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Abstract—Increased data availability and high data access 

performance are of utmost importance in a large-scale 

distributed system such as data cloud. To address these issues 

data can be replicated in various locations in the system where 

applications are executed. Replication not only improves data 

availability and access latency but also improves system load 

balancing. While data replication in distributed cloud storage is 

addressed in the literature, majority of the current techniques do 

not consider different costs and benefits of replication from a 

comprehensive perspective. In this paper, we investigate replica 

management problem (which is formulated using dynamic 

programming) in cloud computing environments to support big 

data applications. To this end, we propose a new highly 

distributed replica placement algorithm that provides cost-

effective replication of huge amount of geographically distributed 

data into the cloud to meet the quality of service (QoS) 

requirements of data-intensive (big data) applications while 

ensuring that the workload among the replica data centers is 

balanced. In addition, the algorithm takes into account the 

consistency among replicas due to update propagation. Thus, we 

build up a multi-objective optimization approach for replica 

management in cloud that seeks near optimal solution by 

balancing the trade-offs among the stated issues. For verifying 

the effectiveness of the algorithm, we evaluated the performance 

of the algorithm and compared it with two baseline approaches 

from the literature. The evaluation results demonstrate the 

usefulness and superiority of the presented algorithm for 

conditions of interest. 
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I. INTRODUCTION 

Lately, cloud computing has become an attractive and 
mainstream solution for data storage, processing, and 
distribution [1]. It provides on-demand and elastic computing 
and data storage resources without the large initial investments 
usually required for the deployment of traditional data centers. 
Cloud computing facilitates the delivery of storage and 
computing resources as services without any restriction on the 
location [2]. It offers three types of architecture for service 
delivery such as SaaS (Software as a Service), PaaS 
(Platforms as a Service) and IaaS (Infrastructure as a Service) 
[3]. End users can use the software applications hosted by the 
cloud providers in a SaaS architecture. In case of IaaS 
architecture, virtualized storage and computing resources are 
provided by the cloud providers. Customers of IaaS can then 
access these resources and other services to complete the 

application stack such as to create virtual machines and to 
deploy operating systems and middleware. As for PaaS 
architecture, the cloud providers allow users to develop, run 
and customize applications while the providers host them on 
their own hardware infrastructures. 

Due to the benefits offered by cloud computing, 
organizations are now moving to the cloud. Some of the top 
cloud providers such as Amazon S3 [4], Google Cloud 
Platfom [5], App iCloud

1
, IBM Cloud

2
, Microsoft Azure

3
, and 

DropBox
4
 provide cloud services to thousands of millions of 

users by means of geographically dispersed data centers across 
the globe. As such, end users are relieved of purchasing 
traditional expensive hardware (data centers) to process huge 
amount of data. Consequently, growing interests are shown in 
an effort to develop data-intensive applications that access 
massive amount data sets. To name a few, smart city 
applications and Healthcare Information Systems (HISs) are 
struggling with data bombardments that need immediate 
solutions to process these data for knowledge acquisition.  
These data-intensive applications demand for large-scale 
computing and storage resources and recent cloud computing 
advancement suits to meet these challenges. Lately, popular 
big data applications such as Facebook, Twitter, and Human 
Genome Project

5
, are making most use of computing 

framework such as MapReduce and Hadoop [6] for petabyte-
scale data processing to extract insight. 

The performance of these big data applications on cloud 
depends largely on the reliability, availability and efficient 
access to the data centers [7]. To address these issues data can 
be replicated in various locations in the system where 
applications are executed [8], [9], [10], [11]. This means that 
data partitions can be replicated across different data centers 
in the cloud. Replication not only improves data availability 
and access latency but also improves system load balancing. 
Many existing cloud systems adopt static replication strategies 
by replicating data in some physical locations without 
considering the issue of replication cost and terrestrial 
diversity. For instance, GFS (Google File System) [5], 
Amazon S3 [4], and HDFS (Hadoop Distributed File System) 
[9] implement a replication strategy where three copies of data 

                                                           
1 App iCloud, https://www.icloud.com/ 
2 IBM Cloud, https://www.ibm.com/cloud/ 
3 Azure: Microsoft's Cloud Platform, https://azure.microsoft.com/ 
4 Dropbox, https://www.dropbox.com/ 
5 Human Genome Project, http://www.ornl.gov/hgmis/home.shtml 
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are created at one time to increase reliability of target data. 
This replication strategy would result in increased (twice) 
replication cost which will adversely affect the effectiveness 
of the cloud system. 

There are a number of critical issues that need to be 
addressed to achieve big data replication in cloud storage: 
i) Determining the degree of data replicas that should be 
created in the cloud to meet reasonable system and application 
requirements. This is an important issue for further research. 
Since excessive replication would increase the replica 
maintenance and storage cost creating too many or fixed 
replicas are not a good choice. ii) Distribution of these replicas 
to achieve higher efficiency and better system load balancing. 
iii) Maintaining consistency among replicas due to replica 
update or delete. These three correlated problems are jointly 
referred to as the replica management problem. In addition to 
that, some data replication strategies in the cloud consider 
energy efficiency issue to optimize the energy consumed by 
the data centers. 

While data replication in distributed cloud storage is 
addressed in the literature, majority of the current techniques 
do not consider different costs and benefits of replication from 
a comprehensive perspective. Most of them provide emphasis 
on high availability, fast response and high efficiency. Even 
though critical, these average performance measures do not 
tackle the quality requirements demanded by various data-
intensive applications. The performance of these algorithms 
gets better as the number of replicas increases. However, the 
increased number of replicas incurs higher degree of 
replication cost associated with storage and energy. Hence, the 
goal should be to minimize the required number of replicas to 
avoid high replica creation and maintenance cost. 
Accordingly, a good replica management strategy should be 
designed to balance a variety of tradeoffs. Moreover, as in the 
case of existing replication strategies, the increased number of 
replicas is cost prohibitive due to consistency management. 

Given the issues and trends stated above, in this paper, we 
investigate replica management problem in cloud computing 
environments to support big data applications from a holistic 
view. To this end, we provide cost-effective replication of 
large amount of geographically distributed data into the cloud 
to meet the quality of service (QoS) requirements of data-
intensive (big data) applications while ensuring that the 
workload among the replica data centers is balanced. 
Targeting a typical cloud platform that encompasses disparate 
data centers, we formulate cost-minimizing data replication 
problem, and present an effective distributed algorithm that 
optimizes the choice of energy efficient data centers into the 
cloud for allocating replicas taking into account the 
consistency among replicas due to update propagation. Thus, 
we build up a multi-objective optimization approach for 
replica management in cloud that seeks near optimal solution 
by balancing the trade-offs among the stated issues. Hence, we 
make the following contributions: 

 Analyze the replica management problem to formulate 
mathematical models to describe the stated objectives 
such as application QoS requirements, system load 

variance, and replica consistency and come up with a 
replication model considering overall replication cost. 

 Propose a highly distributed offline replication scheme 
that computes data center locations in the cloud by 
minimizing overall replication cost to meet the above-
mentioned stated objectives. 

 Assess the benefit and applicability of our scheme 
using extensive simulation experiments over a wide 
range of parameters (e.g., no. of data centers, size and 
access rate of each data file, data center workload 
capacity constraint, traffic pattern, application QoS 
requirements, etc.). 

The remainder of the paper is presented as follows. QoS-
aware replica placement techniques are reviewed in Section 2. 
Section 3 presents the system design and architecture. The 
proposed replication algorithm is provided in Section 4. 
Sections 5 and 6 present simulation methods and obtained 
results, respectively. We conclude in Section 7 with directions 
of future work. 

II. RELATED WORK 

To date, a number of replication strategies have been 
adopted in many application areas such as cloud storage, large 
data storage, data grids, distributed systems and so on. These 
replication strategies are mainly divided into static and 
dynamic categories. The number of replicas created is fixed in 
static categories. As mentioned already, GFS [5] and HDFS 
[6] are adopting this strategy. However, this technique is 
lacking flexibility even though replica management is 
straightforward.  Most of the current research work is focusing 
on dynamic replica placement strategies where the number 
and location of replicas created can vary depending on the 
application requirements. 

Huang et al. [12] propose a reliability model for providing 
data service in cloud storage systems. The authors present the 
service model which sets off replica creation and selects 
storage site based on the relationships among the access 
reliability of the application nodes. The evaluation results 
show that the proposed method increase data service reliability 
with a significant decrease in the count of replicas created. 
The authors in [13] present a file replication mechanism in 
P2P file sharing systems which works based on swarm 
intelligence. The idea is to exploit the collective behavior of 
swarm nodes which share common interest and in close 
proximity. In contrast to other similar methods, this approach 
determines the replica locations according to the accrued 
query rates of nodes in the swarm instead of only one node. 
This results in fewer replicas and improved querying 
efficiency. The proposed technique also considers replica 
consistency using a message update mechanism in a top to 
bottom fashion. 

Liu et al. [14] tackle the data replication problem in Online 
Social Network (OSN) by means of a careful data replication 
technique in dispersed datacenters (SD

3
). The goal is to lessen 

inter-datacenter communication while improving service 
latency. The replication technique takes into account update 
rates and visit rates to determine the user data for replication. 
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To ensure reduced inter-datacenter communication, the 
technique atomizes users‘ different type of data for 
replication. Experimental results demonstrate higher 
efficiency of SD

3
 compared to other replication methods. Yet, 

the authors in [15] come up with a data replication strategy 
called Cadros, for decentralized online social network 
(DOSN) to increase data availability. First, they have done a 
quantitative analysis of cloud storage to retrieve knowledge 
about storage capacity and then propose a model that predicts 
the level of data availability that Cadros can attain. The 
technique takes into account data partitioning in the cloud in 
such a way that minimizes the communication overhead and 
still aims at achieving desired level of data availability. At the 
same time, the paper also presents data placement strategies 
that aim to satisfy the stated objective in terms of other 
performance metrics. 

Sun et al. [16] address the problem of an increase in 
overload nodes which causes poor service performance in 
cloud-P2P systems through a Dynamic Adaptive Replica 
Strategy (DARS).  Special attention is given to reduce the 
number of overload nodes by determining appropriate time for 
replica creation. The replication strategy works based on the 
node‘s overheating similarity and exploits a fuzzy-logic based 
clustering algorithm to determine nodes for optimal replica 
placement. Experimental results reveal that DARS 
significantly reduces the number of overload nodes facilitating 
low replica access delay with high load balance. 

A dynamic data replication for hierarchical cloud storage 
is proposed in [17]. The authors have used temporal locality of 
a data file to determine its popularity which means that 
recently used files are likely to be accessed again in near 
future. The replication of a certain data file is triggered when 
its popularity crosses a predefined threshold value. Moreover, 
the newly created replicas are stored in data centers that are 
directly connected. In a subsequent effort [18], this replication 
strategy is improved by the introduction of checkpoint 
mechanism to enhance data availability. Another cloud data 
replication strategy called CDRM (Cost-effective Dynamic 
Replication Management) [19] is proposed for heterogeneous 
environments. CDRM develops a system model to formulate 
the relationship between data availability and replication 
factor. It consistently maintains minimum number of replicas 
in the system and ensures proper balance of workload across 
the datacenter nodes and reduces access delay. The authors in 
[20] proposed a replication mechanism called RFH (Resilient, 
Fault-tolerant and High efficient) which is able to replicate 
data based on the varying query load. They have taken into 
account failure rate, size of the partitions, link capacity and the 
distance in replication cost calculation. 

Gill and Singh [21] presented a dynamic replication 
algorithm for heterogeneous cloud data centers that ensures 
minimum number of replicas while maintaining desired level 
of data availability. Their algorithm works based on the 
concept of knapsack to minimize the replication cost while 
considering re-replication by moving replicas from high-cost 
data centers to low-cost ones. The algorithm is found to be 
effective in minimizing replication cost with satisfactory level 
of data availability. Boru et al. [22] propose a replication 
solution which optimizes energy efficiency of the system. 

GreenCloud simulator is used for performance assessment for 
the replication technique. The simulation results show that the 
proposed replication strategy significantly improves data 
access time, network resource usage, and energy consumption. 
Long et al [23] propose a replica management strategy called 
MORM (Multi-objective Optimized Replication Management) 
to be used in cloud data storage. The idea is to make a trade-
off among different important factors affecting replication 
decision. Another dynamic replication strategy called dynamic 
popularity aware replication strategy (DPRS) is proposed by 
Mansouri et al [24] which works based on the access 
popularity of data and considers parallel downloading of data 
segments from multiple data centers to improve access 
performance. Sun et al [25] addressed the replication problem 
from a different perspective where they handled the trade-off 
between access performance and consistency dynamically. 
The authors came up with a replication protocol called CC-
Paxos to adaptively balance trade-off between latency and 
consistency which is independent of any underlying data 
stores. In addition to that, a number of other researchers [26-
31] have proposed various dynamic replica creation and 
maintenance (e.g., consistency) techniques in distributed cloud 
storage systems. 

At this point, it is evident that there has been reasonable 
effort in addressing data replication problem in cloud 
computing environment. Nevertheless, the current research 
has not adequately addressed the issue of QoS requirements. 
Few researchers in the literature have worked in this area. 
Among them, Lin et al. [32] proposed two algorithms that take 
into account QoS requirements while replicating data in cloud 
computing systems. The first algorithm is based on a greedy 
approach which adopts the concept of high-QoS first-
replication (HQFR). In this case, the applications requiring 
QoS are ranked in the order of highest priority to lowest 
priority applications. However, this algorithm is not able to 
produce optimal solution. Hence, a second algorithm called 
minimum-cost maximum-flow (MCMF) is used to minimize 
replication cost and to maximize the number of replicas 
satisfying the specified QoS requirements. This algorithm 
produces near-optimal solution to the replication problem in 
polynomial time. Varma and Khatri [33] investigated the QoS-
aware data replication problem in Hadoop Distributed File 
System (HDFS). In the original HDFS, a replication technique 
is used to copy data blocks without any quality restriction 
between client and the service provider. Hence, the authors 
consider replication time of an application as the QoS 
parameter and present an algorithm which can reduce 
replication cost compared to the existing algorithm. Yet 
another recent work [34] addresses the QoS aware replication 
problem for multimedia data in cloud. Naturally, multimedia 
data has stringent QoS requirement and hence replication of 
such data often requires fulfillment of QoS requirement from 
the users. Hence, the authors propose an algorithm to replicate 
multimedia data considering QoS requirement such as access 
delay, jitter, bandwidth usage, and loss or error rate 
implemented in an extended HDFS architecture. The 
simulation results demonstrate an important reduction in terms 
of number of replicas that violate the QoS requirement in 
contrast to the existing replication strategy adopted by 
Hadoop. In a recent effort, Shorfuzzaman [35] presents a 
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dynamic replica maintenance technique called DRMS in a 
multi-cloud environment taking into account various QoS 
requirements from users. Periodically replicas are relocated to 
new locations upon significant performance degradation. The 
simulation results show that the proposed technique improves 
response time for data access in contrast to it static counterpart 
where no maintenance takes place. 

In addition to that, a number of QoS aware replication 
strategies are also available in data grid systems [36], [37], 
[38]. A least value replacement (LVR) strategy is proposed for 
data replication in data grids by the authors of [36] by taking 
into account user QoS and storage capacity constraint. The 
authors devised a replica replacement strategy that determines 
which replica should be replaced whenever the replica site is 
found to be full based on the access frequency and future 
value for a particular data file. Cheng et al. [37] address the 
replica placement problem in data grids based on general 
graphs by means two heuristic algorithms namely, Greedy 
Remove and Greedy Add which take care QoS requirements. 
The authors consider replica access cost and workload 
capacity of the replica servers in their cost model. 
Furthermore, the authors in [38] propose a dynamic QoS-
aware replication scheme showing a complete lifecycle for 
determining positions for replica creation. The replication 
scheme also articulates how old replicas are relocated and 
replaced. The data is replicated based on its importance which 
is determined by its access popularity. 

A number of replica placement algorithms are also 
available in other areas of interest such as distributed and 
mobile databases and P2P networks. As a whole, these 
replication strategies are not directly applicable to the target 
environment in our paper and thus we did not present them in 
the scope of this paper. In this paper, we present a fully 
distributed approach to data replication which aims at using a 
multi-objective model in cloud that seeks near optimal 
solution by minimizing total replication cost and by balancing 
the trade-offs among the stated objectives such as QoS 
requirements from applications, workload of replica data 
center nodes, consistency of created replicas. 

III. SYSTEM DESIGN AND ARCHITECTURE 

Our multi-objective data replication technique is designed 
based on the HDFS (Hadoop distributed file system) 
architecture and it is assumed that different cloud computing 
datacenters are placed in different geographical locations (Fig. 
1). There is a three tier topology in HDFS architecture which 
consists of only one NameNode and a number of DataNodes 
arranged within multiple racks. The primary task of 
NameNode is to administer the file system namespace and to 
maintain a virtual map of how different data blocks are 
associated with different DataNodes. In Hadoop, DataNodes 
are meant for the execution of applications. 

The request for data block (read and update) goes from an 
HDFS application to the NameNode which examines the pre-
stored mapping for data blocks to DataNodes to find an 
appropriate DataNode to process the request. Each rack is 
equipped with an Ethernet switch for facilitating 
communication between the data nodes within the rack. For 
inter-rack communication, aggregated Ethernet switches are 

used. Thus, a logical network topology based on tree structure 
is built with different switches which use the prevalent 
communication protocol called spanning tree protocol (STP). 
To this end, as shown in Fig. 1, core network, aggregation 
network and access network layers constitute the interconnect 
network in this scenario. 

The three-tier cloud computing architecture as shown in 
Fig. 1 maintain a number of databases among which the 
central database (Central DB) is stationed in the highest layer. 
This database stores entire datasets that are accessed by the 
applications residing in the cloud. The other type of databases 
hosted by data centers is primarily used to improve data access 
efficiency and they are called datacenter database (Datacenter 
DB).  These databases are intended for copying the most often 
accessed data items from Central DB. Furthermore, each rack 
is equipped with a rack-level database (Rack DB) which 
replicates data from datacenter databases. 

A replica manager module in the NameNode performs 
analysis of data accesses periodically and determines which 
data items should be replicated and in which data nodes. The 
goal is to improve data access efficiency and balance 
workload of the data centers by spreading data replicas from 
central database to appropriate data centers down the 
hierarchy. Replica updates are only transferred from the 
central database to the databases in the data centers in the 
lower tiers. In addition to replica managers (as illustrated in 
Fig. 2), a scheduling broker and data centers constitute the 
system of could data service. The system is managed centrally 
by the scheduling broker whereas the locations of the replicas 
in different data centers are stored in replica managers. 

A set of network links (E) interconnecting a set of data 
centers (V) forms the targeted cloud topology as an undirected 
tree T = (V, E). The data transfer cost is calculated as the sum 
of the cost associated with each link along the path. Initially, 
all data are stored in the central DB and are disseminated 
down the cloud hierarchy in different data centers upon 
request from the users in the lowest tier. Over an interval of 
time, each user carries a count representing the access 
frequency of a specific data file which indicates the popularity 
of the file.  Data consistency is maintained by propagating 
updates from the central DB to the replica server nodes. In this 
case, the associated cost is considered as maintenance cost for 
previously created replicas. 

 

Fig. 1. Three-Tier Cloud Computing DataCenter Architecture based on 

HDFS [6]. 
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Fig. 2. Cloud Data Service Architecture. 

Each data center node is associated with a workload 
constraint. The workload constraint refers to the maximum 
number of user requests that is served by a data center server 
for a certain period of time. It is expected that the incoming 
data requests from the users are satisfied while not exceeding 
the workload capacity of replica data centers each having a 
different workload constraint. If the aggregated workload of a 
data center server exceeds its capacity, the data center will be 
considered as overloaded. 

Whenever a user needs to access data, it sends the request 
to the closest data center server along with the QoS 
constraints. A user (v) specifies his/her QoS requirement, q(v), 
by means of an upper bound on some criteria. For example, a 
user may request for a data item within a specific time or from 
a specific distance in terms of network hops. The replication 
strategy then confirms that there is a data center server within 
this q(v) to satisfy the request.  If the request is not satisfied 
due to the absence of a data center server or any other reason 
the requirement is said to be violated. 

A. Data Access Cost 

As mentioned above, whenever a datacenter server 
receives a request for data it serves the request locally if data 
is present in the server. Alternatively, the request is served by 
any other closest replica server that holds the requested data. 
In our data cloud architecture, each user      carries an 
aggregated count,           which represents the total 
number of accesses for a particular data item over a time 
interval. This aggregated count determines the weighted 
communication cost for a user requesting the targeted data 
item. It is worthwhile to note that we have excluded the 
communication cost among the users and their directly 
associated datacenters as this does not affect the replica 
placement decision. The overall cost for data access is given 
as follows: 

          ∑                                  (1) 

where       is the communication cost,         is the data 
consistency maintenance cost and        is the storage cost. 

Given the set of replica data center servers R and the set of 
users requesting the data file (f) Q, the overall communication 
cost (     ) is computed as follows: 

      ∑ ∑                                      (2) 

where    denotes different data file types and            
represents the data access count of user u for file  . 

The storage cost (     ) is determined as follows. Let 
      be the cost of storage associated with a file   stored at 

replica server (data center)  . Suppose   is replicated over   
sites. The total cost for storage for f is 

  ∑                        (3) 

where, SCu,f denotes the cost of storage of a file with type f 
in the data center u and the total cost for storage for different 
types (F) of files will be: 

      ∑ ∑          
                 (4) 

where,    denotes the set of replica servers that stores the file 

of type f. 

The consistency maintenance cost for the replicas of a data 
file f with the update frequency µ(f), is formulated as follows: 

        ∑ ∑                                         (5) 

where, p(v) is the parent of node v and Tv is the sub-tree 
rooted at node v in the update distribution tree. The 
communication link (v, p(v)) participates in the update 
multicast process if       . Hence, the cost related to 
consistency maintenance is determined by aggregating the 
data transfer costs over the communication links (v, p(v)), 
when      

B. Problem Definition 

We now devise the replica placement problem in a large-
scale cloud computing environment. In practice, the replica 
placement problem can be regarded as an optimization 
problem: 

                   and maximizing QoS 

The goal is to select R data center locations from M 
probable data centers (M > R) by optimizing the cost (storage, 
communication, and consistency maintenance) of overall 
replication and satisfying specified QoS requirements of the 
users and the systems. More specifically, the goal is to identify 
a suitable replication strategy (i.e., the set of replica servers, 
R), with the minimal data access cost where the requests for 
data can be met by a datacenter server while meeting the user 
quality requirements and not exceeding the concerned data 
center‘s capacity limits. 

IV. QOS-AWARE REPLICA PLACEMENT ALGORITHM 

This section first presents our base distributed heuristic 
technique of multi-objective replica placement for cloud 
computing environment (RPCC). The proposed QoS-aware 
strategy will then be devised by extending the base algorithm 
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and incorporating both the users' and system's QoS 
requirements. 

We demonstrate that our multi-objective RPCC can be 
designed as a dynamic programming problem and a 
distributed technique can be adopted to find its solution in a 
hierarchical cloud topology. In essence, the proposed 
technique breaks the overall reapplication problem into 
various sub-problems and advocates solving these sub-
problems separately and combining the solutions to achieve 
the overall solution. Using the data access cost function, each 
data center node in the hierarchical cloud topology can 
determine the cost for creating a replica locally and 
transferring a replica from another data center up in the 
hierarchy as well. In RPCC, each data center needs to decide 
(based on the cost) whether it should create a replica locally or 
fetch the data from any replica server up in the hierarchy. A 
parent data center node accomplishes this by accumulating the 
results provided by its children. In reality, this is a bottom-up 
approach which begins from the lowest tier users and stops at 
tier-0. On the other hand, replica placement is done starting 
from the tier-0 and stopping at the lowest tier users (based on 
the previously calculated results). The details of the technique 
is discussed below. 

We also define a cost vector to be used in calculating 
replication cost with respect to a particular data center node in 
the cloud hierarchy. Let v be a data center node and there is a 
sub-tree rooted at v. Now, let            be the cost for 
replication contributed by the above sub-tree where rd denotes 
the replica distance from v towards the root data center. So, if 
this distance is zero (i.e., the replica is in v itself) the 
replication cost will include the communication cost for all 
descendants of v, the consistency maintenance cost and the 
storage cost at v. Moreover, if this distance is greater than zero 
(i.e., the replica is located at any data center sitting on the path 
from v towards the root), the replication cost will include the 
communication cost for all the descendants of v only. 

A. Calculation of Replica Cost and Location 

Now, each data center's replication cost is calculated by 
considering the location of a replica anywhere in the path from 
the node itself towards the origin server or root. The 
replication cost, Cost(v, rd), for each data center node v is 
calculated based on the condition that the replica is located at 
some distance towards the root.  As mentioned below, the 
optimum position of a replica is also calculated for each case. 
Once the cost vectors for all the children of a data center are 
calculated, the cost vector for the data center itself is 
calculated. 

Given data center v, leaf (user), when rd = 0, the data 
center contains a replica in itself and thus QoS is satisfied. 
Cost(v, 0) is calculated as the sum of the cost of storage at v 
and the cost of update to maintain replica consistency  
(CMCcost(v) + Scost(v)). Replica location is set to v. When rd> 0 
we have two scenarios regarding the user QoS requirement, 
q(v). First, if rd ≤ q(v) it means that the replica server (data 
center) is located at a distance which meets the user QoS 
requirement. The cost of replication of sub-tree Tv (i.e., v only 
for this case) contains the read cost for v only. Second, if 
rd>q(v), the QoS requirement is not satisfied by the replica 

and hence the communication cost is assigned to infinity. 
Now, the cost for rd = 0 is checked against the cost obtained 
with all possible distance, rd ≥ 1, to identify the minimal cost 
for replication and location of replica. If for rd = 0 the cost 
(Cost(v,0)) is smaller than the cost for greater values of rd, 
Cost(v,rd) is assigned to Cost(v,0) and the location of the 
replica is set to the node itself. Otherwise, the replica will be 
created somewhere on the path towards the root and the 
location becomes rd-th ancestor of v. Replication cost will 
only be v's communication cost (CC). Accordingly, the 
minimal replication cost Cost(v, rd} and the respective replica 
server location (RSL) for v using each distance possibility (rd 
≥ 0) can be determined as follows: 

           

{

                                         

                                                             

            (6) 

          

{

                                                        

                                                             
        (7) 

Lemma 1. RPCC optimally places replicas in the sub-tree 
Tv = T-r where r is the origin server or root and v is the leaf of 
the targeted cloud tree T. 

Proof. To determine the replica placement for a sub-tree Tv 
where v is a leaf data center node in the tree T, we consider 
two possibilities. First, when d (i.e., distance between the user 
and the root) = 0, T consists of only one node which is the 
root. This results in no communication, storage, or consistency 
maintenance cost for replicas and hence the optimality of the 
algorithm trivially holds true. Second, when d ≥ 1(i.e., replica 
server is up on the way to the root) we need to compare the 
replication cost obtained for d = 0 (i.e., replica is in v itself) 
with the replication cost calculated for each value of d having 
d ≥ 1 to decide on the optimal replication cost and locations of 
replicas. Now, if the cost for d = 0 (i.e., replica storage and 
update cost in v) is less than the cost for d ≥ 1 (i.e., data access 
cost of v having a replica server up on the way to the root), 
placing a replica in v itself would be cheaper. On the contrary, 
the replica is placed at a higher data center node on the path to 
the root based on the value of d, which is optimal. 

For a data center node v, non-leaf (i.e., non-user), when rd 
= 0, the node should contain a replica in itself. In this 
situation, the cost of replication, rep_cost will include the cost 
of all its children for rd=1, and the cost of storage and update 
for replica consistency at v (rep_cost 

= ∑                                             

However, we have to check whether it is less expensive to 
make a replica in each child of v by calculating the sum of 
costs of all its children, Costchild(v) = ∑                     and 

comparing this with rep_cost. If Costchild(v) is less than 
rep_cost the replicas are placed in v's children and the replica 
location is set to ―children‖. Otherwise, the replica is created 
locally at v. Thus, for optimal replication cost and replica 
server locations, the dynamic programming equations are: 
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          {

                                  

                                               
         (8) 

          {

                                   

                                          
          (9) 

To find Cost(v, rd) when rd>0, we determine the sum of 
replication costs of all the v's children considering replica at a 
location of rd+1 (childcost = ∑                        . If 

Cost(v,0) is less than this sum, Cost(v, rd) is assigned to 
Cost(v,0) and the location of replica is assigned to the site 
obtained from RSL(v, 0). On the contrary, the replica is 
created somewhere on the path towards the root and the 
location is rd-th ancestor of v. 

           

{
                                           

                                                         

             (10) 

          

{

                                                   

                                                          
        (11) 

Lemma 2. RPCC optimally places replicas in the sub-tree 
Tv = T-r where r is the origin server or root and v is a non-leaf 
data center node of the targeted cloud tree T. 

Proof. As stated earlier, when the children of a data center 
node complete the calculation of replication costs, the node 
itself starts to calculate the cost functions. In Lemma 1, we 
verified that replicas are allocated optimally in a leaf node for 
all replica distance values. Thus, we can infer that the non-leaf 
data center nodes one hop up from the bottom of T contain 
children (leaf nodes) whose calculated replication costs are 
optimal. Now, it remains to show that RPCC places replicas 
optimally in the sub-tree with a root being any internal data 
center, v, considering each possible value of d. First, when the 
value of d equals to 0, we observe by considering Equations 
(7) and (8) that the replication cost associated with sub-tree 
rooted at v is the least of the following two scenarios: 

1) v itself contains a replica. The cost becomes the 

aggregate of the costs of the sub-trees having root  as v‘s 

children and the value of d equals to 1 and moreover storage 

and consistency maintenance cost at v. 

2) v does not contain a replica. The replication cost can be 

obtained by aggregating the costs incurred from the sub-trees 

having v‘s children as roots with d = 0. 

Second, when d ≥ 1(i.e., replica server is up on the way to 
the root) we need to compare the replication cost obtained 
above for d = 0 (i.e., replica is in v itself) with the replication 
cost calculated for each value of d having d ≥ 1 to decide on 
the optimal replication cost and locations of replicas. Now, if 
the cost for d = 0 is below the cost for d ≥ 1 (i.e., 
communication cost of the sub-trees rooted at the children of v 
having a replica server up on the way to the root), placing a 
replica in v itself will be cheaper. Otherwise, it will be 

preferable to create a replica at any upper node on the path to 
the root based on the value of d, which is optimal. The 
minimum cost thus calculated is optimal for any node v. 

Theorem 1. RPCC optimally allocates replicas for the 
targeted cloud Tree, T for a given traffic pattern. 

Proof. We provide the proof for our generalized replication 
problem with the targeted cloud tree topology. The proof is 
carried out based on induction where Lemma 1 is the 
induction base and Lemma 2 is the induction step. 

B. Placing Replicas 

Placement of replicas starts at the root of the targeted 
cloud tree and stops at the lowest-tier users. In this process, 
every data center finds whether or not a new replica will be 
created locally based on the calculated cost and location 
vector. Once the bottom-up calculation is done, the root or the 
origin server holds the optimum cost for data replication. 
Cost(root, 0) of the whole cloud and the replica location 
RSL(root, 0). The value of RSL(root, 0) can be either r (the 
origin server itself) or ―children‖ (the origin server's children 
nodes) which indicate that the replica is zero or one hop away 
(towards the users) from the origin server. So, the origin 
server sends a message rd = 0 or rd = -1. A data center node, 
v, which receives the message being one hop away increases 
the value of rd by one and investigates the valued of RSL(v, 
rd). If v becomes RSL(v, rd)‘s value, a replica is created in v 
itself and the message rd = 0  is passed the children of v. If 
RSL(v, rd) value is -1 it assigns rd = -1 and forwards it to the 
children. Finally, if the RSL(v, rd) value is a data center node 
rd away up in the tree it sends rd message to its children 
without changing the value. When all the users at the leaves 
receive the message rd the replica placement process 
terminates. 

C. Complexity Analysis 

Analysis of the computational and message complexity of 
our algorithm is completed by performing the computation of 
cost and location vectors and the placement of replicas in the 
entire cloud. For every data center node v, we compute its 
Cost(v, rd) for its sub-tree for each value of rd between 0 and 
distance to the origin server or root by merging the results of 
all its children. The computation of data center v is done by 
adding |child(v)| rudiments of count (x + 1), where x represents 
the distance between v and the origin data center and |child(v)| 
represents the children count for data center v. Hence, the 
number of computations for data center v appears as (x + 1). 
|child(v)|. The total number of computations for all the data 
centers in the cloud is: 

∑   

   

    |        | 

where xv represents the distance between v and the origin 
server. 

Given, the number of data centers, |V| = N, we can observe 
that xv≤ N − 1 for each value of v. Hence, the following can be 
deduced: 

∑           |        |≤  N.∑ |        |    = N (N-1) 
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This equality holds since there are N − 1 children nodes in 
the cloud. This is because except the origin server, each 
datacenter node has a parent. Consequently, O(  ) is the 
overall computing cost of Cost vectors for all the nodes. As 
for the message, the first is the cost vector that is sent by each 
node to its parents. The other message is rd sent by each node 
to its children. If |V| = N is the total number of data center 
nodes and each node sends two messages, the message 
complexity is O(N). 

V. SIMULATION SETUP 

For the performance evaluation of our proposed replication 
algorithm we have leveraged the use of a Java based simulator 
program. Our hierarchical cloud structure consists of four tiers 
having each tier with data centers. Each data center has five 
children and thus the total number of data centers becomes 
155 including the users in the lowest tier.  Requests for data 
come from the users only. Uniform distribution is used to 
model the available link bandwidth with the range [0.622, 2.5] 
(Gbps). According to the same distribution, data center storage 
capacities are also modeled. The simulation experiments use 
2500 data files where the size of each data file is 10 GB. 
Hence, the total data size becomes nearly twenty-five tera byte 
(TB). To measure the efficacy of our system, we utilized five 
diverse storage settings of data centers which are created in 
accordance to the relative storage capacity of data centers. The 
relative storage capacity (RSC) is determined by a percentage 
of total storage size of all data centers compared to the overall 
data size in the system. For our experiments, we use RSCs 
ranging from 13% to 75%. The use of relative storage capacity 
is justified by the fact that it affects the decision to create 
replicas on data centers in contrast to their absolute storage 
capacities. Different storage settings as discussed above are 
shown in Fig. 3. 

 
(a) 

 
(b) 

Fig. 3. Storage Configurations of Data Centers based on Relative (a) and 

Total (b) Capacity. 

Upon requests for data from the users, each data center 
replica server tries to meet the request. However, the number 
of access requests served by each replica server is limited by 
its workload constraint. In our experiments, six different 
workload configurations according uniform distribution are 
used as shown in Fig. 4. Simulation experiments are done by 
submitting 50 different jobs each one having a fixed 
probability of being submitted. 

The simulation experiment allows each job to access a 
sequence of data files. User requests for data files come 
according to Poisson distribution and each request is issued in 
an interval of 2500 milliseconds. Moreover, selected access 
patterns determine the sequence of files that will be accessed. 
In our experiment, two data access patterns namely Gaussian 
and Zipf distributions are used. The Zipf distribution is 
expressed as Pi = K, where Pi denotes the count for ith ranked 
file, K represents the most popular data file (by means of 
frequently accessed items) and s specifies the distribution 
shape. Also, the temporal locality present in the data access 
pattern is measured by this parameter s having values ranging 
from 0.65 to 1.24. The level of locality in the data is indicated 
by the value of s. We have experimented with a value of 0.85 
for s and call it as Zipf-0.85 distribution. Besides, Gaussian 
distribution also known as normal distribution is used in our 
experiment. It is an important distribution in statistics and is 
frequently used in natural and social sciences to characterize 
real-valued random variables. Previously, other replication 
techniques [36], [37] in the literature have used similar data 
access patterns for their evaluation in data grids. 

Our replication strategy was evaluated using the 
performance metrics which include job execution time, mean 
bandwidth use, storage utilization, number of replicas created, 
and rate of satisfaction for users. Job execution time refers to 
the overall time needed to execute the whole set of jobs and 
also takes into account the data access time. replica 
maintenance algorithm. The bandwidth usage for a data 
transfer is the data size times the aggregate costs of the data 
transfer route. The average cost for bandwidth usage is 
calculated by dividing the overall bandwidth usage by total 
data access counts. Storage consumption is the proportion of 
the data center storage occupied by the replicas in the system. 
Finally, user satisfaction rate represents number of users 
whose QoS constraints are met compared to the total number 
of users who requested for data access with some QoS 
constraints. The target is to reduce total job execution time 
and minimize average bandwidth and storage consumption 
while maximizing the user satisfaction rate. 

Config. Workload capacity constraint (GB) 
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Fig. 4. Workload Configuration of Data Centers. 
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VI. PERFORMANCE RESULTS 

In this section, we discuss the experimental results of our 
proposed replication technique (RPCC) and compare it with 
Greedy Add and Greedy Remove [37] protocols from the 
literature. The QoS requirement of a user issuing a data access 
request is specified by a range in terms of distance from the 
user to the closest replica data center. This range is formulated 
using a uniform distribution.  For instance, if a user specifies 
its QoS requirement of [1-2] it means that the replica data 
center containing the requested data is expected to be one or 
two hops away from the user. 

A. Job Execution Time 

Fig. 5 shows the job execution times based on different 
data center workload configurations for RPCC, Greedy Add, 
and Greedy Remove algorithms. In the experiment, the 
relative storage capacity is set to 75%, user QoS requirements 
of [1-3] and [0-1] are specified from a uniform distribution to 
permit both relaxed and relatively more constrained distance 
ranges respectively. For both the data access patterns (Zipf-
0.85 and Gaussian), the total job execution times required by 
RPCC is shown to be lower than the other two algorithms. 
This is attributed to the fact that RPCC creates a moderate 
number of replicas in appropriate locations in the cloud 
hierarchy in contrast to Greedy Add and Greedy Remove 
techniques which in turn reduces access times for the data 
requests. Accordingly, this cuts down the overall job 
execution time. Fig. 6 shows the number of replicas created by 
all three algorithms during a sampling simulation period for 
the same workload and storage resource configurations. With 
the decrease in workload capacity of replica servers, an 
increased number of replicas are created (Fig. 6) and 
consequently job execution times drop in most cases but by 
varying amounts as shown in Fig. 6. Greedy Add mostly 
exhibits lower execution time than Greedy Remove. For 
relatively more constrained QoS requirement ([0-1]) and 
Gaussian access pattern, Greedy Remove unexpectedly shows 
lower job execution time compared to the other two 
algorithms. 

  

  
 

Fig. 5. Comparison of Job Times with 75% Relative Storage Capacity of 

Data Centers. 

  

 

Fig. 6. Comparison of No. of Replicas for Varying user QoS Requirements. 

Generally, the performance gain of RPCC over Greedy 
Add and Greedy Remove turns out to be more evident when 
user QoS constraints of broader ranges are used. 

The job execution times using relative storage capacity of 
17.5% are shown in Fig. 7 for the same data access patterns as 
before. Generally, RPCC exhibits shorter job times compared 
to Greedy Add and Greedy Remove. However, the use of 
more constrained storage size results in only a meager benefit 
for RPCC in terms of job times in most cases. Furthermore, 
job times for all three algorithms in this case got an increase 
by varying amount compared to the case when relative storage 
capacity of 75% is used. 

Fig. 8 shows satisfaction rates of users for all methods 
using relative storage capacity of both 17.5% and 75%. 
Mostly, RPCC outperforms the other two algorithms. 
Particularly, the performance gain of RPCC over Greedy Add 
and Greedy Remove is more when the storage capacity of 
replica data centers (17.5% relative capacity) is restricted. 
Nevertheless, satisfaction rates of users decrease in case of 
constrained storage space of replica data centers regardless of 
quality requirements from users and the patterns used for data 
access as shown in Fig. 8. 

 

B. Average Bandwidth Use 

Both network providers and end-users deem bandwidth 
consumption as a key issue since undue bandwidth use can 
cause slowdowns due to network congestion. We include two 
different types of costs namely replication (create and update) 
cost and read cost to measure average bandwidth use. 

Fig. 9 displays the average bandwidth cost in terms of 
varying workload for RPCC, Greedy Add, and Greedy 
Remove algorithms. As before, the relative storage capacity is 
set to 75% and 17.5%, user QoS constraints on replica server 
distances of [1-3] and [0-1] are specified from a uniform 
distribution to allow both relaxed and relatively more 
constrained ranges respectively. RPCC mostly shows 
moderate bandwidth consumption rate compared to Greedy 
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Add and Greedy Remove algorithms. The reason is that both 
data access (read) cost and replication cost are reduced on 
account of the placement of a modest number of well-placed 
replicas down the cloud hierarchy. On the other hand, Greedy 
Remove mostly exhibits the lowest bandwidth cost among the 
three algorithms. The reason is that more replicas are created 
in the upper part of the cloud hierarchy. The replication cost 
involved in this case is comparatively lower than the elevated 
data access (communication) cost. With the decrease in 
workload capacity of data center servers, a higher number of 
replicas are created and consequently the bandwidth cost 
increases for all three algorithms. For more constrained 
relative storage capacity (17.5%) of data centers, RPCC 
exhibits moderate bandwidth consumption compared to 
Greedy Add and Greedy Remove as before. Greedy Remove 
performs better than the other algorithms due to reduced 
replication cost with Gaussian access pattern irrespective of 
the user QoS ranges. 

  

  

Fig. 7. Job Times with Relatively More Constrained Data Center Storage 

Capacity (17.5%). 

  

  

Fig. 8. Comparison of Satisfaction Rates for Varying Relative Storage 

Capacity of Data Centers. 

  

  

Fig. 9. Comparison of Average b/w Cost with Relative st. Capacity of 75% 

and 17.5%. 

C. Storage Use 

The storage resources used in the system is vital to grid 
providers. Since storages are relatively cheaper, we can come 
to a trade-off in case improvements in job execution times and 
network bandwidth consumption are achieved. 

Fig. 10 shows the storage usage (y-axis) as a function of 
varying workload (x-axis) for all algorithms with a relative 
storage capacity of 75% and 17.5%. RPCC shows moderate 
storage usage compared to Greedy Add and Greedy Remove 
algorithms in all cases. When data centers‘ capacities in terms 
of workload decreases, the number of replicas created 
increases (Fig. 6) and accordingly storage overhead increases 
in most cases but by varying amounts. 

  

Fig. 10. Comparison of Storage Cost with More Constrained user QoS Range 

[0-1]. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we studied the data replication problem in 
data cloud considering the QoS requirements from users to 
support big data applications. Aiming to put forward a multi-
objective solution to the replication problem, user QoS 
constraints in terms of distance to replica data center servers 
and workload constraints of replica servers are considered. 
First, we formulate the replica placement problem as a 
dynamic programming problem. Second, we propose a novel 
distributed replica placement algorithm (RPCC) for a multi-
tier cloud platform so as to avoid the limitations usually found 
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in centralized algorithms such as scalability, reliability, and 
performance bottlenecks. Performance analysis of the 
proposed algorithm was done in terms of job execution time, 
mean bandwidth usage, storage resource utilization, total 
number of replicas that are created during a simulation period, 
and satisfaction rates of users. The simulation results showed 
that RPCC can considerably reduce job execution times which 
include data access time while incurring modest bandwidth 
and storage costs compared to two other algorithms. These 
results are obtained by utilizing a variety of storage and 
workload setting of data center servers and data access 
patterns with a degree of temporal locality and randomness. 

In the future, we envision to implement our proposed data 
replication technique in a physical cloud infrastructure. 
Besides, we plan to extend our replication technique to deal 
with the bandwidth constraints imposed on the network links. 
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