
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Towards a Fine-Grained Access Control Mechanism
for Privacy Protection and Policy Conflict Resolution

Ha Xuan Son1
FPT University

Can Tho city, Viet Nam

En Chen2
National Taiwan Normal University

Taipei, Taiwan

Abstract—Access control is a security technique that specifies
access rights to resources in a computing environment. As
information systems nowadays become more complex, it plays
an important role in authenticating and authorizing users and
preventing an attacker from targeting sensitive information.
However, no proper consideration has been fully investigated so
far in privacy protection. While many studies have acknowledged
this issue, recent studies have not provided a fine-grained access
control system for data privacy protection. As the data set
becomes larger, we have to confront more privacy challenges.
For example, the access control mechanism must be able to
guarantee fine-grained access control, privacy protection, conflicts
and redundancies between rules of the same policy or between
different policies. In this paper, we propose a comprehensive
framework for enforcing attribute-based security policies stored
in the JSON document together with the feature of data privacy
protection and incorporates a policy structure based on the
prioritization of functions to resolve conflicts at a fine-grained
level called “Privacy aware access control model for policy conflict
resolution”. We also use Polish notation for modeling condi-
tional expressions which are the combination of subject, action,
resource, and environment attributes so that privacy policies
are flexible, dynamic and fine-grained. Experiments are carried
out to two aspects (i) illustrate the relationship between the
processing time for access decision and the complexity of policies;
(ii) illustrate the relationship between the processing time for the
traditional approach (single policy, multi-policy without priority)
and our approach (multi-policy with priority). Experimental
results show that the evaluation performance satisfies the privacy
requirements defined by the user.

Keywords—ABAC; privacy; JSON; policy conflict resolving;
document store; fine-grained access control

I. INTRODUCTION

The remarkable growth of Internet and social media ap-
plications over the past few decades lead to an exponential
increase of data. By capturing and analyzing these data,
enterprises obtain a better understanding about their customers,
leading to better business decisions. However, with a vast
amount of information available on the Web, it is required
a database system capable of storing and retrieving of data in
a well-structured way. Currently, NoSQL database is the most
popular approach to handle those semi and unstructured data
for a scalable application. As in other relational databases,
security must be highly considered as it has to process
large volumes of data. For the last decade, many models
e.g.Discretionary Access Control (DAC), Mandatory Access
Control (MAC), Role Based Access Control (RBAC) has
been proposed to handle security problems. These traditional
approaches are effective in a small-scale system; however, in

a large scale dynamic systems, they experience some serious
problems such as role explosion, inflexibility in specifying
dynamic policies and contexture conditions [1]. To overcome
those issues, Attribute Based Access Control (ABAC) model
has been investigated. The model grants access to a request
only if it satisfies conditions on attributes of subject, resource
and environment specified in policies [2]. With declarative
mechanism to specify access permission, ABAC has proved
its effectiveness on complex systems than RBAC with a fixed
mechanism.

Although access control systems are successful in the
prevention of unauthorized accesses and malicious users, they
are ineffective in privacy protection for a large, decentralized
system such as social network and Internet of Things. Our
concentration in this work; therefore, aims at developing a
system that is able to grant access control while providing
effective privacy protection.

Notwithstanding the ABAC model has proved its effec-
tiveness on complex systems with its declarative mechanism,
it is worth to note that the model assumes that all policies can
be trusted. In other words, the correctness of all attributes and
policies must be guaranteed. Moreover, since a complexity sys-
tem usually managed by several administrators, conflicts can
occur between rules of the same policy or between different
policies. Therefore, in the case of conflicts among policies,
the ABAC encounters problems in effectively detecting and
resolving them. In reality, the scale of policies with varying
level of privacy protection has led to an increasing risk of
policies conflicting with each other. Moreover, for a particular
system, there might be more than one administrator. As a
result, each one may define different rules that contradict with
others. In the worst case scenario, the policy set may permit
unauthorized access; furthermore, those collisions may cause
a denial of service for legal access. Therefore, it is required
to develop a system capable of detecting conflicts in a policy
and between policies and mitigating their effect in order to
preserve the privacy protection.

To investigate the problem of conflict resolution, we in-
troduced an ABAC system that incorporates a policy model
based on the prioritization of functions to resolve conflicts at
a fine-grained level. It allows the user to prioritize different
functions that presented on the same domain from the lowest
storage unit (fields) to the highest storage unit (as collection
or database). This is the advantage of the solution compared to
normal approaches: instead of returning decisions as Permit
or Deny, we create a smooth resolution mechanism that can
show a portion of the requested data based on the priority level

www.ijacsa.thesai.org 507 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

of the requester. Furthermore, our model supports complex po-
lices presenting in a hierarchical structure which may include
several sub-policy elements.

To investigate the all issues addressed, we have proposed
a flexible model structure for privacy protection supporting
conflict policy resolution called Attribute-based Access Control
model for fine-grained privacy protection. The model evaluates
a request not only by its access purpose but also by subject,
action, resource, environment attributes and function defined
by users. To describe complex policies containing information
of user, action, resource, environment, and driven policies,
Polish notation is used for modeling conditional expressions.
We also build an implementation based on MongoDB which
stores the policy and database of the system. Generally, the
requests and policies are defined in JSON format where ad-
ministrators and users can easily define policies and requests.
The contribution of this article is four-fold: (i) we proposed an
attribute-based security policies definition formatting in JSON;
(ii) we describe a mechanism for protecting sensitive data in
fine-grained level; (iii) we presented a dynamic solution for
fine-grained policy conflict; and (iv) we used Polish notation
for modeling conditional expressions.

This paper is organized as follows. In the second section,
we briefly review related works. Section 2 describes our
proposed model and how it handles both access control and
privacy protection. Section 3 presents the privacy-aware access
control policies including policy structure and policy decision
mechanism. Section 4 illustrates our sample scenario and how
our proposed model handles conflict in policy levels. Section
5 then describes our experimental designs and discusses the
results. Finally, Section 6 presents our conclusions and future
works.

II. RELATED WORKS

A. Privacy Protection in Access Control Model

Most of the works in the literature focus on two directions:
(i) constructing a whole new privacy-aware access control sys-
tem based on ABAC model; and (ii) adding a level of privacy
protection to a popular existence standard. Following the first
trend, Hua Wang et al.[3] proposed a purpose-based framework
for supporting privacy preserving access control policies and
mechanisms. In this framework, the key component is a set
of purpose-based access control policies that provide privacy
protection by taking into account some important features
(purposes and conditions). In addition, conflicting algorithm
is also developed to detect and analyze conflicts between
policies. However, the way to model conditional expression is
not clearly described; moreover, the conflicting algorithm only
focused on simple attributes which are not properly evaluated
with conditional expressions on them. Prosunjit Biswas et
al. presented an attribute based protection model for JSON
elements documents in [4]. To perform security protection,
each JSON element is assigned a new attribute called “security
label” which is used to define the access control policies.
A benefit of this separation of labeling and authorization
policies procedure is that each element can be specified and
administered independently and possibly by different level of
administrators. As a result, the privacy protection is done for
each element of the database management systems (DBMSs).

A drawback of this method might come from a huge number
of labels needed to be assigned since the total number is
growing exponentially.As a consequence, the process is time-
consuming while requiring a large space storage when the
system is expanded.

In the second research direction, most of the studies
focus on improving the privacy protection for the pop-
ular ABAC standards, eXtensible Access Control
Markup Language (XACML). Claudio A. Ardagna et al.in
[5] proposed a system that extend the traditional XACML
architecture with a combination with PRIME, a solution sup-
porting privacy-aware access control. As a result, the system
provides a flexible access control functionality of XACML
with the data governance and privacy features of PRIME.
In detail, the system has two main blocks: (i) PrimeLife
XACML Engine is responsible for granting access control and
(ii) Data Handling Decision Function (DHDF) is in charged
of privacy and data handling functionalities. When an access
request is needed to be considered, the request is forwarded
to both blocks. The final decision is taken by combining the
access control process and the DHDF data handling evaluation
process. Only if a request comes from an authorized users that
satisfied both evaluation procedure, it will be granted access
to the required data.

Another study based on XACML is presented in [6], [7],
[8], [9]. In this work, a system which inserts privacy policies
in access control solution to NoSQL database is developed
and tested on MongoDB. The main component responsible
for privacy protection is called Access control as a
service solution (ACCAAS).Administrators can store
access control policies in ACCAAS solution for each element.
When a request is forwarded to the ACCAAS system, it
decides whether or not that user is authorized. If yes, then it
sends a request to the MongoDB system asking for the required
data. If not, it would return a “Deny” to the requester.

The biggest advantage of these solutions is that they
support privacy protection on each element of the DBMSs.
Moreover, they are easily integrated with XACML policies
which is a widely-used standard in real world and consid-
ered many parameters for granted access at the same time
(e.g.purpose, obligation, user information, etc.). However, for
each request, since it is processed paralelly with the access
control procedure and privacy-aware procedure, the combined
results can be only “Permit” or “Deny”. In this paper, we
would like to extend the ability of the system of evaluating
the request and granting permissions according to the level of
authorized users. In detail, while processing a request, based
on the policies and credential restrictions defined before, the
system replies with three statuses: (i) Permit; (ii) Deny; and
(iii) Partially Permit. The level of permissions depends on the
level of privacy protection that the administrator sets up at the
beginning. By this way, we can ensure the privacy protection
for fine grained element of the DBMSs. In the next section,
our architecture is described in detailed.

B. Policy Conflict Resolution

Two policies conflict with each other if they protect the
same data area but granting different rights to users, whether
Access or Deny. Policy conflicting affect the systems’ security

www.ijacsa.thesai.org 508 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

as malicious users can easily exploit the vulnerability to access
the system. In literature, many studies have addressed the
problem of policy conflicting [9], [10], [11], [12], [13], [14].
These solutions include: using expert system [10], modifying
(edit, insert, revoke) policy/rule at the collision area [9], [14],
using algebraic solutions [11], using Bayesian Network [12],
[13]. Furthermore, XACML 3.0-based approaches rely on the
combining algorithm between policies and rules as in [15],
[16], [17], [18], [19].

To detect conflicts between rules in a given policy and
evaluate access request, Fan Deng et al. [20] presented an
engine called form conflict. In detail, it detects two types
of conflict to be resolved: (i) common resource conflict; and
(ii) dependent resource conflict. In the formconflict engine,
a Resource Index Tree is built based on the resource at-
tribute of a policy’s target attribute to convert the rules in policy
defined by XACML to the node information in the Resource
Index Tree. The algorithm compares a rule with those with
which it is likely to conflict to avoid unnecessary comparisons;
thus, saving a lot of time, leading to an effective performance
of the Policy Decision Points.

Martin et al. [21] used the model checking method to
detect XACML policy conflicts and verified its correctness
in Coq Proof Assistant. A rule defined in Coq includes two
fields, including (i) effect type and (ii) srac type containing
four elements of XACML attributes namely Subject, Action,
Environment, and Resource. The rules are conflict if they
shared the same srac type with different effects.

Mohan et al. [22] proposed a framework capable of dynam-
ically add and remove specialized policies while providing a
mechanism to reduce potential conflicts. This can be done by
using dynamic attributes to determine applicable policy sets at
runtime.

Jebbaoui et al. [23] provided a semantic-based policy
analysis scheme to detect flaws, conflicts, and redundancies
between the rules of large-size and complex XACML policies.
In detail, the detection algorithm analyzes the meaning of
policy rules through semantics verification by inference rule
structure and deductive logic.

As we can see, most of the existing studies in the lit-
erature focus on analyzing common problems of conflict in
XACML policy and conflict detection. An intuitive means to
resolve policy conflicts is to remove and/or edit all conflicts
by revoking and/or modifying the conflicting rules [9], [17].
However, changing the conflicting rules is significantly difficult
in practicing in many aspects. First, the policy may consists of
thousands of rules, which are often logically entangled with
each other. Furthermore, the policy conflicts are often very
complicated. Most of the case, a particular rule may conflict
with multiple rules; on the other hand, it may be associated
with several rules. Modifying the rule, therefore, may lead to
a defective policy set and greatly reduce the effectiveness of
the access control model of the system. Finally, since policies
deployed on a network are often maintained by more than
one administrator, conflict detection and elimination requires
an approval of all administrators of the system with a careful
consideration of its impact to the policy set. Therefore, the
key issue in resolving the conflict is how to work with them
instead of modifying and/or eliminating them. Our approach

Fig. 1. Two levels of protection in the attribute-based access control model

in this paper assigns different priority levels to the protected
data area. If there is no conflict between rules, those functions
are executed sequentially. On the other hand, if there is a
collision on the same domain, priority levels are executed in
descending order of priority, i.e. level 1 will be given priority
over level 2. Hence, the solution will be flexible for the large-
scale information system in which multiple administrators
participate in management.

III. ACCESS CONTROL SYSTEM SUPPORTING PRIVACY
PROTECTION

A. Privacy-Aware Access Control Policies

The key to ensuring privacy protection access control is
identifying how policies can be defined. As we mentioned be-
fore, a fundamental requirement of privacy policies is policies
having to support fine-grained access control. Fig. 1 illustrates
the structure of our policies: when a request is forwarded,
the authorization process is carried out through two stages
called as 2-stage authorization (i) security stage; and (ii)
privacy stage. In security stage, the authorization verifies that
the request is legitimate with rights for the access requester
to access data based on security elements. In privacy stage,
the request is transferred to this stage for checking privacy
compliance based on privacy elements.

B. Privacy-Aware Access Control Model

As our model based on ABAC, the model controls ac-
cess by 4 main attribute types: (i) user attributes; (ii) action
attribute; (iii) attributes associated with the resource to be
accessed; and (iv) current environment conditions. Fig. 1
illustrates the architecture of the model and the flow of an
access control evaluation including conflict resolution. The
architecture contains the following main components.

• Policy Enforcement Points (PEP): responsible for
receiving requests from users. Moreover, it performs
access control by making decision requests and en-
forcing authorization decisions.

• Repository Interface: interactive interface between
DBMSs. Other components can send request to Repos-
itory Interface whenever they need more information
or data.

www.ijacsa.thesai.org 509 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

• Policy Information Points (PIP): serves as the source
of attribute values, or the data required for policy
evaluation.

• Policy Decision Points (PDP): responsible for receiv-
ing and examining requests. It retrieves and evaluates
applicable policies. After the evaluation processes, it
returns the authorization decision to PEP. It is the core
component of the model.

• Policy Administrator Points (PAP): responsible for
creating security policies and storing them in the
repository.

Fig. 2. Proposed privacy-aware access control model resolving conflict
security and privacy element

As an access request is sent to the PEP module (step 1),
the module queries the Repository Interface to get
the value of important attributes about the requester includ-
ing subject, action, environment and resource data (step 2).
After retrieving these attributes, the PEP forwards them with
the access request to the PDP in which the access request
will be evaluated for granting access. The PDP identifies
applicable policies that are stored in the PAP module for
the evaluation process. These policies contain two levels of
protection, security elements, and privacy elements. If a single
condition of security stage is not satisfied, the system returns
a Deny and the request is not granted access to the data. In
case all security elements are satisfied, the requested data is
loaded from the storing database (in this case, the MongoDB
database is used). Then the privacy checking procedure is
enabled as privacy function is loaded from the Privacy
Function Library. Depending on the number of satisfied
privacy elements, a portion of the data corresponding to the
satisfied conditions will be returned to the access request.
As different rules/policies may present conflicts between each
other, the Conditional Expression Service module
is responsible for changing the string conditions to the condi-
tion tree as illustrated in Algorithm 1. On the overlapped
domain, privacy functions are selected based on their priority
levels. In general, priorities are applied whenever conflicts be-
tween rules in an inside policy or inter-policy occur. Depending
on the function selected, the requested data can be showed in
three statuses: (i) Show; (ii) Partially show; or (iii) Hide to the
requester.

C. Policy Structure

A policy set includes one or more policies. Policy struc-
ture contains one or multiple rules which can be created
from several elements. There are two main elements namely
security and privacy. On the one hand, the security
element is responsible for allowing or not allowing to execute
users’ requirements. On the other hand, the privacy element
is responsible for determining whether access data should be
shown, hidden or generalized. A typical policy can be specified
as follows:

• policy id: identifier of policy

• collection name: name of collection or table contain-
ing resource data

• rule combining: responsible for solving the conflict
of rules

• is attribute resource required: a derived field used
to determine whether the policy needs attribute re-
source to evaluate conditions of target or rules.

• target: conditional expression specifies when the pol-
icy should be applied to.

• security: an array field with each element in it is a
rule which contains id field, effect field (value of
this field can either Permit or Deny) and condition.

• privacy: the privacy protection engine is also based on
rules which are the Boolean expressions evaluated by
user’s defined function, subject, resource, environment
attribute.

Each rule of security element defines a conditional expression
that is modeled as a function tree structure. They return a value
specified in the element Effect if the condition is true.

As an example, consider the following Policy 1.

{ "policy_id" : "Policy 1",
"collection_name" : "Department",
"action" : "read",
"rule_combining" : "permit-overrides",
"is_attribute_resource_required": true,
"target" : {

//Equal(Subject.active, true)
"function_name" : "Equal",
"parameters" : [{

"value" : "active",
"resource_id" : "Subject"

}, {
"value" : "true",
"resource_id" : null

}]
},

"security" : [{
"id" : "rule 1",
"effect" : "Permit",
"condition" : {

//Equal(Resource.dept_name, department)
"function_name" : "Equal",
"parameters" : [{

"value" : "dept_name",

www.ijacsa.thesai.org 510 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

"resource_id" : "Resource"
}, {
"value" : "department",
"resource_id" : "null"

}]
} } ]

}

For the privacy element, each rule is an array field with
each element is similar to an obligation (in XACML) con-
taining id field, field_effect field and condition. It
is worth to note that the field_effect field which has
an array type describes the list of data disclosure levels
for each field of JSON data constrained by these rules.
Each element in field_effects has two components:
(i) component name storing the path to the field; and (ii)
component effect_function containing X.Y value where
X denotes the privacy domain and Y denotes the name of
privacy functions on that domain. In the normal situation, the
default values of privacy functions are PrivacyDom.Show.
These elements are Boolean expressions evaluating by user’s
defined function, subject, resource, and environment attribute.
Here, as a constraint, a field of the resource can only belong
to at most two domains. The first one is default domain
containing two basic privacy functions to represent the status
of the data, i.e. Hide or Show. The other one is configured
by the administrator. Below, an example of privacy structure
for Policy 1 is illustrated:

{ <...>
"privacy" : {

"rule_id" : "rule 1",
"condition" : {

"function_name" : "Equal",
"parameters" : [{

"value" : "dept_name",
"resource_id" : "Resource"

}, {
"value" : "OPERATIONS",
"resource_id" : null

}]
},

"field_effects" : [{
"name" : "dept_id",
"effect_function" : "PrivacyDom.Hide"

},{
"name" : "dept_no",
"effect_function" : "PrivacyDom.Show"

}, {
"name" : "dept_name",
"effect_function" : "PrivacyDom.Show"

}]
}

As shown in the code, we assumed that PrivacyDom is the
protected area. When a request is made, depending on the
evaluation of the model, the data has two statuses Hide or
Show.

D. Algorithms

Algorithm 1 Algorithm for parsing conditional expression
Input: rawExpression: String
Output: function : Function class
Let listTok: List<String> ← getToks(rawExpression)
Let stackTok: Stack<String>
Let queueTok: Queue<String>
Let queueFun: Queue<Function>

1: for tok in listTok do
2: if IsFunctionName(tok) or tok == ”(” or

IsLogicalOperator(tok) then
3: stackTok.push(tok)
4: else if tok == ”)” then
5: while stackTok.length ¿ 0 do
6: temp = stackTok.pop()
7: if temp == ”(” then
8: queueTok.enqueue(stackTok.pop())
9: break

10: else
11: queueTok.enqueue(temp)
12: end if
13: end while
14: else
15: queueTok.enqueue (tok)
16: end if
17: end for
18: while stackTok.length > 0 do
19: queueTok.enqueue (stackTok.pop())
20: end while
21: while queueTok.length > 0 do
22: tok = queueTok.dequeue()
23: if IsFunctionName(token) then
24: function = Function.CreateFunction (tok)
25: for 1 to GetNumberParameters(function) do
26: function.Parameter.Add(queueFun.dequeue())
27: end for
28: queueFun.enqueue(function)
29: else
30: queueFun.enqueue(Function.CreateConstValue(tok))
31: end if
32: end while
33: return queueFun.enqueue

1) Algorithm for parsing conditional expression: Algo-
rithm 1 converts the conditional expression in text format
to the Function structure. Firstly, the rawExpression is
split into tokens (listTok). We assume that stackTok is a
stack storing names of functions, queueTok is a queue storing
tokens in Reverse Polish Notation form, and queueFun is a
stack storing functions. Then the tokens queue is parsed into
Function structure (for loop line 1 – 17). The process is
built as an expression tree with bottom–up approach. After
dequeuing the token queue until it is empty, it is parsed to
Function structure and enqueued to queueFun in the while
loop between line 18 and 20. Then we dequeue the queueFun
based on the number of parameters and add those elements to
parameters field in the for loop from line 25 to 27. After
that, these new elements are enqueued to queueFun in line
28 and line 30. We continue with the remaining elements and
return the value of queueFun in line 33.

www.ijacsa.thesai.org 511 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Algorithm 2 Algorithm for evaluating policy and request
Input: List<Policy>, Request: JSON
Output: respone Respone class
Let listPolicy: List<Policy>
Let request: Request ← getV alue(Request)

1: for policy in listPolicy do
2: if GetSubject (policy, request) and GetCollection

(policy, request) and GetAction (policy, request)
then

3: if is sub policy then
4: if Overlap Domain then
5: //Execute the function with lower priority
6: else
7: response = PolicyCombining(sub policy)
8: end if
9: else if Target(policy, request) then

10: listSecRule = policy.GetSecurityRule(policy)
11: listPriRule = policy.GetPrivacyRule(policy)
12: flag = true
13: while secRule in listSecRule and flag do
14: if !Condition(secRule,request) then
15: flag = false
16: end if
17: end while
18: response = RuleCombining(secRule.GetEffect())
19: while priRule in listPriRule and flag do
20: if Condition(priRule,request) then
21: //Choose field_effects by name
22: //Execute effect_function
23: end if
24: end while
25: else
26: //Continue with next policy in listPolicy
27: response = Response(policy,Request)
28: end if
29: else
30: //Continue with next policy in listPolicy
31: response = Response(policy,Request)
32: end if
33: end for
34: return response

2) Algorithm for evaluating policy and request: Algorithm
2 describes the evaluation between the list of policy and the
request. The Input of this algorithm is the list of the policy
stored in PAP and the request sent from an access requester.
We assume that listPolicy is a list storing the policies in PAP
and request is a variable storing the value of subject, action,
environment, resource. First, we find the best policy which
allows the request to access the data resource. If the subject
value, resource value, and the action value between policy
and request does not equal, the system will consider the next
policy (line 2). Next, the value of is sub policy is checked.
If returns true, we check the value of Overlap Domain. In
this case true, the conflict occurs in the evaluation process,
and the function with lower priority is executed (line 4 -
5). Otherwise, the value of response is the value of the
function of PolicyCombining(sub policy) (line 6 - 7). If
the value of is sub policy is false compared to the value of

request to the Target element. If the request can fulfill
all target constraints, the Security and Privacy elements
is evaluated. Otherwise, we move to the next policy (line
9). listSecRule and listPriRule are the variable storing the
rule of Security and Privacy respectively. Apparently,
if a single condition is not satisfied, the returned value is
false and user’s request is not granted access (while loop
from line 13 to line 17). We only execute the Privacy
element if and only if the access request in Security
element returns Permit (line 19). According to the name
of filed_effect, the effect_function is executed.
Finally, the algorithm continues with the remaining policy (be-
tween line 26 and line 30) and returns the value of response
in line 34.

IV. POLICY CONFLICT RESOLVING

A. Policy Conflict

In an authorization system, a particular policy set often
contains multiple policies while a policy generated by many
rules. For each rule, its policy evaluates to different decisions
(e.g. Permit, Deny). To avoid conflicts between policies and
rules, traditional approaches applied a set of combining rules
to the policy set. Those solutions are inherited from XACML
[24]. In general, the combining algorithm is represented by a
structure called “PolicyCombining” described by two compo-
nents as below:

• policies id: An array of policy identifiers

• combining algorithm: The name of algorithm is used
to solve conflict when multiple policies are contained
in policies_id field.

An example of the ”PolicyCombining” is illustrated as
follow:

{ "_id" : "58f24565de2b68f43464287a",
"policies_id" : [

"Policy 1", "Policy 2"
],
"algorithm" : "deny-overrides"

}

B. Privacy Conflict

In privacy stage, a conflict can be created as multiple
privacy rules from the same policy simultaneously satisfied a
condition. As a result, several privacy functions can be applied
to a particular field of the object. To handle this situation, we
added a structure called PrivacyDomain. It contains four
elements including:

• domain name: The name of domain.

• fields: The names of fields in resource which are
belong to this domain.

• is sub policy: To check whether this is domain for
privacy function or sub-privacy policy.

• hierarchy: To configurate the priority for each privacy
function. It contains two sub-elements, namely, name
describe the name of function, priority describe the
value of priority.

www.ijacsa.thesai.org 512 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

An example of PrivacyDom is showed below:

{ "domain_name" : "PrivacyDom",
"fields" : [],
"is_sub_policy" : false,
"hierarchy" : [{

"name" : "Hide",
"priority" : 1
},{
"name" : "Show",
"priority" : 2

}
] }

C. Scenario

This section presents the sample of policy conflict resolu-
tion on privacy element and we will use as a running example
through the article. Information of an employee is showed as
below:

{ "name": "John",
"personal_info": {

"birth_date": "15/01/1994",
"ssn": "457-55-5462"

} }

The rule element of policy 1 is assumed as:

{ "policy_id": "policy 1",
<...>

"privacy" : {
"rules" : [{
"rule_id" : "rule 1",
"condition" : {

//assume that this condition is satisfied}
"field_effects" : [{

"name" : "name",
"effect_function" : "Optional"
},{
"name" : "personal_info.birth_date",
"effect_function":"Date.ShowYear"
}, {
"name" : "personal_info.ssn",
"effect_function":"Ssn.SerialNumber"

}],
}]}

}

The rule element of policy 2 is assumed as:

{ "policy_id": "policy 2",
<...>
"privacy" : {
"rules" : [{
"rule_id" : "rule 1",
"condition" : {

//assume that this condition is satisfied}
"field_effects" : [{

"name" : "name",
"effect_function" : "PrivacyDom.Show"
},{

"name" : "personal_info.birth_date",
"effect_function":"Date.ShowMonthYear"
},{
"name" : "personal_info.ssn",
"effect_function":"Ssn.AreaNumber"

} ],
},{
"rule_id" : "rule 2",
"condition" : {

//assume that this condition is satisfied}
"field_effects" : [{
"name" : "name",
"effect_function" : "PrivacyDom.Show"
},{
"name" : "personal_info.birth_date",
"effect_function" : "Date.Show"
},{
"name" : "personal_info.ssn",
"effect_function" : "Optional"

} ]
}]}
}

We explain more detail about the field_effects field
in the privacy structure. It is an array field with the number
of elements in each field is equal to the number of the single
value field in the resource. Each element has the following
structure:

• name: is the path to the single value field.

• effect function: This field has only 2 value patterns.
First is “Optional” value, second is “X.Y” value where
X is privacy domain, and Y is the name of privacy
function in that domain.

We have the conflicting privacy showing in Table 1:

TABLE I. THE EXAMPLE OF CONFLICT PRIVACY FUNCTIONS

Fields Conflict Privacy Functions
name Optional, PrivacyDom.Show

personal info.birth date Date.ShowMonthYear, Date.ShowYear, Date.Show
personal info.ssn Ssn.AreaNumber, Ssn.SerialNumber, Optional

We assume the Privacy Domain below:

{
"domain_name" : "Date",
"fields" : ["Employee.personal_info.

birth_date"],
"is_sub_policy" : false,
"hierarchy" : [{

"name" : "ShowYear",
"priority" : 1

},{
"name" : "ShowMonthAndYear",
"priority" : 2

}
] },{
"domain_name" : "Ssn",
"fields":["Employee.personal_info.ssn"],
"is_sub_policy" : false,
"hierarchy" : [{

www.ijacsa.thesai.org 513 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

"name" : "AreaNumber",
"priority" : 1

}, {
"name" : "GroupNumber",
"priority" : 2

}, {
"name" : "SerialNumber",
"priority" : 3

}]
}

The privacy function will be chosen by the following rule:

P(”Optional”) < P(”PrivacyDom.Show”) < P(X.Y1) <
... < P(X.Yn) < P (”PrivacyDom.Hide”)

where P(X.Y) denotes for priority of privacy function
Y in domain X. The priority is configured by administrator in
PrivacyDom structure.

Applying this rule to the above conflict table, the result is
described in Table 2:

TABLE II. RESULT OF SOLVING CONFLICT BETWEEN PRIVACY
FUNCTIONS

Fields Conflict Privacy Functions
name PrivacyDom.Show

personal info.birth date Date.ShowYear
personal info.ssn Ssn.AreaNumber

Applying the chosen privacy functions, the result of data
is showed as below:

{
"name": "John",
"personal_info": {

"birth_date": "1994",
"ssn": "457"

}
}

V. EXPERIMENT

A. Environment and Sample Dataset

The system configuration for the experiments is a 64-bit
machine with 8GB of RAM and 2.8 GHz Intel Core i5 CPU
running macOS High Sierra. The prototype is implemented by
C#, .NET Core1 and MongoDB v4.0 for storing policies and
data. We used mockaroo tool2 to generate sample dataset.

B. Privacy Protection Testbest

The proposed architecture was implemented for two cases:
(i) with simple data structure; and (ii) with complex data
structure. For the first scenario, structure of each resource
consists of ten fields (key – value) and one document. On the
other hand, the second one contains and array of embedded
documents. Each record has an array of embedded documents
field containing at least five elements inside. In general, all

1https://github.com/xuansonha17031991/privacy-aware-access-control-
model

2https://www.mockaroo.com/

experiments are included in total five policies. Moreover, to
observe the difference between the performances of policy with
single security element (traditional solution) and policy with
security and privacy elements (our solution), the processing
time of each case is recorded.

Table 3 compares the performances of both policies on the
two cases simple and complex data structure. On analyzing
the table, it can be observed that as the number of records
increases, the gap difference between processing time of both
policies expands sharply. Considering the case of simple
structure, when the number of records is 2000, this gap is
only 0.328 seconds; however, it increases to 1.863 seconds
as the number of records reaches 12000. A similar situation
happens in the case of complex structure as this difference
rises from 0.613 seconds to 2.514 seconds. For a database of
up to 12000 records, the difference of approximately 2 second
is acceptable. It is worth to note that as the complexity of the
data structure increases, the time needed to process a record
increases.

In order to analyze in detail the performance of each
case, Table 3 also presents the average processing time for
each record. While the traditional solution needs around 1
millisecond to process a record, the proposed model requires
1.14 and 1.36 milliseconds depends on the complexity of
the data structure. Again, with the development of computer
system nowadays, this difference is acceptable.

TABLE III. PROCESSING TIME (MEASURE IN MILLISECOND) FOR THE
MODEL WITH AND WITHOUT PRIVACY POLICY ON DIFFERENT DATA

STRUCTURE

Number Privacy element No privacy element
of Simple Completely Simple Completely

records structure structure structure structure
2000 2264 2797 1936 2184
4000 4394 5471 3972 4237
6000 6734 8168 5555 6769
8000 8877 10897 6657 7867
10000 11751 13539 8963 9975
12000 13983 16550 12120 14036

Average
for each 1.143 1.367 0.933 1.073
record

C. Policy Conflict Resolution Testbed

The proposed architecture was implemented for three
cases: (i) single policy; (ii) multi-policy without priority; and
(iii) multi-policy without priority. The first structure of policy
consists of a single policy. The second one is the multi-
policy which consists of one main policy, ten sub-policy and
being executed without priority. The last one had a similar
policy structure but being executed with priority. In general,
all experiments are included in total ten policies. Moreover, to
observe the difference between the performances of different
models with a single policy, multi-policy without priority
(normal solution) and policy with priority (our solution), the
processing time of each case is recorded.

Table 4 compares the performances of all models on the
three cases single, multi-policy with(out) priority. On analyzing
the table, it can be observed that as the number of records
increases, the gap difference between the processing time of
both policies expands. Considering the case of a single policy,
when the number of records is 50000, this gap is only 0.539

www.ijacsa.thesai.org 514 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

seconds; however, it increases to 47.508 seconds as the number
of records reaches 500000. A similar situation happens in
the case of the multi-policy with and without priority as this
difference rises from 0.556 seconds to 48.994 seconds and
from 0.565 seconds to 59.855 seconds, respectively. It is worth
to note that as the complexity of the policy structure increases,
the time needed to process record increases. For a database
of up to 500000 records, the difference of approximately
10 seconds is acceptable. The time difference between our
solution with a normal solution is spent on conflict resolution.

In order to analyze in detail the performance of each
case, Table 4 also presents the average processing time for
each record. While the normal solution needs nearly 0.09
millisecond to process a record, the proposed model requires
0.111 milliseconds depending on the policy structure having
the priority or not.

TABLE IV. PROCESSING TIME (MEASURE IN MILLISECOND) FOR
DIFFERENT POLICY STRUCTURES

Number of Single Multi-policy without Multi-policy with
record policy policy conflict resolution policy conflict resolution
50000 5390.6 5560.2 5654
100000 10496.6 11178.4 15380
200000 13285.6 13354.4 17062
300000 26190.8 26537.6 31212
400000 35366.6 36003.4 44648
500000 47508.8 48993.6 59855.2
Average
for each 0.0892 0.0914 0.1121
record

VI. CONCLUSIONS

In this paper, we have proposed an Attribute-based Access
Control model for fine-grained privacy protection. The model
defines two levels of protection on the policy structure namely
security stage and privacy stage. The privacy element allows
the system to show or hide the requested data based on
credential restrictions defined before and reply to the requester
with three statuses: (i) Permit; (ii) Deny; and (iii) Partially
Permit. As system usually managed by several administrators,
conflicts can occur between rules of the same policy or among
different policies. In reality, the conflicts pose a massive
security risk to the user’s privacy as sensitive information
can be accessed without authorized permission. Our approach
provides a mechanism to define different priority levels for
each privacy domain. In this way, instead of detecting whether
there is a conflict or redundancy or not, the system executes
privacy functions according to their priority. In addition, we
introduced a fine-grained privacy protection by providing user-
defined libraries. As a result, one can easily interact with and
evaluate access control with the lowest storage unit, e.g. field to
collections or databases. From the analysis of the experimental
results obtained on two testbeds: (i) several data structure, (ii)
policy conflict resolution, we can state that the proposed model
is implemented successfully and the difference of processing
time between our solution and the traditional one is acceptable.
In future work, we aim to apply the model to healthcare
system in which the requirements for privacy protection is at
the highest level while supporting dynamic policy is needed.
Moreover, we also plan to apply a new approach [25] to
our scheme whereby the system will be greater flexibility,
availability while ensuring security and privacy for system.

ACKNOWLEDGMENT

Sincerely thank to Luong Van Huy who supported in
implementation and provided feedback on early revisions.

REFERENCES

[1] E. Bertino et al., “Access control for databases: concepts and systems,”
Foundations and Trendsin Databases, vol. 3, no. 1–2, pp. 1–148, 2011.

[2] V. C. Hu et al., “Guide to attribute based access control (abac) definition
and considerations (draft),” NIST special publication, vol. 800, no. 162,
2013.

[3] H. Wang, L. Sun, and V. Varadharajan, “Purpose-based access control
policies and conflicting analysis,” in IFIP International Information
Security Conference. Springer, 2010, pp. 217–228.

[4] P. Biswas, R. Sandhu, and R. Krishnan, “An attribute-based protection
model for json documents,” in International Conference on Network
and System Security. Springer, 2016, pp. 303–317.

[5] C. A. Ardagna et al., “An xacml-based privacy-centered access control
system,” in Proceedings of the first ACM workshop on Information
security governance. ACM, 2009, pp. 49–58.

[6] M. E. Kabir, H. Wang, and E. Bertino, “A role-involved conditional
purpose-based access control model,” in E-Government, E-Services and
Global Processes. Springer, 2010, pp. 167–180.

[7] M. E. Kabir et al., “A conditional purpose-based access control model
with dynamic roles,” Expert Systems with Applications, vol. 38, no. 3,
pp. 1482–1489, 2011.

[8] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat, and
A. Trombeta, “Privacy-aware role-based access control,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 3,
p. 24, 2010.

[9] H. X. Son, L. K. Tran, T. K. Dang, and Y. N. Pham, “Rew-xac: an
approach to rewriting request for elastic abac enforcement with dynamic
policies,” in Advanced Computing and Applications (ACOMP), 2016
International Conference on. IEEE, 2016, pp. 25–31.

[10] B. Stepien and A. Felty, “Using expert systems to statically detect”
dynamic” conflicts in xacml,” in 2016 11th International Conference
on Availability, Reliability and Security (ARES). IEEE, 2016, pp. 127–
136.

[11] E. Karafili, S. Pipes, and E. C. Lupu, “Verification techniques for policy
based systems.” IEEE, 2017, pp. 1–6.

[12] B. Bahrak, “Ex ante approaches for security, privacy, and enforcement
in spectrum sharing,” Ph.D. dissertation, Virginia Tech, 2013.

[13] A. Al-Mutairi and S. Wolthusen, “Mpls policy target recognition
network,” in International Conference on Risks and Security of Internet
and Systems. Springer, 2015, pp. 71–87.

[14] M. H. Nguyen and H. X. Son, “A dynamic solution for fine-grained pol-
icy conflict resolution,” in International Conference on Cryptography,
Security and Privacy. ACM, 2019.

[15] M. Ayache, M. Erradi, A. Khoumsi, and B. Freisleben, “Analysis and
verification of xacml policies in a medical cloud environment,” Scalable
Computing: Practice and Experience, vol. 17, no. 3, pp. 189–206, 2016.

[16] A. Lunardelli, I. Matteucci, P. Mori, and M. Petrocchi, “A prototype for
solving conflicts in xacml-based e-health policies,” in Computer-Based
Medical Systems (CBMS), 2013 IEEE 26th International Symposium
on. IEEE, 2013, pp. 449–452.

[17] Q. N. T. Thi et al., “Using json to specify privacy preserving-enabled
attribute-based access control policies,” in International Conference on
Security, Privacy and Anonymity in Computation, Communication and
Storage. Springer, 2017, pp. 561–570.

[18] H. X. Son and M. H. Nguyen, “A novel attribute-based access control
system for fine-grained privacy protection,” in International Conference
on Cryptography, Security and Privacy. ACM, 2019.

[19] H. X. Son, T. K. Dang, and L. K. Tran, “Xacs–dypol: Towards an
xacml–based access control model for dynamic security policy.”

[20] F. Deng and L.-Y. Zhang, “Elimination of policy conflict to improve
the pdp evaluation performance,” Journal of Network and Computer
Applications, vol. 80, pp. 45–57, 2017.

www.ijacsa.thesai.org 515 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

[21] M. St-Martin and A. P. Felty, “A verified algorithm for detecting
conflicts in xacml access control rules,” in Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs. ACM, 2016,
pp. 166–175.

[22] A. Mohan and D. M. Blough, “An attribute-based authorization policy
framework with dynamic conflict resolution,” in Proceedings of the 9th
Symposium on Identity and Trust on the Internet. ACM, 2010, pp.
37–50.

[23] H. Jebbaoui, A. Mourad, H. Otrok, and R. Haraty, “Semantics-based
approach for detecting flaws, conflicts and redundancies in xacml

policies,” Computers & Electrical Engineering, vol. 44, pp. 91–103,
2015.

[24] E. Rissanen et al., “extensible access control markup language (xacml)
version 3.0,” OASIS standard, vol. 22, 2013.

[25] H. X. Son, T. K. Dang, and F. Massacci, “Rew-smt: A new approach
for rewriting xacml request with dynamic big data security policies,”
in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2017, pp. 501–
515.

www.ijacsa.thesai.org 516 | P a g e


