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Abstract—The paper presents a software design methodology 

based on computational experiments for effective selection of 

software component set. The selection of components is 

performed with respect to the numerical quality criteria 

evaluated in the reproducible experiments with various sets of 

components in the virtual infrastructure simulating the operating 

conditions of a software system being developed. To reduce the 

number of experiments with unpromising sets of components the 

genetic algorithm is applied. For representing the sets of 

components in the form of natural genotypes, the encoding 

mapping is introduced, reverse mapping is used to decipher the 

genotype. In the first step of the technique, the genetic algorithm 

creates an initial population of random genotypes that are 

converted into the assessed sets of software components. The 

paper shows the application of the proposed methodology to find 

the effective choice of Node.js components. For this purpose, a 

MATLAB program of genetic search and experimental scenario 

for a virtual machine running Ubuntu 16.04 LTS operating 

system were developed. To guarantee the proper reproduction of 

the experimental conditions, the Vagrant and Ansible 

configuration tools were used to create the virtual environment 

of the experiment. 
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I. INTRODUCTION 

Effective selection of software components based on 
assessments of the quality of service criteria [1] is becoming 
increasingly important problem [2] in connection with the 
spread of the framework approach to software development. 
This paper considers the problem in the context of highly 
loaded distributed client-server information systems (IS) 
implemented in the JavaScript. 

The framework is a template of architectural solution. It 
allows the developer to unify the process of developing an IS 
based on a combination of the constant part of the IS 
(framework), which does not vary from configuration to 
configuration, and connected components that are compatible 
with the constant part. The JavaScript framework is a 
framework written in the JavaScript language that allows 
programmers to manipulate a set of compatible components 
(libraries) to solve a problem. The framework differs from the 
JavaScript library in the control flow: the library is always 
called by its parent code, while the framework defines the 
overall architecture of the IS and calls certain components to 
implement the functionality defined by the developer. 

The aim of this work is creating and experimentally testing 
a technique for effectively selecting the software components 
for the framework based on experimental evaluations of quality 
criteria. 

The article consists of six sections. The first is Introduction. 
In the second section the review of the related works is 
presented. In the third section the problem is formulated. The 
fourth section describes the methods of genetic search and the 
configuration of the experimental stand. The fifth section 
provides the results of the genetic search. The sixth section 
discusses the results. The seventh section concludes the article. 

II. RELATED WORKS 

Solved with the help of JavaScript in recent years, the 
variety of tasks has led to the emergence of hundreds of 
frameworks. They can be divided into two groups. (1) 
Universal one (for example, Node.js), which allows the 
developers to use JavaScript for writing the server part of a 
web application as a general-purpose language with the ability 
to interact with I/O devices. (2) Frameworks for writing 
browser-based (front-end) applications running on the user's 
side, such as the followings: Angular.js, Angular (it is written 
in TypeScript, which is a backwards-compatible JavaScript 
modification), Vue.js, React.js and lots of others. 

To support the optimal choice of the framework, various 
techniques were proposed earlier. Those techniques allowed 
the developers to assess the compliance of the framework with 
the general needs of the developer for a given set of 
components using the performance benchmark results [3] or 
expert evaluations [4]. However, an urgent task is creation of a 
methodology for selecting the efficient set of software 
components for the specified framework to provide the 
guaranteed quality of service [5] (QoS) and the efficiency of 
operation under given conditions. Those conditions include the 
specific development environment, computing infrastructure, 
computational loads during normal and peak operation, etc. 

The basic element of such a technique should be the 
procedure for conducting reproducible computational 
experiments to assess the quality of the functioning of software 
components. Unlike the automated software testing [6], the 
experimental assessment of the quality of the functioning 
would provide more flexible approach to select the components 
for the IS even if there were no errors reported but the 
performance of the IS could be increased with effective 
selection of the components. By automating this procedure, it 
is generally necessary to solve the problem of reducing the 
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number of iterations of software components in order to obtain 
the effective set. The solution can be found using genetic 
algorithms [7]. They have proven themselves to be useful in 
assessing the problem of multicriteria optimization in the field 
of software development: evolutionary software development 
cost estimation [8]; optimization of computing resources 
utilization [9, 10]; generating optimal test data sets [11]; 
evaluating [12] software reliability; optimization of software 
partitioning into modules [13]; prioritizing client requirements 
for software development [14]; software refactoring [15]; in 
solving problems of project management [16] and human 
resources allocation [17]; in other tasks, including those related 
to the development of cloud web – services with QoS-aware 
resource allocation and dynamic web-service composition [18–
20]. 

III. MODEL AND RESEARCH METHODS 

Let us consider n  functional features ,   1,  iq i n , which 

should be implemented in the IS and t  different configurations 

, 1,k k t   of the virtual infrastructure, simulating the IS 

operating conditions; M  is the set of all the software 
components available for the research, each of which 

implements at least one of the features .iq  The subset of 

alternative software components from ,M  suitable for 

implementing the feature iq  is denoted as ,  1,  im i n . Let us 

consider the situation when there exist p  technology stacks 

,  1,js j p  i.e. such sets of software components, in which for 

every feature ,   1,  iq i n  there exists at least one software 

component from .M  Let us denote the set of all possible 

stacks as .S  We introduce then the set of f  experimentally 

evaluated partial quality criteria , ,k jr  1,  f  , values of 

which belong to the space fR . Thus, 

, f :  ,k j k js R  R  

, , , ,,
1 2( , , , , , ) ,  1, ,  1, ,k j k j k j k jk j T

fR r r r r k t j p    
 

where , , 1,   ,  1, , 1,  k jr f k t j p      are the values of 

experimentally evaluated partial quality criteria for the 

configuration   k of the virtual infrastructure and the stack 
js  

being evaluated. 

Let us introduce the integral quality criteria for the IS: 

  ,

1

Ψ , ,

f

k jk js w r 



 
             (1) 

where 
,k j

r  are the normalized values of partial quality 

criteria 
,k jr ; 

1,  f 
; ,w  are the weights of the partial 

criteria. Herewith 

1

1

f

w



 . 

The problem of the effective choice of software 
components based on the experimental evaluation of the 
quality of operation (see Fig. 1) for the chosen configuration of 

the virtual infrastructure 
k  consists in the choice of the 

technology stack 
*s  satisfying the following condition: 

 *

, 1,

argminΨ , .
j

k j

s j p

s s


 

             (2) 

Using the above introduced approach let us consider the 
case of selecting Node.js components. 

Table I shows the set of functional features and 
components that implement those features in a computational 
experiment. Thus, 10, 216n p  . 

The considered configuration , 1k k t    of the virtual 

infrastructure is specified in Table II. 

The evaluation of the quality of operation is performed with 

respect to the 14f   partial quality criteria defined in 

Table III. 

The weighting factors for the criteria are 2 11 0.08;ww    

0.07( 1, 3, 10, 12)w       , setting the target QoS. 

When conducting the experiment, 
, ( 1,14,k jr  

1, , 1, )k t j p   are normalized with respect to their 

maximum values in the experiment and take their values in the 
segment [0; 1]. 

The task is selecting the stack 
*s  of Node.js components, 

solving the problem (2). 

 

Fig. 1. The Effective Choice of Software Components based on the 

Experimental Evaluation of the Quality of Operation. 
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TABLE. I. LIST OF FUNCTIONAL FEATURES AND COMPONENTS 

iq
 

Name of the 

functional feature 

Alternative 

components  
Description 

1q
 

Filter 
Lodash 
Underscore 

Checks all the elements of 
an array against some 

condition and returns an 

array of elements for which 
the check gave “True” 

2q
 

First 
Lodash 

Underscore 

Returns the first element of 

an array 

3q
 

FsRead 
Fs–extra 

Fs 
Reads data from a file 

4q
 

FsReaddir Fs–extra 
Reads the contents of a 

directory 

5q
 

FsReaddirRecursive 
Recursive–
readdir 

Recursively reads the 
contents of a directory 

6q
 

HashMD5 

Hasha 

md5 
Ts–md5 

Calculates the MD5 hash 

for the specified data set 

7q
 

Map 

Lodash 

Underscore 
JavaScript 

language tools 

Applies the specified 
function to all the elements 

of the array, thereby 
returning a new array 

consisting of the 

transformed elements 

8q
 

PathResolve Path 

Generates the full path to 

the file or directory based 
on the specified array of 

path elements 

9q
 

StringReplace 
JavaScript 

language tools 

Finds and replaces a 

substring in the string 
passed 

10q
 

ZipCompress 
Adm–zip 
Jszip 

Zipit 

Performs archiving of the 

transferred file array and 
returns the generated Zip – 

archive 

TABLE. II. VIRTUAL INFRASTRUCTURE CONFIGURATION ( 1)k k   

Num. Parameter Value 

1 CPU Intel® Core ™ i7–7700 

2 Number of cores 4 

3 Number of logical processors 8 

4 Clock frequency 3.60 GHz 

5 RAM 12.0 GB 

5 Host operating system Ubuntu 16.04 LTS 

6 Vagrant version 2.2.4 

7 Node.js version 10.15.3 

8 Virtual machine parameters 

2 CPU cores 

2.0 GB RAM 
Ubuntu 16.04 LTS 

9 Provisioning software Ansible 

10 
File exchange tools for the virtual 
machine 

NFS–server + BindFS inside 
the virtual machine 

11 Additional system software 

– git 
– make 

– htop 

– iotop 
– rsync 

– node–gyp 

TABLE. III. PARTIAL QUALITY CRITERIA ( 1, 1,k j p  ) 

Notation Criterion Unit 

,
1
k jr   

The microprocessor operating time spent 

on the initialization of the experiment 
ms 

,
2

k jr   

The operating time of the microprocessor 

spent on the execution of system functions 
during the initialization of the experiment 

ms 

,
3

k jr   

The increase in the Resident Set Size 

noted after the completion of the 

initialization of the experiment (including 
heap, code segment and stack) 

byte 

,
4

k jr   

The increase in the heap size, marked 

upon completion of the initialization of the 
experiment 

byte 

,
5

k jr   

The increase in the volume of the used 

heap, marked upon completion of the 

initialization of the experiment 

byte 

,
6

k jr   

The increase in the amount of RAM used 
by C++ objects associated with JavaScript 

objects, marked after the experiment has 

been initialized 

byte 

,
7

k jr   
The real time spent on the initialization of 

the experiment 
ns 

,
8

k jr   
The microprocessor operating time spent 
on the experiment 

ms 

,
9

k jr   

The microprocessor operating time spent 

on the execution of system functions 
during the experiment 

ms 

,
10

k jr   

The increase in the Resident Set Size 

noted at the end of the experiment 

(including heap, code segment and stack) 

byte 

,
11

k jr   
The increase in the heap size, marked at 
the end of the experiment 

byte 

,
12

k jr   
The increase in the amount of the used 

heap noted at the end of the experiment 
byte 

,
13

k jr   

The increase in the amount of RAM used 
by C ++ objects associated with JavaScript 

objects, marked upon completion of the 

experiment 

byte 

,
14

k jr  Real time spent on the experiment ns 

IV. EXPERIMENTAL METHODOLOGY 

The automated methodology for selecting an effective set 
of software components involves the use of a genetic algorithm 
to generate and experimentally evaluate stacks of technologies 
(see Fig. 2). 

The integration of the components of the stack is 
implemented using a functional approach, which is the most 
convenient way to combine various sets of software 
components. Each function which is being called during the 
experiment is a kind of software interface that is implemented 
using one of the stack components. Since components, as a 
rule, provide tools that go beyond a single function, they can be 
used to implement several functions. The use of a single 
component for performing a variety of tasks in the general case 
is preferable, since it reduces the amount of RAM needed by 
the IS. 
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Fig. 2. Experimental Methodology. 

At the initialization stage, the functions, which define the 
basic settings of the components, are called. Each of them 
forms a new anonymous function at the output, which has 
exclusive access to the component with the specified settings. 
Next, anonymous functions are placed in a single namespace 
with the names listed in Table III. To increase the reliability of 
the results obtained, the component cache (also known as 
Node.js module cache) is cleared before initialization. 

After the initialization, the execution phase of the 
experimental algorithm begins. For research purposes, the 
following experimental algorithm is used: 

1) Form the path to the directory with a set of 

subdirectories. 

2) Read the list of subdirectories. 

3) Exclude hidden subdirectories. 

4) Form the path for each directory. 

5) Do the followings for each path: 

a) Read all the list of files recursively. 

b) Read and load into the RAM all the files. 

c) Create a Zip-archive in the RAM. 

d) Calculate the MD5-hash for the created archive. 

After the initialization procedure and the execution of the 
experimental algorithm are done, a json file results.json is 
generated. It contains the source data for the calculation of the 
integral criterion (1). This data is obtained through the interface 
of the “process” object of Node.js. 

The genetic search configuration is specified in Table IV. 

For the numerical representation of stacks, the encoding 

mapping is introduced as 
 

: Λ nC S  N . Thus, to each stack 

,  1,  js j p , which is called a phenotype, the natural set 

    ( ),   1,j jC s j p   , which is called a genotype, will 

correspond. The genetic algorithm treats genotypes as 

 1      ... ,    1  , Θ
g g

h h h
g n gh    

, 

TABLE. IV. GENETIC SEARCH CONFIGURATION 

Num. Parameter Value 

1 MATLAB version R2018a 

2 Integer constraints  All the genes are integer-valued 

3 Selection operator Tournament selection [21] 

4 Mutation operator Extended power mutation [21] 

5 Crossover operator Laplace crossover [21] 

6 Probability of mutation MP   0.01 

7 Probability of crossover KP   0.8 

8 Elite count 1 

9 Population size 20 

10 Max generations 100 

11 Max stall generations 10 

12 Function tolerance 0.01 

where each 
g

h
i  takes its values in the range from 1 to im , 

with respect to the sequence number of the selected alternative 

component from im ; Θg   is a set of genotypes (population of 

individuals), which belong to the gth generation, 

, .ΘgH H p  The inverse mapping 1

 
: Λ  С S   

converts the genotype of a stack into its corresponding 
phenotype. Considering the above introduced notation, the 
initial problem (2) with the use of the genetic algorithm 
transforms into the following problem: 

 *

,   1  , Θ

argmin Ψ , ,
h
G G

k h
G G

s h

s s


 

            (3) 

where G  is the last population of individuals before the 

genetic algorithm stops. 

Thereby, the algorithm of genetic search for the solution of 
problem (3) consists of the following steps: 

1) Create the initial population: assign   1 g  ; generate N  

random genotypes constituting the initial population 
1 2

1 1  1 1Θ { , , , }H     , get the corresponding choice of the 

software components 
1

1  1   ( )
j j

s C   for each 1 
h , perform the 

computational experiment and calculate the value vector of the 

integral criterion (1) for each individual in the population 

1 2( , , , )H      , 1    Ψ ,( , )
jk

i s    ; set 
1,

minmin j
j H

   . 

2) Start creating the next generation: assign 1  . 

3) Select the first parent: assign 1g g  ; using the 

specified selection method, choose  'g
  individual as the first 

parent. 

4) Crossing-over: using the specified selection method, 

choose ''g
  individual as the second parent. With the 

probability КP , cross over the parents  'g
  and  ''g

  using the 

specified crossing-over operator. Mark the result (the child) as 

 'g
 . 

5) Mutation: with the probability МP , act on the 

individual  'g
  with the specified mutation operator. 

6) Create the next child: assign 1;     if H   then 

go to step 7, else go to step 3. 
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7) Select the elite individual: from the population g , the 

individual i
g  with the lowest value of the quality criterion 

1,
mini jj H

    is selected. 

8) Complete creating next generation: create the 

population '1 '2
1      Θ { , , , ' }g g g

H
g       of individuals selected 

earlier; for each  'g
  get the corresponding choice of the 

software components 1
   ( ),'   'j j

g gs C   perform the 

computational experiment and compute the value vector of 

integral criterion (1) 1 2'   ( ' , ' , , ),'H     
 '     ),Ψ( ' ;k j

i gs    

set 
1,

mi .nmin j
j H

    

9) Stop condition check: if no termination condition is 

met then go to step 3, else issue the solution corresponding to 

the min  as the answer and terminate the genetic search. 

In the general case, plenty of methods including 
tournament selection, roulette wheel method, ranking method, 
uniform ranking, sigma – clipping, and modifications of these 
methods can be used as a selection operator. During the 
crossing-over process, a new individual is created by 
exchanging subsets of parameters between two parents. The 
mutation operator changes the genotype of an individual in a 
predetermined way. 

However, when solving integer-constrained problems such 
as the one considered in this paper, the special set of genetic 
operators is used to produce the integer-valued genes. Those 
operators were described in detail in [20]. 

The algorithm can be stopped in the following cases: it 
reaches the limit number of generations, upon reaching the 
limit number of stall generations (the best fitness value among 
such consecutive generations does not change), when the 
change of the average fitness for a number of consecutive 
generations is less than the established threshold, at the request 
of the user, in other cases defined by the developer. 

To implement the genetic algorithm in solving the problem 
(3) the ga library from the MATLAB Global Optimization 
Toolbox was used. The experiment was carried out on a virtual 
machine running Ubuntu 16.04 LTS, in which the Node.js 
10.15.3 runtime was deployed. Creating a virtual machine is 
carried out using the Vagrant virtual development environment 
configuration tool. Ubuntu 16.04 LTS, in which the MATLAB 
R2018a system was installed, was also used as the Host 
operating system. It should be noted that the use of the virtual 
machine helps to ensure the reproducibility of the 
computational experiment, to avoid unrecorded changes in 
parameters, to reduce the influence of other random factors on 
the results of the experiment. 

When the virtual machine starts, the reading of the 
functions.json is performed. That file is generated by the 
genetic search program. The functions.json file is a json 
representation of the framework configuration under study 

 1
i is C   which defines a set of alternative Node.js 

components for the experiment. The experiment consists of 
two main stages: the initialization of the components and the 
execution of the experimental algorithm with those 
components. 

V. RESULTS 

As a result of the implementation of 11 generations of 
genetic search, the solution was found for the problem (3), 
corresponding to the value of the integral criterion of 0.242436. 
The average value of the integral criterion in the terminal 
generation was 0.284875. Genetic search took 71 seconds and 
ended when the specified threshold of convergence of the 
algorithm was reached (Function tolerance). Experimental 
measurements for the terminal generation of genetic search are 

presented in the Table V for the criteria , ,
1 6... ( 1)k j k jr r k   and 

in the Table VI for the criteria , ,
7 10 12 14... , ... , ( 1)k j k jr r r r k  . 

The 11r  criterion is equal to zero for all the individuals in the 

terminal generation. The effective choice of components *
Gs  is 

identified in the Table VII. 

The graph of genetic search, reflecting the solution process 

for the problem of minimizing the integral quality criterion  , 
is shown in the Fig. 3. 

It should be noted that the slight “oscillation” in the genetic 
search graph was due to the unavoidable measurement noise 
caused by small variations of the real-time execution of the 
same process by the machine. 

TABLE. V. EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL 

GENERATION OF THE GENETIC SEARCH FOR THE CRITERIA 
, ,

1 6... ( 1)k j k jr r k   

j
 

,

1

k jr
 

,

2

k jr
 

,

3

k jr
 

,

4

k jr
 

,

5

k jr
 

,

6

k jr
 

1 0.24 0 0.0754 0.6816 0.071 0.0873 

2 0.24 0 0.0782 0.5243 0.0519 0.0672 

3 0.28 0 0.1036 0.6291 0.0666 0.0807 

4 0.2 0.4 0.1036 0.4719 0.055 0.0667 

5 0.12 0.8 0.1032 0.5243 0.0565 0.0668 

6 0.24 0 0.2392 0.6332 0.2689 0.1717 

7 0.12 0.8 0.0766 0.5243 0.0584 0.0664 

8 0.08 1.2 0.0782 0.5767 0.0564 0.0754 

9 0.2 0.4 0.2388 0.6332 0.2689 0.1854 

10 0.24 0 0.0766 0.6291 0.0586 0.0665 

11 0.16 0.8 0.0774 0.5767 0.057 0.0674 

12 0.2 0 0.1061 0.5767 0.0675 0.0892 

13 0.16 0.4 0.1303 0.5243 0.0918 0.0754 

14 0.16 0.8 0.1298 0.5243 0.0817 0.0667 

15 0.16 1.2 0.2654 0.7381 0.3004 0.1714 

16 0.2 0 0.0762 0.5243 0.0657 0.0748 

17 0.24 0 0.1016 0.6291 0.0683 0.0829 

18 0.2 0 0.1303 0.6291 0.0679 0.0748 

19 0.2 0 0.1032 0.4719 0.0634 0.0745 

20 0.2 0 0.1032 0.5243 0.0831 0.0668 

Normalized, rounded to 4 decimal places, experimental measurements of the partial quality criteria in 

the terminal generation of genetic search. The measurements corresponding to the effective solution 
are highlighted 
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TABLE. VI. EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL 

GENERATION OF THE GENETIC SEARCH FOR THE CRITERIA 

, ,
7 10 12 14... , ... , ( 1)k j k jr r r r k   

j  ,

7

k jr  
,

8

k jr  
,

9

k jr  
,

10

k jr  
,

12

k jr  
,

13

k jr  
,

14

k jr  Ψ  

1 0.4283 0 0.4 0.2621 0.1709 0.96 0.4549 0.2682 

2 0.5067 0.4 0 0.2376 0.1678 0.96 0.457 0.2583 

3 0.4705 0.4 0 0 0.1726 0.96 0.4222 0.251 

4 0.4299 0.8 0 0 0.1699 0.96 0.6203 0.3034 

5 0.5538 0 0 0 0.1699 0.96 0.4606 0.2751 

6 0.4578 0 0.4 0 0.162 0.96 0.4051 0.2757 

7 0.4251 0.4 0 0.2376 0.1675 0.96 0.4323 0.3068 

8 0.5054 0.4 0 0 0.1673 0.96 0.4534 0.3307 

9 0.4913 0.4 0 0.2335 0.1599 0.96 0.4067 0.3244 

10 0.3863 0.4 0 0.2417 0.4296 0.96 0.4274 0.2741 

11 0.5028 0.4 0 0.2335 0.1696 0.96 0.4512 0.3199 

12 0.4072 0.4 0 0.2294 0.1696 0.96 0.44 0.2552 

13 0.4091 0.4 0 0 0.1703 0.96 0.4133 0.2654 

14 0.5337 0.4 0 0 0.1711 0.96 0.469 0.3087 

15 0.4411 0 0.4 0.2458 0.1596 0.96 0.4016 0.393 

16 0.4049 0.4 0 0.2376 0.1728 0.96 0.4222 0.2477 

17 0.4867 0.4 0 0.512 0.4318 0.96 0.4596 0.306 

18 0.4159 0 0.4 0 0.1701 0.96 0.4152 0.2424 

19 0.3574 0.4 0 0.2376 0.1742 0.96 0.482 0.2467 

20 0.5173 0.4 0 0 0.1671 0.96 0.4737 0.2447 

Normalized, rounded to 4 decimal places, experimental measurements of the partial quality criteria in 

the terminal generation of genetic search. The measurements corresponding to the effective solution 

are highlighted 

However, as the genetic search proceeds, the genotype of 
the best choice begins to predominate from generation to 
generation (this can be seen as decreasing average value of Ψ) 
and the best choice is identified as the number of experiments 
attributable to the best genotype increases, which eliminates 
random factors in the assessment of this genotype. 

 

Fig. 3. Graph of Genetic Search. Penalty Value is Equal to the Ψ  for the 

Specific Stack being Assessed in the Experiment. Best Penalty Value is the 

Minimal Ψ  in the Generation. Mean Penalty Value is the Average Ψ  in the 

Generation. 

TABLE. VII. THE EFFECTIVE CHOICE OF COMPONENTS 
*
Gs  

Genotype 
Phenotype 

Functional feature Component 

[2 3 2 1 1 1 2 2 1 1] 

Filter Underscore 

Map Underscore 

First Underscore 

PathResolve JavaScript language tools 

StringReplace JavaScript language tools 

ZipCompress Adm–zip 

HashMD5 Md5 

FsRead JavaScript language tools 

FsReaddir Fs–extra 

FsReaddirRecursive Recursive–readdir 

VI. DISCUSSION 

In the process of the development of the digital economy, 
the majority of data collection and exchange services are 
implemented using digital platforms and web portals. Those 
service range from public and municipal services and banking 
platforms to home control systems for household appliances. 
An important task of such systems development is to ensure 
effective interaction of components within the software system. 
Modern component-oriented development environments and 
interaction technologies provide a set of development tools, 
significant in number and approximately the same in 
functionality. Alternative technologies can bring different 
values of performance indicators depending on the functional 
features of the software system. 

The paper deals with the framework architectural approach 
to the construction of software systems. A framework is a 
common form of template software structure that allows the 
developer to unify the software development process by 
combining the permanent piece of software (the framework) 
that does not change from configuration to configuration, and 
some plug-in components that are compatible with the 
permanent part. A component is a piece of software that has a 
specific interface and explicit context dependencies. Thus, the 
software system is created by selecting the appropriate 
components for the corresponding framework, while it is 
possible to use alternative sets of components that have a 
similar interface to implement similar functionality. 

When there is a choice from a variety of components, the 
task of quality assessment is particularly important for the 
development and operation of software systems in the given 
conditions. The results of numerical evaluation of different 
variants of program interaction can be the basis for the 
formalization and finding the solution of the problem of 
choosing an effective set from a variety of alternatives. 

In accordance with ISO/IEC 25041:2014, measurement 
procedure should be able to provide measurement to the quality 
characteristics of software. It should ensure that the 
measurements are made with the sufficient accuracy to 
determine the criteria and make the necessary comparisons. In 
the developed method, the physical execution time of the 
invariant algorithm of the experiment are measured with an 
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accuracy of 10–9 seconds, the measurements of the amount of 
memory occupied are carried out with an accuracy of 1 Byte, 
the measurement of processor time spent on the execution of 
the experimental algorithm are carried out with an accuracy of 
10

–6
 sec. 

VII. CONCLUSIONS 

A methodology of effective selection of software 
components based on experimental estimates of the criteria and 
the genetic algorithm was created. The methodology was 
experimentally approved in the task of effective selection of 
Node.js components to implement a specific set of functional 
features in accordance with the specified quality criteria. The 
configuration and parameters of the experimental stand as well 
as the parameters of the genetic algorithm were presented in 
the paper. The integral quality criterion was formulated, which 
allows to consider the contribution of a set of 14 
experimentally evaluated partial quality criteria to the overall 
assessment of the effectiveness of the choice of software 
components. Experimental estimates of the quality criteria for 
the terminal generation of genetic search were also given in the 
paper. The effective selection of the software components was 
identified. 

Future work will be aimed at evaluating the relative 
importance and the mutual influence of the partial quality 
criteria to reduce the dimension of the criteria space as well as 
considering some security criteria when choosing the set of 
software components. 
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