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Abstract—Training of artificial neural network using back-
propagation is a computational expensive process in machine
learning. Parallelization of neural networks using Graphics Pro-
cessing Unit (GPU) can help to reduce the time to perform
computations. GPU uses a Single Instruction Multiple Data
(SIMD) architecture to perform high speed computing. The use
of GPU shows remarkable performance gain when compared to
CPU. This work discusses different parallel techniques for the
backpropagation algorithm using GPU. Most of the techniques
perform comparative analysis between CPU and GPU.
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I. INTRODUCTION

An Artificial Neural Network (ANN) [1] is created initially
inspired by the functionality of human brain where a large
number of neurons are interconnected to process information.
ANN plays a vital role to analyze large scale of data. There
exist various algorithms of ANN which can be utilized in
a vast variety of fields. ANN is mostly used for pattern
recognition and classification [2]. Backpropagation [3] is an
algorithm of ANN that is mostly used due to its efficiency
and simple implementation. Training and testing of ANN is a
time consuming process which requires a large computational
cost. There is need to increase the speed of training, testing
and reduce the computational cost [4]. Parallel computing can
help to increase the speed and reduce the cost of computation
to train and test ANN.

Backpropagation neural network consists of single input,
output, and one or more hidden layers. The neurons in the
same layer are independent. The appropriate weights among
neurons are obtained by performing multiple iterations. Back-
propagation has forward and backward pass. In forward pass,
the input vector of each layer is computed in each iteration.
While, in backward pass, calculation of gradient descent and
updation of weights is performed.

GPU consists of a large number of cores for parallel
execution and performance enhancement of different applica-
tions [5]. GPU have already been used to solve computational
complex problems in different areas like physics simulations,
molecular dynamics, and scientific computing [6]. The pro-
gramming model for NIVIDIA graphics card is Compute
Unified Device Architecture (CUDA). CUDA programming
model provides shared memories, a hierarchy of thread groups,
and barrier synchronization to accelerate the applications [6].

A CUDA kernel can execute large number of threads concur-
rently. GPU can also work with neural networks in order to
perform their operations and obtain efficient results. In this
study, we have reviewed the implementation of backpropa-
gation algorithm techniques using GPU. The execution and
training of ANN on GPU can be performed in different steps,
i.e., data preparation, transfer of data from CPU to GPU, kernel
execution, and then results are transferred to the host [7].
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Fig. 1. Backpropagation Neural Network [7].

The rest of this paper is organized in different sections.
Section II describes the serial backpropagation algorithm. Sec-
tion III describes the parallel techniques for backpropagation
neural network. Finally, Section IV presents the conclusion.

II. BACKPROPAGATION ALGORITHM

There exist various algorithms to train an ANN. Backprop-
agation is one of the popular algorithm which is mostly used
due to programming ease and has a power to manipulate large
amount of data. A neural network contains an input, output,
and one or more hidden layers. A layer consists of a vector
of neurons and weights together with an activation function.
These layers are connected with succeeding ones as shown in
Fig. 1.

The number of hidden layers can be determined by the
problems complexity [8]. The first part of backpropagation
algorithm is feed-forward pass which presents inputs to the
network and propagate forward to produce the output. In
backward pass, the output is compared with the desired output.
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Fig. 2. Flow of BackPropagation Network on GPU [2].

The weights are updated according to error correction rule [7],

[9].

III. PARALLELIZATION BACKPROPAGATION NEURAL
NETWORK USING CUDA

Training and testing of ANN has large computational cost
and time taking process. Parallelism of neural networks using
GPU can help to reduce the time to perform computations.
Different researcher have used parallel computing to enhance
the performance of backpropagation algorithm. Backpropaga-
tion has been implemented using OpenMP [11], MPI [12] and
GPU using CUDA [4], [10].

The workflow of the backpropagation algorithm using GPU
is described in [5]. This can be summarized as following:

1) Read input data.

2)  Random initialization of weights.

3) Copying weights to the GPU.

4)  Copying input to the GPU.

5)  Neural network initialization.

6) Calling feed-forward kernel (input to hidden layer).
7)  Calling feed-forward kernel (hidden to output layer).
8)  Call the kernel for delta calculation.

9)  Kernel for updating weights (input to hidden layer).
10)  Kernel for updating weights (hidden to output layer).

Backpropagation algorithm implemented by Brito et al.
on the GPU contains three functions. The first function (i.e.,
DeltaCalculation) calculates error between output and hidden
layers. This function is used in the process of updating weights
in backpropagation. The function UpdateInputWeights updates
weights which connects input to hidden layer. Number of
threads in a block are equal to the number of inputs. the Num-
ber of nodes in hidden layer are equal to number of blocks. The
UpdateHiddenWeights updates weights for hidden to output
layer. In this function, number of threads are same as number
of nodes in hidden layer and number of blocks are equivalent
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to the number of nodes in output layer. The execution of blocks
and threads update the weights in parallel [5]. The typical
execution flow of GPU enabled backpropagation algorithm is
shown in Fig. 2.

The implementation of backpropagation algorithm in paral-
lel can be done using vector and matrix operations. Arithmetic
and vector-matrix products are considered as the types of
parallel operations. Vector and matrix operations can be per-
formed using CUBLAS. The utilization of kernel is essential
unless CUBLAS do not perform all the operations. In [4],
the comparative analysis on cancer and mushroom datasets
using CPU and GPU are performed. This comparative study
is performed by changing the size of hidden neurons in CPU
and GPU. When the number of hidden neurons increases, the
computation is becoming more complex due to size of sub
matrices. The test results indicates the speedup of 46 and 63
times in cancer and mushroom data, respectively [4].

The implementation of backpropagation neural network in
batch mode has been demonstrated in [10]. Every layer in
neural network exists in the form of matrix. The matrices
are distributed over multiple GPUs in order to gain high
speed up. The implementation of GPU requires CUBLAS and
CUDA kernel. The framework for training of backpropagation
algorithm using multiple GPUs is shown in Fig. 3. Every
GPU feed forwards the input data to successive one’s for the
calculation of gradients and training errors. The information
about gradients and training errors is collected by the first
GPU from all other GPUs to sum them (training errors and
gradients) respectively. The gradients are moved to every GPU
for updating the weights. This process continues until the
goal is attained. The technique of using multiple GPUs attains
higher speed up than other techniques. Multi GPU training
was approximately 51.33 times faster than CPU. On the other
hand, training on single GPU is just 11.99 times faster [10].

The parallel implementation of backpropagation algorithm
using multicore processors and GPUs are discussed in [13].
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Fig. 3.

They have also compared three versions of backpropagation
algorithms, i.e., sequential or classical backpropagation al-
gorithm, OpenMP shared memory multiprocessing algorithm
where parallel computations are performed on multicore CPU,
and GPU implementation of backpropagation algorithm [13].
The results demonstrated that the parallel executions can
explore a more prominent number of solutions and attain a low
mean square error. Different numbers of ANNs can be trained
in parallel simultaneously. GPU implementation showed ap-
proximately 496 times more solutions when compared with

Parallel backpropagation training on multiple GPUs framework [10].

OpenMP implementation [13].

IV. CONCLUSION

Training of ANN with backpropagation is a time taking
and computational expensive process. GPU based parallelism
of neural networks can help to decrease the training time.
In this study, three techniques of parallel backpropagation
neural network, i.e., using single GPU for training and testing,
using multiple GPUs, and training many neural networks
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simultaneously are discussed. The speed of neural network can
be improved using GPU when compared to the CPU version.
The CPU performs better for small number of attributes and
the GPU version performed efficiently on a dataset with large
scale of attributes.
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