for detecting outliers which contains the 

principal component analysis of robust function. Let the 

integration of error square for jth observation be 

      ∫   
       

 
 ∫        ∑           

 
   

 
  

 
   (4) 

where L is a number of pre-specified components; usually 
2, {      } are the functions of principal components and      
are their related scores. This provides an accurate measure of 
the approximated principal component for jth observation. 
High integrated error square indicates points with high 
likelihood as outliers. If ej(x) is distributed normally, then 
      follows a chi-square      distribution with          
              then the probability that       where   

   √  and  = median ({        }), is approximately 

    √  , where      is the standard normal distribution 

function. For example,        √       when λ = 3.29. 

3) Method of functional depth: Author in [32] proposed a 

method for detecting outliers by employing functional depth 

including all curves as well as trimmed curves. The centre of a 

group of curves is measured using the functional depth. 

Hence, a group of curves ordered in the outward centre is 

obtained through depth. In fact, the curve having maximum 

depth can be considered as an estimate for the functional 

distribution centre. Therefore, depth is an inverse notion of 

outlyingness and curves of functional outliers which are 

supposed to be located far from the central region of the data, 

are the curves with low depth. Hence, functional outlier curves 

are detected having comparatively lower depth. 

4) Method of robust mahalanobis distances: The Robust 

Mahalanobis distance is a multivariate method for detection of 

outliers which is applicable on discretized curves           
      . Suppose the functional data are obtained on an equal 

distance {         }dense grid, the Mahalanobis distance 

square is defined as 

            ̂      ∑̂
           ̂              (5) 

where the mean of a sample is  ̂    , ∑̂ is a covariance 
matrix robust estimate of          which is assumed to be a 

positive definite, such that ∑̂   is nonsingular. The comparison 
of resultant distance with a critical value follows    
distribution having degrees of freedom p. For α=99%, a 
predefined level, observations are considered to be outliers that 
contain Mahalanobis distance square greater than 

       
               . The Robust Mahalanobis distance 

variations are further discussed by [21,33]. 

IV. DATA DESCRIPTION 

The major data source in hydrology is daily streamflow. 
Flows of water are also recorded instantly, hourly or on other 
time scales. The data series of the daily flow of Taunsa barrage 
are available from Sindh Irrigation department, Sindh 
Secretariat, Karachi, Pakistan. 

Taunsa barrage is built in Taunsa Tehsil of Dera Ghazi 
Khan District located in Punjab province on the Indus River in 
Pakistan. It has a discharge capacity of up to 1,000,000 cusecs 
(i.e. approximately 28300      ). Fig. 1 indicates the 
geographical location of the Taunsa Barrage. 

 

Fig. 1. Geographical Location of Taunsa Barrage 

https://en.wikipedia.org/wiki/Taunsa_Tehsil
https://en.wikipedia.org/wiki/Dera_Ghazi_Khan_District
https://en.wikipedia.org/wiki/Dera_Ghazi_Khan_District
https://en.wikipedia.org/wiki/Pakistan
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Some studies use data of entire year while some use data of 
only high flow season depending on what region is considered 
as an area for flood analysis. Data used in the present study are 
the observations of 6 months (      days) for the duration 
of years 1977 to 2017 (n=41 years) since high flow season is 
observed during April to September in Pakistan. The series of 

observations are    (                 )
 

,           , 

         , where n=41 years,       days and        is 

the recorded discrete flow value on    day in the jth year. 
Before any calculation is performed the values of streamflow 
which are recorded originally in cusec (a volume flow rate) are 
required to be converted into cubic meter per second (      ). 

V. ANALYSIS 

Specific formats of data ordering are followed by all the 
proposed graphical methods. Rainbow plot displays the curves 
of all the data in a single plot having a distinct feature of colour 
palette following the order of rainbow colours. By default, time 
order is followed by the curves of rainbow plot in such a way 
that the curve of the recent past appear in violet whereas curve 
belongs to remote past is appear in red colour. 

The rainbow plot is the simplest way of displaying all the 
data in the functional format ordered with respect to time. Due 
to the overlapping of the number of curves, “median curve” or 
“mode curve” is not easily identified or it is difficult to locate 
where the majority of data curves present. Also, outliers are 
difficult to be identified if other curves obscure them. 
Therefore, there are also other options for ordering functional 
data using (1) and (2), respectively. This ordering is done using 
rainbow plot such that curves colour then follows the pattern of 
rainbow according to depth or density ordering. The curve near 
the core of data appears in red, whereas the curve in violet is an 
outlying curve. Since plotted curves follow either depth or 
density ordering, the red data curves are usually obscure, 
whereas data curves in violet are seen distinctly even if they 
are overlapped by other data curves. 

The simple rainbow plot follows time ordering as shown by 
Fig. 2(a), but some data sets required to be ordered according 
to the data value themselves. Therefore, two optional ordering 
methods stated earlier i.e. depth or density uses the first two 
scores of principal components for measuring either “depth” or 
“density” of data according to the order of data values. 

Tukey’s depth is described as the number of smallest data 
values present in an enclosed half-plane. The data values are 
then increasingly ordered as the             distance, using 
(1). The curve we first obtain by this order is considered as a 
curve of the median, while the last order curve is the outlying 
curve among all curves where a distance from the median to 
each curve is defined as depth. Depth ordering rainbow plot is 
depicted in Fig. 2(b). The black curve in the centre represents 
the median, the curve in purple is an outlying curve and the 
curve in red, near the median, is not clearly seen due to the 
other data curves are overlapping. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Rainbow Plots with (a) Time (b) Depth and (c) Density Ordering for 

Years 1977-2017. 
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The third way for ordering data points is by the estimate of 
kernel density at each data value, using (2). The values of 
{ODi} decreasingly order the functional data, such that the first 
order curve is the curve of highest density and considered as 
“mode curve” whereas the last order curve is the curve of 
lowest density and considered as an unusual outlying curve. It 
can be noted that the values of the last curve obtained through 
this ordering is possibly remain the same compared to the other 
curves and its         bivariate scores might be in the centre of 
        scatter plot such that no other points are around it and 
hence having the value of lower density. Results reveal that 
both ordering methods may follow a similar order, especially 
for high ordering years. Density ordering rainbow plot is 
depicted in Fig. 2(c). The black curve in the centre represents a 
mode, the curve in purple is an outlying curve and the curve in 
red, near mode, is not clearly seen due to the other data curves 
are overlapping. 

The data observations ordered by depth and density, lead to 
the formation of bivariate and functional bagplot and boxplot, 
as described in the subsections of 2.1. The association of 
bivariate and functional bagplot and boxplot to the first two 
scores of principal components for the probability coverage of 
95% and 99% are illustrated in Fig. 3 and Fig. 4. The bivariate 
bagplot and boxplot exhibit median and mode, respectively, the 
inner region which covers 50% and an outer region which 
accumulate 95% or 99% of data values depending on the 
selected values of factor ρ i.e. either 1.96 or 2.58. The 
functional bagplot and boxplot contain curve of median and 
mode, respectively, area of the inner region and outer region. 
The functional bagplot and boxplot inner and outer region 
contain 50% and 95% or 99% of all the data curves, 
respectively. 

   
(a)        (b) 

   
(c)        (d) 

Fig. 3. (a) The bivariate and (b) Functional Bag Plot with 95%, whereas (c) The Bivariate and (d) Functional Bag Plot with 99% of Probability Coverage. 
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(a)        (b) 

  
(c)        (d) 

Fig. 4. (a) The Bivariate and (b) Functional Boxplot with 95%, While (c) The Bivariate and (d) Functional Boxplot with 99% of Probability Coverage. 

The dark grey shaded area of bivariate bagplot and boxplot 
displays inner 50% region whereas area in light grey shade 
exhibits outer 95% and 99% region. These shaded areas 
correspond to the region of functional bagplot and boxplot with 
same shades. Points that appear beyond the outer region are 
detected as outliers. The bivariate bagplot and boxplot outliers 
appear in several colours match to the colour of functional 
bagplot and boxplot outlier curves. The median and mode 
display as the mark of a red asterisk (Fig. 3(a) and 3(c)) and 
(Fig. 4(a) and 4(c)), respectively, which corresponds to the 
black curve of median and mode appears in functional bagplot 
and boxplot (Fig. 3(b) and 3(d)) and (Fig. 4(b) and 4(d)), 
respectively. 

It is clearly observed from Fig. 3 that the years 1983 and 
2010 are identified as outliers when 95% region of both 
bivariate and functional bagplots are considered as displayed 
by Fig. 3(a) and 3(b). Besides this, no outlier is located outside 

the 99% region of bivariate and functional bagplots, as 
exhibited by Fig. 3(c) and 3(d). Note that, usually when 
outliers are found near the median, it is difficult to be detected 
by bagplot [1]. Therefore, it is authentic to use more 
appropriate approach and that is boxplot. The years 1978 and 
1983 appear beyond 95% outer region as shown by Fig. 4(a) 
and 4(b). The only outlier detected with the probability 
coverage of 99% is the year 2010 which is displayed outside 
the bivariate and functional boxplot outer region as displayed 
by Fig. 4(c) and 4(d). It can be deduced that the outlying year 
1978 is close to the median, therefore, it was not detected by 
bagplot whereas the outlying years 1986 and 2010 are not close 
to the median. It can be concluded that the flow corresponds to 
the year 2010 is an outlier having different shape and 
magnitude compared to the curve of other years. The year 2010 
is an authentic outlier identified through both bagplot and 
boxplot. Hence, boxplot is considered a more reliable approach 
for the detection of outliers than bagplot. 
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As discussed earlier in Section 2.1 that the bagplot and 
boxplot are the graphical methods for detecting and identifying 
functional outliers. These detected outliers are compared to the 
outliers detected by various nongraphical methods for detecting 
functional outliers, as discussed in Section 2.2. The purpose of 
conducting this comparison is to legitimate that the graphical 
methods are better able to detect outliers than nongraphical 
methods in a functional context. The nongraphical methods for 
detecting outliers were applied to the smoothed flow data for 
years 1977-2017. Outputs of nongraphical methods; likelihood, 
integrated error, depth and Robust method, and graphical 
methods; bagplot and boxplot for functional data are tabulated 
in Table I with the computation time of each method. 

VI. RESULTS 

The results displayed by Table I demonstrates that 
likelihood method is unable to detect any outliers, the 
integrated method detected several outliers, a similar result is 
also produced by depth method while robust method provides a 
comparatively better result. Hence, the likelihood method 
produced the worst performance with respect to accuracy and 
computation time. The integrated method detected many years, 
among them only a few exist as outliers. The depth method is 
unable to encounter shape outliers according to [34] analysis, 
therefore results show false detection and slow computation 
time. In contrast, the highest accuracy and fastest time 
computation for detecting outliers are achieved by functional 
bagplot and boxplot, compare to other earlier implemented 
methods i.e. likelihood, integrated error, depth and Robust 
method. 

The graphical methods to visualize functional data and 
identify functional outlier have advantages that they not only 
accurately detect outliers but also simultaneously give the 
graphical presentation to visualize those outliers. Hence, 
resultant values in Table I demonstrate that the performance of 
proposed graphical methods is explicitly better than existing 
nongraphical methods for detecting outliers. In spite of the fact 
that sometimes the method of bagplot could not detect those 
outliers which are around the curve of median and such outliers 
can be identified correctly by boxplot, the bagplot and boxplot 
are authentic methods for detecting correct functional outliers. 

TABLE. I. A COMPARISON OF THE OUTLIER DETECTION PERFORMANCES 

Methods Detected outliers Time (mins) 

Likelihood ratio test None 1.54 

Integrated squared 

error 

1978, 1979, 1981, 1983, 1984, 

1987, 1988, 1989, 1990, 1991, 

1992, 1994, 1995, 1996, 1997, 
1998, 2005, 2006, 2010, 2015 

2.33 

Functional depth 
2010, 20111, 2012, 2013, 2014, 

2015, 2016, 2017 
2.19 

Robust Mahalanobis 

Distance 
2010 0.45 

Functional bagplot None 0.01 

Functional HDR 

boxplot 
2010 0.37 

VII. CONCLUSION 

In this paper, three graphical methods for visualization of 
functional data and identification of functional outliers have 
been employed. Ranking scores of principal components using 
depth or density of data is performed in a two-dimensional 
space so that inliers and outliers are separated. The graphical 
presentation is obtained by scores matching, displayed by both 
bivariate bagplot and boxplot followed by functional curves. 
The approaches employed in this paper have the benefits of 
accurately detecting outliers with a fast-paced computation 
while simultaneously representing it graphically. 

The results obtained from the implementation of the 
proposed method on the data of Taunsa Barrage illustrate that 
the graphical methods are better in performance compare to 
existing nongraphical methods for detecting outliers, which 
either detect miss obvious or spurious outliers. 

Besides this, the method of depth-based which contribute in 
the formation of bagplot is not able to detect outliers that are 
close to the curve of median whereas the method of density-
based which contribute in the formation of boxplot can detect 
such outliers authentically. Hence boxplot is more reliable 
compared to bagplot nevertheless both the graphical 
approaches are authentic for displaying and detecting concrete 
outliers. 

VIII. FUTURE SCOPE 

Functional data modelling, analysing and forecasting are 
seriously affected due to the outlier presence. Statistical 
analysis can lead to invalid conclusions if the identification and 
treatment of outliers are ignored. Hence, a crucial phase before 
modelling is to detect and treat outliers so that outliers do not 
affect the analysis and forecasting of data in hydrology. 
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