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Abstract—An adaptive neural observer design is presented 

for the nonlinear quadrotor unmanned aerial vehicle (UAV). 

This proposed observer design is motivated by the practical 

quadrotor where the whole dynamical model of system is 

unavailable. In this paper, dynamics of the quadrotor UAV 

system and its state space model are discussed and a neural 

observer design, using a back propagation algorithm is 

presented. The steady state error is reduced with the neural 

network term in the estimator design and the transient 

performance of the system is improved. This proposed 

methodology reduces the number of sensors and weight of the 

quadrotor which results in the decrease of manufacturing cost. A 

Lyapunov-based stability analysis is utilized to prove the 

convergence of error to the neighborhood of zero. The 

performance and capabilities of the design procedure are 
demonstrated by the Simulation results. 
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systems; state estimator 

I. INTRODUCTION 

In recent years, quadrotor has become an interesting 
research area for the robotics community in the field of 
autonomous aerial vehicles. The application of hovering aerial 
vehicles have provided new opportunities to the researchers to 
find new control strategies for the better stabilization of the 
quadrotor. Mostly proposed approaches for autonomous aerial 
vehicles [1], [2] focused on the systems for an outdoor 
operation that could autonomously operate in the indoor 
environment and are also considered to be beneficial for the 
search and rescue operations. Unlike helicopters, quadrotor has 
movable blades and for changing the direction of rotation, 
quadrotor uses the rotational speed of its blades. This type of 
design provides flexibility in the movement of the quadrotor. 
The problem of estimating system state has already been done 
using Kalman filter [3], but the most important problem with 
the design procedure of classic observers is the presence of 
external disturbance and unknown dynamical model. In this 
paper the wind is considered as a disturbance factor. In the past 
studies, researchers have eliminated the wind effects by 
applying Robust and Adaptive controllers such as nonlinear 
adaptive feedback controller in [4], and terminal sliding mode 
controller is designed in [5] to stabilize the quadrotor system. 

The accurate measurements of the system states, such as 
position, altitude, and velocity of quadrotor are critical, so this 
work has applied a neural observer to achieve more accurate 

approximation of system states in presence of the disturbance. 
Many researches have been carried out on neural and fuzzy 
controllers/observers in discrete time systems [6], [7]. Various 
control approaches have been applied on quadrotor such as 
machine learning [8], and feedback linearization with high-
order sliding mode observer for the quadrotor [9]. In [10], a 
new Neural Network Observer (NNO) is designed to estimate 
the translational and angular velocities of the UAV, and an 
output feedback control law is developed in which the position 
and the attitude of the UAV are considered as a state variable 
to control the aircraft more accurately. In [11], a new dynamic 
neural network based observer is presented and is proved using 
sliding mode stability analysis so in the presence of 
uncertainty, disturbance and sensor noise it could 
asymptotically track the states of a quadrotor and blade 
flapping. A recurrent neuro-adaptive observer for a general 
model of MIMO nonlinear systems is presented in [12], where 
the stable observer is nonlinear in parameters. The network 
weights are updated based on a combination of a modified 
Back Propagation algorithm and an e-modification that 
guarantees the boundedness of the state estimation error. In 
[13], the attitude and altitude control of quadrotor UAV, and 
the application of Neural Network based on Direct Inverse 
Control (DIC) is proposed. The backpropagation learning 
algorithm [14] is utilized in order to find the appropriate 
connection weights of neurons by using real quadrotor flight 
data in hovering state. 

In this work, a neural observer is designed to estimate the 
trajectory of the nonlinear quadrotor. Some terms in the 
dynamic model of quadrotor was unknown and also wind as a 
disturbance was added to the structure of quadrotor. In order to 
solve this problem, this work has applied a back-propagation 
algorithm to update the weights adaptively and also to 
eliminate the effect caused by external disturbance. Here, the 
point is that this work has considered the whole dynamic of 
quadrotor model undefined and the result shows the capability 
of neural network in the prediction and estimation of nonlinear 
functions. 

The structure of this paper is organized as follows. Section 
II, introduces the dynamics of quadrotor system. In Section III, 
the neural estimator is described. The stability proof is 
presented in Section IV. In Section V, we validate the neural 
estimator for quadrotor via simulation results. Finally 
concluding remarks are presented in Section VI. 
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II. DYNAMICS OF QUADROTOR SYSTEM 

The dynamics of quadrotor system are shown: 

 

Fig. 1. Schematics of Quadrotor Forces. 

The model of the quadrotor in this paper is set up by the 

body-frame B  and Earth-frame E  as represented in the 
Fig. 1. Let the forces on the quadrotor is represented as 

1 2 3 4, , ,A A A A  its vector  , ,u v w    denotes the position of the 

center of gravity of the quadrotor in the body frame, the vector 
         denotes the linear velocity in the earth-frame, m  

denotes the total mass, g  represents the acceleration of 

gravity, and l  denotes the distance from the center of each 
rotor to the center of gravity of quadrotor. The orientation of 

the quadrotor is given by the rotation matrix :R E B , where 
R depends on the yaw, pitch and roll angles (Euler’s Angle) 

which is represented as [ , ,   ], respectively. By using the 

transformation matrices and rotation matrices, the equations of 
quadrotor dynamical model is transferred to control standard 
model as follows: 
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where ( 1,....,12)ix i   are the system states and 51 3, ,x x x  

are the quadrotor gravity center in the direction of , ,x y z . The 

components 2 4 6, ,x x x are the speed along the direction of 

, ,x y z  and , ,x y zI I I  represent the initial torque along the 

direction of , ,x y z . On the other hand, 7 9 11, ,x x x  shows the 

angles of roll, pitch, and yaw whereas 8 10 12, ,x x x  show the 

torque of roll, pitch and yaw. ( 1,...., 4)
i

u i   is the system 

input, and ( 1,....,6)ik i   represents the stretch coefficient. 

III. NEURAL NETWORK STATE ESTIMATOR 

The structure of neural observer is shown in Fig. 2. 

The neural network used in this paper has a hidden layer. 
For the output layer, this work has used linear activation 
function and the weights of the output layer are considered 
constant, whereas, the Sigmoid activation function is applied in 
the hidden layer: 

( , ) ( , )

1

1 e
x u x u





               (2) 

Conditions of the activation function [15], in neural 
network are i) continuous; ii) derivable to its function; 
iii) capable of saturation to asymptotically approach to its 
maximum and minimum values; iv) applicable for a nonlinear 
system. 

From Kolmogorov theorem every nonlinear function with 
any degree of complexity could be rewrite as an activation 
function and the weights: 

( , ) ( , ) ( )Tg x u w x u x  
             (3) 

 

Fig. 2. Structure of Neural Observer. 
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where, Tw is the weight of the hidden layer,   represents 

the unknown part of the quadrotor system, ( )x represents the 

neural network error. 

Here, the quadrotor system with external disturbances 
could be described as follows: 

( , ) ( )

                  

x F x u d x

y Cx

 


             (4) 

The states and inputs of the quadrotor system are 

( 1,....,12)ix x i   and ( 1,....,12)iu u i  respectively, and

( )d x represents the disturbance of the system. 

By adding and subtracting Ax  in equation (4), the 
following equation could be written as: 

( , )

              

x Ax g x u

y Cx

 


              (5) 

From the above equation,   represents the optional matrix 
which should be Hurwitz and must be taken in such a way that 
the pair       is observable: 

( , ) ( , ) ( )g x u F x u Ax d x  
            (6) 

The Luenburger observer structure is as follows [16]: 

ˆ ˆ ˆ ˆ ˆ( , ) ( )

ˆ ˆ         

x Ax g x u G y y

y Cx

   

             (7) 

where x̂ is the observer state and G is the observer gain. 
The observer gain should be selected such that Eigenvalues of 

the A GC will be Hurwitz. 

Therefore, we consider the error as follows: 

x x x                (8) 

By taking differential from the equation (8), and adding and 

subtracting ˆ( , )Tw x u  we get: 

ˆ ˆ( , ) [ ( , ) ( , )] ( ) T T
cx A x w x u w x u x u x       

          (9) 

where, ˆw w w  and cA A GC  .  

For defining the neural network weights, we consider the 
cost function as follows: 

1

2

TJ y y
            (10) 

where, ˆy y y  . The modified error back propagation 

algorithm is defined as: 

ˆ ˆ
ˆ

J
w y w

w
 


  
            (11) 

Where,   is the learning rate and  is the damping 

coefficient. The estimation of the unknown function could be 
written as: 

ˆ ˆ ˆ( , ) ( , )Tg x u w x u
           (12) 

By adapting the chain rule, we have: 

ˆ ˆ( , )
ˆ. . . ( , )

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , )

TJ j y x g x u x
y C x u

w y x g x u w g x u


     
 

    
         (13) 

By using the equation (9), we have: 

1( )
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

c

x x x
A GC I A

g x u g x u g x u
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    

  
        (14) 

We could define the update law by the equation (15): 

1ˆ ˆ ˆ( , )( )
T

c
w x u y CA y w 


  

          (15) 

And the weights error is defined as:  

1ˆ ˆ( , )( )T

cw x u y CA y w  
          (16) 

IV. STABILITY PROOF 

In order to prove the stability of the observer, we need to 
ensure the stability of the error dynamics and update law. For 
this, we have applied Lyapunov direct method. Considering the 
following Lyapunov candidate function: 

1 1
( ) 

2 2

T TV x px tr w w 
           (17) 

Here,   is the positive definite matrix which satisfies the 
following condition:  

T

c cA p pA Q  
            (18) 

  is the positive definite matrix. By differentiation of the 
Lyapunov function, we get: 

1 1

2 2
( )T T TV x px x px tr w w  

          (19) 

Substituting, equation (9) and (16) into equation (19) we 
conclude that: 

1

1

2
ˆ[ ( , ) ( )]

ˆ ˆ( ( , )( )

T T T

T T T

c

QV x x x p w x u t

tr w x u y CA w y w

 

 

   

 
         (20) 

where, 

( )
ˆ( ( , ) ( , )) ( )T

t w x u x u x     
          (21) 

Satisfying the following inequality, we get: 

2

1 1

ˆ( ( )

ˆ( ( , ) )

T
M

T T
M

tr w w w w w w

tr w x u x l w x l 
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
          (22) 

Putting, 1

1

T

cl C CA  in the equation (20), we get: 
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2

min

2

1

1
ˆ[ ( , ) )

2

[ ]M M

V Q x x p w x u

w x l w w w Cx

  

 

   
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         (23) 

Now, considering 1

1
2

l
N  , then adding and subtracting

22

1N w x , we get: 

2 2

min 1

22

1 1

1
[ )

2

( ) ]M M M

V Q x p w w C N

w p l w C N w x

 

  

    

   
        (24) 

Here, we have 2N  as follows: 

1

2 2

1 )2(

M MP l w C
N

C N

 







          (25) 

Now, by adding and subtracting 2
2N x , gives the 

following results: 

2 2 2

min 1 2

2 2 2

1 2 1

1
[ ( )

2
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V Q x x p C N N

C N N w N w x
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
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The obtained result would be negative if the following 
condition is satisfied: 

2 2

1 2

min

2
[ ( ) ]x p C N N

Q
 


  

          (27) 

2

1N

C
 

             (28) 

From the above equations, the result shows that error of 
system and weight are limited, therefore observer remains 
stable. 

V. SIMULATION RESULTS 

To analyze the performance of the observer, the first step is 
to stabilize the system with a sliding mode controller. In the 
second step, we apply the observer on the quadrotor system to 
show the effectiveness of the design procedure. Here, we 
suppose the initial condition for quadrotor states as [0.1 0.2 0.3 
0.4 0.5 0.4 0.1 0 0.5 0.4 0.6 0.7]. Consider the matrix A and C 
as follows: 

12 12

0.001 1 0

0.001

1

0 0.001

A



 
 
 
 
 
   

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

C

 
 
 
 
 
 

 

TABLE I. PARAMETERS OF QUADROTOR SYSTEM AND OBSERVER 

Parameter Value Unit 

  2    

  0.2   

      1.2         

   2.2         

   0.2         

         0.01      

         0.012      

  9.8      

  5      

  2       

  0.001   

  3000   

The parameters of quadrotor system and observer are given 
in Table 1. Here, the point is to distinguish the error between 
the practical system and estimated system by adopting the 
proposed method. By simulation we obtain the results as 
shown in the following figures: 

 

Fig. 3. State 1, 3, 7, 9 and Estimated State Trajectory of Quadrotor. 

 

Fig. 4. State 2 and Estimated State Trajectory of Quadrotor. 
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Fig. 5. State 4 and Estimated State Trajectory of Quadrotor. 

 

Fig. 6. State 5 and Estimated State Trajectory of Quadrotor. 

 

Fig. 7. State 6 and Estimated State Trajectory of Quadrotor. 

 

Fig. 8. State 8 and Estimated State Trajectory of Quadrotor. 

 

Fig. 9. State 10 and Estimated State Trajectory of Quadrotor. 

 

Fig. 10. State 11 and Estimated State Trajectory of Quadrotor. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

321 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 11. State 12 and Estimated State Trajectory of Quadrotor. 

 

Fig. 12. Error between Observer States and Quadrotor System. 

The states x1, x3, x7, and x9 are presented in the output of 
the system and the error between observer estimation and 
quadrotor system is negligible and it is shown in Fig. 3, that the 
observer has properly estimated the practical system states x1, 
x3, x7 and x9. Fig. 4, 5, 6, 7, 8, 9, 10 and 11 illustrated that the 
observer effectively estimate the trajectory of the practical 
system states x2, x4, x5, x6, x8, x10, x11 and x12 respectively, 
which are not presented in the output. Although, these states 
are not presented in the output, the observer could distinguish 
state trajectory of the system. Fig. 12 shows that all errors 
gradually decreases over time and reaches to the neighborhood 
of zero. Moreover due to the use of adaptive structure in the 
design procedure the observer properly distinguish and 
eliminate the external disturbance. 

VI. CONCLUSION 

This paper discussed a new approach to design an adaptive 
neural observer for the estimation of the nonlinear dynamics of 
quadrotor. The proper estimation of the practical system states, 
robustness against noise, disturbance, and the convergence of 
tracking error to the neighborhood of zero are the main 
advantages of this proposed method. It is evident from the 
MATLAB/SIMULINK results, that the proposed method could 

effectively predict the system behavior and eliminate the effect 
caused by the external disturbance. The stability of the overall 
system was shown by Lyapunov stability analysis. The design 
procedure results in the decrement of the number of sensors, 
weight of quadrotor and manufacturing costs which in turn 
increases the battery life. In future, this method can be 
expanded for more than one hidden layer of the neural network 
and it also can be applied to power or a natural systems. 

REFERENCES 

[1] Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications 

with unmanned aerial vehicles: Opportunities and challenges. IEEE 
Communications Magazine, 54(5), 36-42. 

[2] Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned 

aerial vehicle networks for civil applications: A communications 
viewpoint. IEEE Communications Surveys & Tutorials, 18(4), 2624-

2661. 

[3] Xiong, J. J., & Zheng, E. H. (2015). Optimal kalman filter for state 
estimation of a quadrotor UAV. Optik, 126(21), 2862-2868. 

[4] Xian, B., Diao, C., Zhao, B., & Zhang, Y. (2015). Nonlinear robust 

output feedback tracking control of a quadrotor UAV using quaternion 
representation. Nonlinear Dynamics, 79(4), 2735-2752. 

[5] Lu, Q., Ren, B., Parameswaran, S., & Zhong, Q. C. (2018). Uncertainty 

and Disturbance Estimator-Based Robust Trajectory Tracking Control 
for a Quadrotor in a Global Positioning System-Denied Environment. 

Journal of Dynamic Systems, Measurement, and Control, 140(3), 
031001. 

[6] Cervantes, J., Muñoz, F., González-Hernández, I., Salazar, S., Chairez, 

I., & Lozano, R. (2017, June). Neuro-fuzzy controller for attitude-
tracking stabilization of a multi-rotor unmanned aerial system. In 

Unmanned Aircraft Systems (ICUAS), 2017 International Conference 
on (pp. 1816-1823). IEEE. 

[7] Yu, L., Chen, J., Tian, Y., Sun, Y., & Ding, L. (2017). Fuzzy logic 
algorithm of hovering control for the quadrotor unmanned aerial system. 

International Journal of Intelligent Computing and Cybernetics, (just-
accepted), 00-00. 

[8] Choi, S., Kim, S., & Kim, H. J. (2017). Inverse reinforcement learning 

control for trajectory tracking of a multirotor UAV. International Journal 
of Control, Automation and Systems, 15(4), 1826-1834. 

[9] Fethalla, N., Saad, M., Michalska, H., & Ghommam, J. (2018). Robust 

observer-based dynamic sliding mode controller for a quadrotor UAV. 
IEEE Access, 6, 45846-45859. 

[10] Dierks, T., & Jagannathan, S. (2010). Output feedback control of a 

quadrotor UAV using neural networks. IEEE transactions on neural 
networks, 21(1), 50-66. 

[11] Heryanto, M., Suprijono, H., Suprapto, B. Y., & Kusumoputro, B. 

(2017). Attitude and Altitude Control of a Quadcopter Using Neural 
Network Based Direct Inverse Control Scheme. Advanced Science 

Letters, 23(5), 4060-4064. 

[12] Zhou, Y., Chen, M., & Jiang, C. (2015). Robust tracking control of 
uncertain MIMO nonlinear systems with application to UAVs. 

IEEE/CAA Journal of Automatica Sinica, 2(1), 25-32. 

[13] Luenberger, D. (1971). An introduction to observers. IEEE Transactions 

on automatic control, 16(6), 596-602. 

[14] Jia, J., & Duan, H. (2017). Automatic target recognition system for 
unmanned aerial vehicle via backpropagation artificial neural network. 

Aircraft Engineering and Aerospace Technology, 89(1), 145-154. 

[15] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. 
Neural networks, 61, 85-117. 

[16] Taha, W., Al-Durra, A., Errouissi, R., & Al-Wahedi, K. (2018, October). 

Nonlinear Disturbance Observer-Based Control for Quadrotor UAV. In 
IECON 2018-44th Annual Conference of the IEEE Industrial 

Electronics Society (pp. 2589-2595). IEEE. 

 


