
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

48 | P a g e

www.ijacsa.thesai.org

Software Design using Genetic Quality Components

Search

Evgeny Nikulchev
1
, Dmitry Ilin

2
, Aleksander Gusev

3

MIREA – Russian Technological University

Russia

Abstract—The paper presents a software design methodology

based on computational experiments for effective selection of

software component set. The selection of components is

performed with respect to the numerical quality criteria

evaluated in the reproducible experiments with various sets of

components in the virtual infrastructure simulating the operating

conditions of a software system being developed. To reduce the

number of experiments with unpromising sets of components the

genetic algorithm is applied. For representing the sets of

components in the form of natural genotypes, the encoding

mapping is introduced, reverse mapping is used to decipher the

genotype. In the first step of the technique, the genetic algorithm

creates an initial population of random genotypes that are

converted into the assessed sets of software components. The

paper shows the application of the proposed methodology to find

the effective choice of Node.js components. For this purpose, a

MATLAB program of genetic search and experimental scenario

for a virtual machine running Ubuntu 16.04 LTS operating

system were developed. To guarantee the proper reproduction of

the experimental conditions, the Vagrant and Ansible

configuration tools were used to create the virtual environment

of the experiment.

Keywords—Software design; selection of software components

set; numerical quality criteria evaluated; genetic algorithm

I. INTRODUCTION

Effective selection of software components based on
assessments of the quality of service criteria [1] is becoming
increasingly important problem [2] in connection with the
spread of the framework approach to software development.
This paper considers the problem in the context of highly
loaded distributed client-server information systems (IS)
implemented in the JavaScript.

The framework is a template of architectural solution. It
allows the developer to unify the process of developing an IS
based on a combination of the constant part of the IS
(framework), which does not vary from configuration to
configuration, and connected components that are compatible
with the constant part. The JavaScript framework is a
framework written in the JavaScript language that allows
programmers to manipulate a set of compatible components
(libraries) to solve a problem. The framework differs from the
JavaScript library in the control flow: the library is always
called by its parent code, while the framework defines the
overall architecture of the IS and calls certain components to
implement the functionality defined by the developer.

The aim of this work is creating and experimentally testing
a technique for effectively selecting the software components
for the framework based on experimental evaluations of quality
criteria.

The article consists of six sections. The first is Introduction.
In the second section the review of the related works is
presented. In the third section the problem is formulated. The
fourth section describes the methods of genetic search and the
configuration of the experimental stand. The fifth section
provides the results of the genetic search. The sixth section
discusses the results. The seventh section concludes the article.

II. RELATED WORKS

Solved with the help of JavaScript in recent years, the
variety of tasks has led to the emergence of hundreds of
frameworks. They can be divided into two groups. (1)
Universal one (for example, Node.js), which allows the
developers to use JavaScript for writing the server part of a
web application as a general-purpose language with the ability
to interact with I/O devices. (2) Frameworks for writing
browser-based (front-end) applications running on the user's
side, such as the followings: Angular.js, Angular (it is written
in TypeScript, which is a backwards-compatible JavaScript
modification), Vue.js, React.js and lots of others.

To support the optimal choice of the framework, various
techniques were proposed earlier. Those techniques allowed
the developers to assess the compliance of the framework with
the general needs of the developer for a given set of
components using the performance benchmark results [3] or
expert evaluations [4]. However, an urgent task is creation of a
methodology for selecting the efficient set of software
components for the specified framework to provide the
guaranteed quality of service [5] (QoS) and the efficiency of
operation under given conditions. Those conditions include the
specific development environment, computing infrastructure,
computational loads during normal and peak operation, etc.

The basic element of such a technique should be the
procedure for conducting reproducible computational
experiments to assess the quality of the functioning of software
components. Unlike the automated software testing [6], the
experimental assessment of the quality of the functioning
would provide more flexible approach to select the components
for the IS even if there were no errors reported but the
performance of the IS could be increased with effective
selection of the components. By automating this procedure, it
is generally necessary to solve the problem of reducing the

The research was performed as part of the state task of the Ministry of

science and height education of Russian Federation, project 25.13253.2018 /
12.1 “Development of the technological concept of the Data Center for

Interdisciplinary Research in Education”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

49 | P a g e

www.ijacsa.thesai.org

number of iterations of software components in order to obtain
the effective set. The solution can be found using genetic
algorithms [7]. They have proven themselves to be useful in
assessing the problem of multicriteria optimization in the field
of software development: evolutionary software development
cost estimation [8]; optimization of computing resources
utilization [9, 10]; generating optimal test data sets [11];
evaluating [12] software reliability; optimization of software
partitioning into modules [13]; prioritizing client requirements
for software development [14]; software refactoring [15]; in
solving problems of project management [16] and human
resources allocation [17]; in other tasks, including those related
to the development of cloud web – services with QoS-aware
resource allocation and dynamic web-service composition [18–
20].

III. MODEL AND RESEARCH METHODS

Let us consider n functional features , 1, iq i n , which

should be implemented in the IS and t different configurations

, 1,k k t  of the virtual infrastructure, simulating the IS

operating conditions; M is the set of all the software
components available for the research, each of which

implements at least one of the features .iq The subset of

alternative software components from ,M suitable for

implementing the feature iq is denoted as , 1, im i n . Let us

consider the situation when there exist p technology stacks

, 1,js j p i.e. such sets of software components, in which for

every feature , 1, iq i n there exists at least one software

component from .M Let us denote the set of all possible

stacks as .S We introduce then the set of f experimentally

evaluated partial quality criteria , ,k jr 1, f  , values of

which belong to the space fR . Thus,

, f : ,k j k js R  R

, , , ,,
1 2(, , , , ,) , 1, , 1, ,k j k j k j k jk j T

fR r r r r k t j p    

where , , 1, , 1, , 1, k jr f k t j p     are the values of

experimentally evaluated partial quality criteria for the

configuration k of the virtual infrastructure and the stack
js

being evaluated.

Let us introduce the integral quality criteria for the IS:

  ,

1

Ψ , ,

f

k jk js w r 



 
 (1)

where
,k j

r are the normalized values of partial quality

criteria
,k jr ;

1, f 
; ,w are the weights of the partial

criteria. Herewith

1

1

f

w



 .

The problem of the effective choice of software
components based on the experimental evaluation of the
quality of operation (see Fig. 1) for the chosen configuration of

the virtual infrastructure
k consists in the choice of the

technology stack
*s satisfying the following condition:

 *

, 1,

argminΨ , .
j

k j

s j p

s s


 

 (2)

Using the above introduced approach let us consider the
case of selecting Node.js components.

Table I shows the set of functional features and
components that implement those features in a computational
experiment. Thus, 10, 216n p  .

The considered configuration , 1k k t   of the virtual

infrastructure is specified in Table II.

The evaluation of the quality of operation is performed with

respect to the 14f  partial quality criteria defined in

Table III.

The weighting factors for the criteria are 2 11 0.08;ww  

0.07(1, 3, 10, 12)w       , setting the target QoS.

When conducting the experiment,
, (1,14,k jr  

1, , 1,)k t j p  are normalized with respect to their

maximum values in the experiment and take their values in the
segment [0; 1].

The task is selecting the stack
*s of Node.js components,

solving the problem (2).

Fig. 1. The Effective Choice of Software Components based on the

Experimental Evaluation of the Quality of Operation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

50 | P a g e

www.ijacsa.thesai.org

TABLE. I. LIST OF FUNCTIONAL FEATURES AND COMPONENTS

iq

Name of the

functional feature

Alternative

components
Description

1q

Filter
Lodash
Underscore

Checks all the elements of
an array against some

condition and returns an

array of elements for which
the check gave “True”

2q

First
Lodash

Underscore

Returns the first element of

an array

3q

FsRead
Fs–extra

Fs
Reads data from a file

4q

FsReaddir Fs–extra
Reads the contents of a

directory

5q

FsReaddirRecursive
Recursive–
readdir

Recursively reads the
contents of a directory

6q

HashMD5

Hasha

md5
Ts–md5

Calculates the MD5 hash

for the specified data set

7q

Map

Lodash

Underscore
JavaScript

language tools

Applies the specified
function to all the elements

of the array, thereby
returning a new array

consisting of the

transformed elements

8q

PathResolve Path

Generates the full path to

the file or directory based
on the specified array of

path elements

9q

StringReplace
JavaScript

language tools

Finds and replaces a

substring in the string
passed

10q

ZipCompress
Adm–zip
Jszip

Zipit

Performs archiving of the

transferred file array and
returns the generated Zip –

archive

TABLE. II. VIRTUAL INFRASTRUCTURE CONFIGURATION (1)k k 

Num. Parameter Value

1 CPU Intel® Core ™ i7–7700

2 Number of cores 4

3 Number of logical processors 8

4 Clock frequency 3.60 GHz

5 RAM 12.0 GB

5 Host operating system Ubuntu 16.04 LTS

6 Vagrant version 2.2.4

7 Node.js version 10.15.3

8 Virtual machine parameters

2 CPU cores

2.0 GB RAM
Ubuntu 16.04 LTS

9 Provisioning software Ansible

10
File exchange tools for the virtual
machine

NFS–server + BindFS inside
the virtual machine

11 Additional system software

– git
– make

– htop

– iotop
– rsync

– node–gyp

TABLE. III. PARTIAL QUALITY CRITERIA (1, 1,k j p )

Notation Criterion Unit

,
1
k jr

The microprocessor operating time spent

on the initialization of the experiment
ms

,
2

k jr

The operating time of the microprocessor

spent on the execution of system functions
during the initialization of the experiment

ms

,
3

k jr

The increase in the Resident Set Size

noted after the completion of the

initialization of the experiment (including
heap, code segment and stack)

byte

,
4

k jr

The increase in the heap size, marked

upon completion of the initialization of the
experiment

byte

,
5

k jr

The increase in the volume of the used

heap, marked upon completion of the

initialization of the experiment

byte

,
6

k jr

The increase in the amount of RAM used
by C++ objects associated with JavaScript

objects, marked after the experiment has

been initialized

byte

,
7

k jr
The real time spent on the initialization of

the experiment
ns

,
8

k jr
The microprocessor operating time spent
on the experiment

ms

,
9

k jr

The microprocessor operating time spent

on the execution of system functions
during the experiment

ms

,
10

k jr

The increase in the Resident Set Size

noted at the end of the experiment

(including heap, code segment and stack)

byte

,
11

k jr
The increase in the heap size, marked at
the end of the experiment

byte

,
12

k jr
The increase in the amount of the used

heap noted at the end of the experiment
byte

,
13

k jr

The increase in the amount of RAM used
by C ++ objects associated with JavaScript

objects, marked upon completion of the

experiment

byte

,
14

k jr Real time spent on the experiment ns

IV. EXPERIMENTAL METHODOLOGY

The automated methodology for selecting an effective set
of software components involves the use of a genetic algorithm
to generate and experimentally evaluate stacks of technologies
(see Fig. 2).

The integration of the components of the stack is
implemented using a functional approach, which is the most
convenient way to combine various sets of software
components. Each function which is being called during the
experiment is a kind of software interface that is implemented
using one of the stack components. Since components, as a
rule, provide tools that go beyond a single function, they can be
used to implement several functions. The use of a single
component for performing a variety of tasks in the general case
is preferable, since it reduces the amount of RAM needed by
the IS.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

51 | P a g e

www.ijacsa.thesai.org

Fig. 2. Experimental Methodology.

At the initialization stage, the functions, which define the
basic settings of the components, are called. Each of them
forms a new anonymous function at the output, which has
exclusive access to the component with the specified settings.
Next, anonymous functions are placed in a single namespace
with the names listed in Table III. To increase the reliability of
the results obtained, the component cache (also known as
Node.js module cache) is cleared before initialization.

After the initialization, the execution phase of the
experimental algorithm begins. For research purposes, the
following experimental algorithm is used:

1) Form the path to the directory with a set of

subdirectories.

2) Read the list of subdirectories.

3) Exclude hidden subdirectories.

4) Form the path for each directory.

5) Do the followings for each path:

a) Read all the list of files recursively.

b) Read and load into the RAM all the files.

c) Create a Zip-archive in the RAM.

d) Calculate the MD5-hash for the created archive.

After the initialization procedure and the execution of the
experimental algorithm are done, a json file results.json is
generated. It contains the source data for the calculation of the
integral criterion (1). This data is obtained through the interface
of the “process” object of Node.js.

The genetic search configuration is specified in Table IV.

For the numerical representation of stacks, the encoding

mapping is introduced as

: Λ nC S  N . Thus, to each stack

, 1, js j p , which is called a phenotype, the natural set

 (), 1,j jC s j p   , which is called a genotype, will

correspond. The genetic algorithm treats genotypes as

 1 ... , 1 , Θ
g g

h h h
g n gh    

,

TABLE. IV. GENETIC SEARCH CONFIGURATION

Num. Parameter Value

1 MATLAB version R2018a

2 Integer constraints All the genes are integer-valued

3 Selection operator Tournament selection [21]

4 Mutation operator Extended power mutation [21]

5 Crossover operator Laplace crossover [21]

6 Probability of mutation MP 0.01

7 Probability of crossover KP 0.8

8 Elite count 1

9 Population size 20

10 Max generations 100

11 Max stall generations 10

12 Function tolerance 0.01

where each
g

h
i takes its values in the range from 1 to im ,

with respect to the sequence number of the selected alternative

component from im ; Θg is a set of genotypes (population of

individuals), which belong to the gth generation,

, .ΘgH H p The inverse mapping 1

: Λ С S 

converts the genotype of a stack into its corresponding
phenotype. Considering the above introduced notation, the
initial problem (2) with the use of the genetic algorithm
transforms into the following problem:

 *

, 1 , Θ

argmin Ψ , ,
h
G G

k h
G G

s h

s s


 

 (3)

where G is the last population of individuals before the

genetic algorithm stops.

Thereby, the algorithm of genetic search for the solution of
problem (3) consists of the following steps:

1) Create the initial population: assign 1 g  ; generate N

random genotypes constituting the initial population
1 2

1 1 1 1Θ { , , , }H     , get the corresponding choice of the

software components
1

1 1 ()
j j

s C  for each 1
h , perform the

computational experiment and calculate the value vector of the

integral criterion (1) for each individual in the population

1 2(, , ,)H      , 1 Ψ ,(,)
jk

i s   ; set
1,

minmin j
j H

   .

2) Start creating the next generation: assign 1  .

3) Select the first parent: assign 1g g  ; using the

specified selection method, choose 'g
 individual as the first

parent.

4) Crossing-over: using the specified selection method,

choose ''g
 individual as the second parent. With the

probability КP , cross over the parents 'g
 and ''g

 using the

specified crossing-over operator. Mark the result (the child) as

 'g
 .

5) Mutation: with the probability МP , act on the

individual 'g
 with the specified mutation operator.

6) Create the next child: assign 1;    if H  then

go to step 7, else go to step 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

52 | P a g e

www.ijacsa.thesai.org

7) Select the elite individual: from the population g , the

individual i
g with the lowest value of the quality criterion

1,
mini jj H

   is selected.

8) Complete creating next generation: create the

population '1 '2
1 Θ { , , , ' }g g g

H
g      of individuals selected

earlier; for each 'g
 get the corresponding choice of the

software components 1
 (),' 'j j

g gs C  perform the

computational experiment and compute the value vector of

integral criterion (1) 1 2' (' , ' , ,),'H     
 '),Ψ(' ;k j

i gs  

set
1,

mi .nmin j
j H

  

9) Stop condition check: if no termination condition is

met then go to step 3, else issue the solution corresponding to

the min as the answer and terminate the genetic search.

In the general case, plenty of methods including
tournament selection, roulette wheel method, ranking method,
uniform ranking, sigma – clipping, and modifications of these
methods can be used as a selection operator. During the
crossing-over process, a new individual is created by
exchanging subsets of parameters between two parents. The
mutation operator changes the genotype of an individual in a
predetermined way.

However, when solving integer-constrained problems such
as the one considered in this paper, the special set of genetic
operators is used to produce the integer-valued genes. Those
operators were described in detail in [20].

The algorithm can be stopped in the following cases: it
reaches the limit number of generations, upon reaching the
limit number of stall generations (the best fitness value among
such consecutive generations does not change), when the
change of the average fitness for a number of consecutive
generations is less than the established threshold, at the request
of the user, in other cases defined by the developer.

To implement the genetic algorithm in solving the problem
(3) the ga library from the MATLAB Global Optimization
Toolbox was used. The experiment was carried out on a virtual
machine running Ubuntu 16.04 LTS, in which the Node.js
10.15.3 runtime was deployed. Creating a virtual machine is
carried out using the Vagrant virtual development environment
configuration tool. Ubuntu 16.04 LTS, in which the MATLAB
R2018a system was installed, was also used as the Host
operating system. It should be noted that the use of the virtual
machine helps to ensure the reproducibility of the
computational experiment, to avoid unrecorded changes in
parameters, to reduce the influence of other random factors on
the results of the experiment.

When the virtual machine starts, the reading of the
functions.json is performed. That file is generated by the
genetic search program. The functions.json file is a json
representation of the framework configuration under study

 1
i is C  which defines a set of alternative Node.js

components for the experiment. The experiment consists of
two main stages: the initialization of the components and the
execution of the experimental algorithm with those
components.

V. RESULTS

As a result of the implementation of 11 generations of
genetic search, the solution was found for the problem (3),
corresponding to the value of the integral criterion of 0.242436.
The average value of the integral criterion in the terminal
generation was 0.284875. Genetic search took 71 seconds and
ended when the specified threshold of convergence of the
algorithm was reached (Function tolerance). Experimental
measurements for the terminal generation of genetic search are

presented in the Table V for the criteria , ,
1 6... (1)k j k jr r k  and

in the Table VI for the criteria , ,
7 10 12 14... , ... , (1)k j k jr r r r k  .

The 11r criterion is equal to zero for all the individuals in the

terminal generation. The effective choice of components *
Gs is

identified in the Table VII.

The graph of genetic search, reflecting the solution process

for the problem of minimizing the integral quality criterion  ,
is shown in the Fig. 3.

It should be noted that the slight “oscillation” in the genetic
search graph was due to the unavoidable measurement noise
caused by small variations of the real-time execution of the
same process by the machine.

TABLE. V. EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL

GENERATION OF THE GENETIC SEARCH FOR THE CRITERIA
, ,

1 6... (1)k j k jr r k 

j

,

1

k jr

,

2

k jr

,

3

k jr

,

4

k jr

,

5

k jr

,

6

k jr

1 0.24 0 0.0754 0.6816 0.071 0.0873

2 0.24 0 0.0782 0.5243 0.0519 0.0672

3 0.28 0 0.1036 0.6291 0.0666 0.0807

4 0.2 0.4 0.1036 0.4719 0.055 0.0667

5 0.12 0.8 0.1032 0.5243 0.0565 0.0668

6 0.24 0 0.2392 0.6332 0.2689 0.1717

7 0.12 0.8 0.0766 0.5243 0.0584 0.0664

8 0.08 1.2 0.0782 0.5767 0.0564 0.0754

9 0.2 0.4 0.2388 0.6332 0.2689 0.1854

10 0.24 0 0.0766 0.6291 0.0586 0.0665

11 0.16 0.8 0.0774 0.5767 0.057 0.0674

12 0.2 0 0.1061 0.5767 0.0675 0.0892

13 0.16 0.4 0.1303 0.5243 0.0918 0.0754

14 0.16 0.8 0.1298 0.5243 0.0817 0.0667

15 0.16 1.2 0.2654 0.7381 0.3004 0.1714

16 0.2 0 0.0762 0.5243 0.0657 0.0748

17 0.24 0 0.1016 0.6291 0.0683 0.0829

18 0.2 0 0.1303 0.6291 0.0679 0.0748

19 0.2 0 0.1032 0.4719 0.0634 0.0745

20 0.2 0 0.1032 0.5243 0.0831 0.0668

Normalized, rounded to 4 decimal places, experimental measurements of the partial quality criteria in

the terminal generation of genetic search. The measurements corresponding to the effective solution
are highlighted

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

53 | P a g e

www.ijacsa.thesai.org

TABLE. VI. EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL

GENERATION OF THE GENETIC SEARCH FOR THE CRITERIA

, ,
7 10 12 14... , ... , (1)k j k jr r r r k 

j ,

7

k jr
,

8

k jr
,

9

k jr
,

10

k jr
,

12

k jr
,

13

k jr
,

14

k jr Ψ

1 0.4283 0 0.4 0.2621 0.1709 0.96 0.4549 0.2682

2 0.5067 0.4 0 0.2376 0.1678 0.96 0.457 0.2583

3 0.4705 0.4 0 0 0.1726 0.96 0.4222 0.251

4 0.4299 0.8 0 0 0.1699 0.96 0.6203 0.3034

5 0.5538 0 0 0 0.1699 0.96 0.4606 0.2751

6 0.4578 0 0.4 0 0.162 0.96 0.4051 0.2757

7 0.4251 0.4 0 0.2376 0.1675 0.96 0.4323 0.3068

8 0.5054 0.4 0 0 0.1673 0.96 0.4534 0.3307

9 0.4913 0.4 0 0.2335 0.1599 0.96 0.4067 0.3244

10 0.3863 0.4 0 0.2417 0.4296 0.96 0.4274 0.2741

11 0.5028 0.4 0 0.2335 0.1696 0.96 0.4512 0.3199

12 0.4072 0.4 0 0.2294 0.1696 0.96 0.44 0.2552

13 0.4091 0.4 0 0 0.1703 0.96 0.4133 0.2654

14 0.5337 0.4 0 0 0.1711 0.96 0.469 0.3087

15 0.4411 0 0.4 0.2458 0.1596 0.96 0.4016 0.393

16 0.4049 0.4 0 0.2376 0.1728 0.96 0.4222 0.2477

17 0.4867 0.4 0 0.512 0.4318 0.96 0.4596 0.306

18 0.4159 0 0.4 0 0.1701 0.96 0.4152 0.2424

19 0.3574 0.4 0 0.2376 0.1742 0.96 0.482 0.2467

20 0.5173 0.4 0 0 0.1671 0.96 0.4737 0.2447

Normalized, rounded to 4 decimal places, experimental measurements of the partial quality criteria in

the terminal generation of genetic search. The measurements corresponding to the effective solution

are highlighted

However, as the genetic search proceeds, the genotype of
the best choice begins to predominate from generation to
generation (this can be seen as decreasing average value of Ψ)
and the best choice is identified as the number of experiments
attributable to the best genotype increases, which eliminates
random factors in the assessment of this genotype.

Fig. 3. Graph of Genetic Search. Penalty Value is Equal to the Ψ for the

Specific Stack being Assessed in the Experiment. Best Penalty Value is the

Minimal Ψ in the Generation. Mean Penalty Value is the Average Ψ in the

Generation.

TABLE. VII. THE EFFECTIVE CHOICE OF COMPONENTS
*
Gs

Genotype
Phenotype

Functional feature Component

[2 3 2 1 1 1 2 2 1 1]

Filter Underscore

Map Underscore

First Underscore

PathResolve JavaScript language tools

StringReplace JavaScript language tools

ZipCompress Adm–zip

HashMD5 Md5

FsRead JavaScript language tools

FsReaddir Fs–extra

FsReaddirRecursive Recursive–readdir

VI. DISCUSSION

In the process of the development of the digital economy,
the majority of data collection and exchange services are
implemented using digital platforms and web portals. Those
service range from public and municipal services and banking
platforms to home control systems for household appliances.
An important task of such systems development is to ensure
effective interaction of components within the software system.
Modern component-oriented development environments and
interaction technologies provide a set of development tools,
significant in number and approximately the same in
functionality. Alternative technologies can bring different
values of performance indicators depending on the functional
features of the software system.

The paper deals with the framework architectural approach
to the construction of software systems. A framework is a
common form of template software structure that allows the
developer to unify the software development process by
combining the permanent piece of software (the framework)
that does not change from configuration to configuration, and
some plug-in components that are compatible with the
permanent part. A component is a piece of software that has a
specific interface and explicit context dependencies. Thus, the
software system is created by selecting the appropriate
components for the corresponding framework, while it is
possible to use alternative sets of components that have a
similar interface to implement similar functionality.

When there is a choice from a variety of components, the
task of quality assessment is particularly important for the
development and operation of software systems in the given
conditions. The results of numerical evaluation of different
variants of program interaction can be the basis for the
formalization and finding the solution of the problem of
choosing an effective set from a variety of alternatives.

In accordance with ISO/IEC 25041:2014, measurement
procedure should be able to provide measurement to the quality
characteristics of software. It should ensure that the
measurements are made with the sufficient accuracy to
determine the criteria and make the necessary comparisons. In
the developed method, the physical execution time of the
invariant algorithm of the experiment are measured with an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

54 | P a g e

www.ijacsa.thesai.org

accuracy of 10–9 seconds, the measurements of the amount of
memory occupied are carried out with an accuracy of 1 Byte,
the measurement of processor time spent on the execution of
the experimental algorithm are carried out with an accuracy of
10

–6
 sec.

VII. CONCLUSIONS

A methodology of effective selection of software
components based on experimental estimates of the criteria and
the genetic algorithm was created. The methodology was
experimentally approved in the task of effective selection of
Node.js components to implement a specific set of functional
features in accordance with the specified quality criteria. The
configuration and parameters of the experimental stand as well
as the parameters of the genetic algorithm were presented in
the paper. The integral quality criterion was formulated, which
allows to consider the contribution of a set of 14
experimentally evaluated partial quality criteria to the overall
assessment of the effectiveness of the choice of software
components. Experimental estimates of the quality criteria for
the terminal generation of genetic search were also given in the
paper. The effective selection of the software components was
identified.

Future work will be aimed at evaluating the relative
importance and the mutual influence of the partial quality
criteria to reduce the dimension of the criteria space as well as
considering some security criteria when choosing the set of
software components.

REFERENCES

[1] Lun L., X. Chi and H. Xu, “Coverage criteria for component path-
oriented in software architecture”, Engineering Letters, vol. 27, no. 1,
pp. 40-52, 2019.

[2] S. Gerasimou, R. Calinescu and G. Tamburrelli, “Synthesis of
probabilistic models for quality-of-service software engineering”,
Automated Software Engineering, vol. 25, issue 4, pp. 785-831, 2018.

[3] A., Gizas S. Christodoulou and T. Papatheodorou, “Comparative
evaluation of javascript frameworks,” In WWW‟12 Companion
Proceedings of the 21st International Conference on World Wide Web,
2012, pp. 513-514.

[4] J. Ferreira, “A javascript framework comparison based on benchmarking
software metrics and environment configuration,” Masters dissertation,
DIT, 2018. [Online]. Available: https://arrow.dit.ie/cgi/viewcontent.cgi
?article=1142&context=scschcomdis.

[5] P. Kolyasnikov, E. Nikulchev, I. Silakov, D. Ilin and A. Gusev,
“Experimental evaluation of the virtual environment efficiency for
distributed software development,” International Journal of Advanced
Computer Science and Applications, vol. 10, no. 5, pp. 309-316, 2019.

[6] B. M. Basok, V. N. Zakharov and S. L. Frenkel, “Iterative approach to
increasing quality of programs testing,” Russian Technological Journal,
vol. 5, no. 4, pp. 43-12, 2017.

[7] L. D. Chambers, “Practical handbook of genetic algorithms: Complex
coding systems”. CRC press, 2001.

[8] S. Bilgaiyan, K. Aditya, S. Mishra and M. Das, “Chaos-based modified
morphological genetic algorithm for software development cost
estimation,” in Advances in Intelligent Systems and Computing, vol.
710, pp. 31-40, 2010.

[9] L. R. Still and L. S. Indrusiak, “Memory-Aware genetic algorithms for
task mapping on hard real-time networks-on-chip,” in 2018 26th
Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), Cambridge, 2018, pp. 601-608.

[10] L. Liu, M. Zhang, R. Buyya and Q. Fan, “Deadline constrained
coevolutionary genetic algorithm for scientific workflow scheduling in
cloud computing,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 5, p. e3942, 2017.

[11] D. B. Mishra, R. Mishra, A. A. Acharya and K .N. Das, “Test data
generation for mutation testing using genetic algorithm,” in Advances in
Intelligent Systems and Computing, vol 817, pp. 857-867, 2019.

[12] R. Jain and A. Sharma, „Assessing software reliability using genetic
algorithms,‟ The Journal of Engineering Research, vol. 16, no. 1, pp. 11-
17, 2019.

[13] A. C. Kumari, K. Srinivas and M. P. Gupta, “Software module
clustering using a hyper–heuristic based multi–objective genetic
algorithm,” in 2013 3rd IEEE International Advance Computing
Conference (IACC), Ghaziabad, 2013, pp. 813-818.

[14] H. Ahuja, Sujata, U. Batra, “Performance Enhancement in Requirement
Prioritization by Using Least-Squares-Based Random Genetic
Algorithm,” in Studies in Computational Intelligence, vol. 713, pp. 251-
263, 2017.

[15] A. Ouni, M. Kessentini, H. Sahraoui and M. S. Hamdi, “The use of
development history in software refactoring using a multi–objective
evolutionary algorithm,” in 15th annual conference on Genetic and
evolutionary computation (GECCO '13), 2013, pp. 1461-1468.

[16] S. Kaiafa and A. P. Chassiakos, “A genetic algorithm for optimal
resource-driven project scheduling,” Procedia Engineering, vol. 123, pp.
260-267, 2015.

[17] W. Almadhoun and M. Hamdan, “Optimizing the Self-Organizing Team
Size Using a Genetic Algorithm in Agile Practices,” Journal of
Intelligent Systems, 2018. Available: https://doi.org/10.1515/jisys-2018-
0085.

[18] P. Devarasetty and S. Reddy, “Genetic algorithm for quality of service
based resource allocation in cloud computing,” in Evolutionary
Intelligence, pp. 1-7, 2019. Available: https://doi.org/10.1007/s12065-
019-00233-6.

[19] C. Jatoth, G. R. Gangadharan, U. Fiore and R. Buyya, “QoS-aware Big
service composition using MapReduce based evolutionary algorithm
with guided mutation,” Future Generation Computer Systems, vol. 86,
pp. 1008-1018, 2018.

[20] C. Jatoth, G. R. Gangadharan and R. Buyya, “Optimal Fitness Aware
Cloud Service Composition using an Adaptive Genotypes Evolution
based Genetic Algorithm,”, Future Generation Computer Systems, vol.
94, pp. 185-198, 2019.

[21] K. Deep, K. P. Singh, M. L. Kansal and C. Mohan, “A real coded
genetic algorithm for solving integer and mixed integer optimization
problems,” Applied Mathematics and Computation, vol. 212, no. 2, 505-
518, 2009.

