
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

418 | P a g e

www.ijacsa.thesai.org

Leveraging a Multi-Objective Approach to Data

Replication in Cloud Computing Environment to

Support Big Data Applications

Mohammad Shorfuzzaman
1
, Mehedi Masud

2

Department of Computer Science, Taif University, Taif, Saudi Arabia

Abstract—Increased data availability and high data access

performance are of utmost importance in a large-scale

distributed system such as data cloud. To address these issues

data can be replicated in various locations in the system where

applications are executed. Replication not only improves data

availability and access latency but also improves system load

balancing. While data replication in distributed cloud storage is

addressed in the literature, majority of the current techniques do

not consider different costs and benefits of replication from a

comprehensive perspective. In this paper, we investigate replica

management problem (which is formulated using dynamic

programming) in cloud computing environments to support big

data applications. To this end, we propose a new highly

distributed replica placement algorithm that provides cost-

effective replication of huge amount of geographically distributed

data into the cloud to meet the quality of service (QoS)

requirements of data-intensive (big data) applications while

ensuring that the workload among the replica data centers is

balanced. In addition, the algorithm takes into account the

consistency among replicas due to update propagation. Thus, we

build up a multi-objective optimization approach for replica

management in cloud that seeks near optimal solution by

balancing the trade-offs among the stated issues. For verifying

the effectiveness of the algorithm, we evaluated the performance

of the algorithm and compared it with two baseline approaches

from the literature. The evaluation results demonstrate the

usefulness and superiority of the presented algorithm for

conditions of interest.

Keywords—Big data applications; data cloud; replication;

dynamic programming; QoS requirement; workload constraint

I. INTRODUCTION

Lately, cloud computing has become an attractive and
mainstream solution for data storage, processing, and
distribution [1]. It provides on-demand and elastic computing
and data storage resources without the large initial investments
usually required for the deployment of traditional data centers.
Cloud computing facilitates the delivery of storage and
computing resources as services without any restriction on the
location [2]. It offers three types of architecture for service
delivery such as SaaS (Software as a Service), PaaS
(Platforms as a Service) and IaaS (Infrastructure as a Service)
[3]. End users can use the software applications hosted by the
cloud providers in a SaaS architecture. In case of IaaS
architecture, virtualized storage and computing resources are
provided by the cloud providers. Customers of IaaS can then
access these resources and other services to complete the

application stack such as to create virtual machines and to
deploy operating systems and middleware. As for PaaS
architecture, the cloud providers allow users to develop, run
and customize applications while the providers host them on
their own hardware infrastructures.

Due to the benefits offered by cloud computing,
organizations are now moving to the cloud. Some of the top
cloud providers such as Amazon S3 [4], Google Cloud
Platfom [5], App iCloud

1
, IBM Cloud

2
, Microsoft Azure

3
, and

DropBox
4
 provide cloud services to thousands of millions of

users by means of geographically dispersed data centers across
the globe. As such, end users are relieved of purchasing
traditional expensive hardware (data centers) to process huge
amount of data. Consequently, growing interests are shown in
an effort to develop data-intensive applications that access
massive amount data sets. To name a few, smart city
applications and Healthcare Information Systems (HISs) are
struggling with data bombardments that need immediate
solutions to process these data for knowledge acquisition.
These data-intensive applications demand for large-scale
computing and storage resources and recent cloud computing
advancement suits to meet these challenges. Lately, popular
big data applications such as Facebook, Twitter, and Human
Genome Project

5
, are making most use of computing

framework such as MapReduce and Hadoop [6] for petabyte-
scale data processing to extract insight.

The performance of these big data applications on cloud
depends largely on the reliability, availability and efficient
access to the data centers [7]. To address these issues data can
be replicated in various locations in the system where
applications are executed [8], [9], [10], [11]. This means that
data partitions can be replicated across different data centers
in the cloud. Replication not only improves data availability
and access latency but also improves system load balancing.
Many existing cloud systems adopt static replication strategies
by replicating data in some physical locations without
considering the issue of replication cost and terrestrial
diversity. For instance, GFS (Google File System) [5],
Amazon S3 [4], and HDFS (Hadoop Distributed File System)
[9] implement a replication strategy where three copies of data

1 App iCloud, https://www.icloud.com/
2 IBM Cloud, https://www.ibm.com/cloud/
3 Azure: Microsoft's Cloud Platform, https://azure.microsoft.com/
4 Dropbox, https://www.dropbox.com/
5 Human Genome Project, http://www.ornl.gov/hgmis/home.shtml

https://www.icloud.com/
https://azure.microsoft.com/
https://www.dropbox.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

419 | P a g e

www.ijacsa.thesai.org

are created at one time to increase reliability of target data.
This replication strategy would result in increased (twice)
replication cost which will adversely affect the effectiveness
of the cloud system.

There are a number of critical issues that need to be
addressed to achieve big data replication in cloud storage:
i) Determining the degree of data replicas that should be
created in the cloud to meet reasonable system and application
requirements. This is an important issue for further research.
Since excessive replication would increase the replica
maintenance and storage cost creating too many or fixed
replicas are not a good choice. ii) Distribution of these replicas
to achieve higher efficiency and better system load balancing.
iii) Maintaining consistency among replicas due to replica
update or delete. These three correlated problems are jointly
referred to as the replica management problem. In addition to
that, some data replication strategies in the cloud consider
energy efficiency issue to optimize the energy consumed by
the data centers.

While data replication in distributed cloud storage is
addressed in the literature, majority of the current techniques
do not consider different costs and benefits of replication from
a comprehensive perspective. Most of them provide emphasis
on high availability, fast response and high efficiency. Even
though critical, these average performance measures do not
tackle the quality requirements demanded by various data-
intensive applications. The performance of these algorithms
gets better as the number of replicas increases. However, the
increased number of replicas incurs higher degree of
replication cost associated with storage and energy. Hence, the
goal should be to minimize the required number of replicas to
avoid high replica creation and maintenance cost.
Accordingly, a good replica management strategy should be
designed to balance a variety of tradeoffs. Moreover, as in the
case of existing replication strategies, the increased number of
replicas is cost prohibitive due to consistency management.

Given the issues and trends stated above, in this paper, we
investigate replica management problem in cloud computing
environments to support big data applications from a holistic
view. To this end, we provide cost-effective replication of
large amount of geographically distributed data into the cloud
to meet the quality of service (QoS) requirements of data-
intensive (big data) applications while ensuring that the
workload among the replica data centers is balanced.
Targeting a typical cloud platform that encompasses disparate
data centers, we formulate cost-minimizing data replication
problem, and present an effective distributed algorithm that
optimizes the choice of energy efficient data centers into the
cloud for allocating replicas taking into account the
consistency among replicas due to update propagation. Thus,
we build up a multi-objective optimization approach for
replica management in cloud that seeks near optimal solution
by balancing the trade-offs among the stated issues. Hence, we
make the following contributions:

 Analyze the replica management problem to formulate
mathematical models to describe the stated objectives
such as application QoS requirements, system load

variance, and replica consistency and come up with a
replication model considering overall replication cost.

 Propose a highly distributed offline replication scheme
that computes data center locations in the cloud by
minimizing overall replication cost to meet the above-
mentioned stated objectives.

 Assess the benefit and applicability of our scheme
using extensive simulation experiments over a wide
range of parameters (e.g., no. of data centers, size and
access rate of each data file, data center workload
capacity constraint, traffic pattern, application QoS
requirements, etc.).

The remainder of the paper is presented as follows. QoS-
aware replica placement techniques are reviewed in Section 2.
Section 3 presents the system design and architecture. The
proposed replication algorithm is provided in Section 4.
Sections 5 and 6 present simulation methods and obtained
results, respectively. We conclude in Section 7 with directions
of future work.

II. RELATED WORK

To date, a number of replication strategies have been
adopted in many application areas such as cloud storage, large
data storage, data grids, distributed systems and so on. These
replication strategies are mainly divided into static and
dynamic categories. The number of replicas created is fixed in
static categories. As mentioned already, GFS [5] and HDFS
[6] are adopting this strategy. However, this technique is
lacking flexibility even though replica management is
straightforward. Most of the current research work is focusing
on dynamic replica placement strategies where the number
and location of replicas created can vary depending on the
application requirements.

Huang et al. [12] propose a reliability model for providing
data service in cloud storage systems. The authors present the
service model which sets off replica creation and selects
storage site based on the relationships among the access
reliability of the application nodes. The evaluation results
show that the proposed method increase data service reliability
with a significant decrease in the count of replicas created.
The authors in [13] present a file replication mechanism in
P2P file sharing systems which works based on swarm
intelligence. The idea is to exploit the collective behavior of
swarm nodes which share common interest and in close
proximity. In contrast to other similar methods, this approach
determines the replica locations according to the accrued
query rates of nodes in the swarm instead of only one node.
This results in fewer replicas and improved querying
efficiency. The proposed technique also considers replica
consistency using a message update mechanism in a top to
bottom fashion.

Liu et al. [14] tackle the data replication problem in Online
Social Network (OSN) by means of a careful data replication
technique in dispersed datacenters (SD

3
). The goal is to lessen

inter-datacenter communication while improving service
latency. The replication technique takes into account update
rates and visit rates to determine the user data for replication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

420 | P a g e

www.ijacsa.thesai.org

To ensure reduced inter-datacenter communication, the
technique atomizes users‘ different type of data for
replication. Experimental results demonstrate higher
efficiency of SD

3
 compared to other replication methods. Yet,

the authors in [15] come up with a data replication strategy
called Cadros, for decentralized online social network
(DOSN) to increase data availability. First, they have done a
quantitative analysis of cloud storage to retrieve knowledge
about storage capacity and then propose a model that predicts
the level of data availability that Cadros can attain. The
technique takes into account data partitioning in the cloud in
such a way that minimizes the communication overhead and
still aims at achieving desired level of data availability. At the
same time, the paper also presents data placement strategies
that aim to satisfy the stated objective in terms of other
performance metrics.

Sun et al. [16] address the problem of an increase in
overload nodes which causes poor service performance in
cloud-P2P systems through a Dynamic Adaptive Replica
Strategy (DARS). Special attention is given to reduce the
number of overload nodes by determining appropriate time for
replica creation. The replication strategy works based on the
node‘s overheating similarity and exploits a fuzzy-logic based
clustering algorithm to determine nodes for optimal replica
placement. Experimental results reveal that DARS
significantly reduces the number of overload nodes facilitating
low replica access delay with high load balance.

A dynamic data replication for hierarchical cloud storage
is proposed in [17]. The authors have used temporal locality of
a data file to determine its popularity which means that
recently used files are likely to be accessed again in near
future. The replication of a certain data file is triggered when
its popularity crosses a predefined threshold value. Moreover,
the newly created replicas are stored in data centers that are
directly connected. In a subsequent effort [18], this replication
strategy is improved by the introduction of checkpoint
mechanism to enhance data availability. Another cloud data
replication strategy called CDRM (Cost-effective Dynamic
Replication Management) [19] is proposed for heterogeneous
environments. CDRM develops a system model to formulate
the relationship between data availability and replication
factor. It consistently maintains minimum number of replicas
in the system and ensures proper balance of workload across
the datacenter nodes and reduces access delay. The authors in
[20] proposed a replication mechanism called RFH (Resilient,
Fault-tolerant and High efficient) which is able to replicate
data based on the varying query load. They have taken into
account failure rate, size of the partitions, link capacity and the
distance in replication cost calculation.

Gill and Singh [21] presented a dynamic replication
algorithm for heterogeneous cloud data centers that ensures
minimum number of replicas while maintaining desired level
of data availability. Their algorithm works based on the
concept of knapsack to minimize the replication cost while
considering re-replication by moving replicas from high-cost
data centers to low-cost ones. The algorithm is found to be
effective in minimizing replication cost with satisfactory level
of data availability. Boru et al. [22] propose a replication
solution which optimizes energy efficiency of the system.

GreenCloud simulator is used for performance assessment for
the replication technique. The simulation results show that the
proposed replication strategy significantly improves data
access time, network resource usage, and energy consumption.
Long et al [23] propose a replica management strategy called
MORM (Multi-objective Optimized Replication Management)
to be used in cloud data storage. The idea is to make a trade-
off among different important factors affecting replication
decision. Another dynamic replication strategy called dynamic
popularity aware replication strategy (DPRS) is proposed by
Mansouri et al [24] which works based on the access
popularity of data and considers parallel downloading of data
segments from multiple data centers to improve access
performance. Sun et al [25] addressed the replication problem
from a different perspective where they handled the trade-off
between access performance and consistency dynamically.
The authors came up with a replication protocol called CC-
Paxos to adaptively balance trade-off between latency and
consistency which is independent of any underlying data
stores. In addition to that, a number of other researchers [26-
31] have proposed various dynamic replica creation and
maintenance (e.g., consistency) techniques in distributed cloud
storage systems.

At this point, it is evident that there has been reasonable
effort in addressing data replication problem in cloud
computing environment. Nevertheless, the current research
has not adequately addressed the issue of QoS requirements.
Few researchers in the literature have worked in this area.
Among them, Lin et al. [32] proposed two algorithms that take
into account QoS requirements while replicating data in cloud
computing systems. The first algorithm is based on a greedy
approach which adopts the concept of high-QoS first-
replication (HQFR). In this case, the applications requiring
QoS are ranked in the order of highest priority to lowest
priority applications. However, this algorithm is not able to
produce optimal solution. Hence, a second algorithm called
minimum-cost maximum-flow (MCMF) is used to minimize
replication cost and to maximize the number of replicas
satisfying the specified QoS requirements. This algorithm
produces near-optimal solution to the replication problem in
polynomial time. Varma and Khatri [33] investigated the QoS-
aware data replication problem in Hadoop Distributed File
System (HDFS). In the original HDFS, a replication technique
is used to copy data blocks without any quality restriction
between client and the service provider. Hence, the authors
consider replication time of an application as the QoS
parameter and present an algorithm which can reduce
replication cost compared to the existing algorithm. Yet
another recent work [34] addresses the QoS aware replication
problem for multimedia data in cloud. Naturally, multimedia
data has stringent QoS requirement and hence replication of
such data often requires fulfillment of QoS requirement from
the users. Hence, the authors propose an algorithm to replicate
multimedia data considering QoS requirement such as access
delay, jitter, bandwidth usage, and loss or error rate
implemented in an extended HDFS architecture. The
simulation results demonstrate an important reduction in terms
of number of replicas that violate the QoS requirement in
contrast to the existing replication strategy adopted by
Hadoop. In a recent effort, Shorfuzzaman [35] presents a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

421 | P a g e

www.ijacsa.thesai.org

dynamic replica maintenance technique called DRMS in a
multi-cloud environment taking into account various QoS
requirements from users. Periodically replicas are relocated to
new locations upon significant performance degradation. The
simulation results show that the proposed technique improves
response time for data access in contrast to it static counterpart
where no maintenance takes place.

In addition to that, a number of QoS aware replication
strategies are also available in data grid systems [36], [37],
[38]. A least value replacement (LVR) strategy is proposed for
data replication in data grids by the authors of [36] by taking
into account user QoS and storage capacity constraint. The
authors devised a replica replacement strategy that determines
which replica should be replaced whenever the replica site is
found to be full based on the access frequency and future
value for a particular data file. Cheng et al. [37] address the
replica placement problem in data grids based on general
graphs by means two heuristic algorithms namely, Greedy
Remove and Greedy Add which take care QoS requirements.
The authors consider replica access cost and workload
capacity of the replica servers in their cost model.
Furthermore, the authors in [38] propose a dynamic QoS-
aware replication scheme showing a complete lifecycle for
determining positions for replica creation. The replication
scheme also articulates how old replicas are relocated and
replaced. The data is replicated based on its importance which
is determined by its access popularity.

A number of replica placement algorithms are also
available in other areas of interest such as distributed and
mobile databases and P2P networks. As a whole, these
replication strategies are not directly applicable to the target
environment in our paper and thus we did not present them in
the scope of this paper. In this paper, we present a fully
distributed approach to data replication which aims at using a
multi-objective model in cloud that seeks near optimal
solution by minimizing total replication cost and by balancing
the trade-offs among the stated objectives such as QoS
requirements from applications, workload of replica data
center nodes, consistency of created replicas.

III. SYSTEM DESIGN AND ARCHITECTURE

Our multi-objective data replication technique is designed
based on the HDFS (Hadoop distributed file system)
architecture and it is assumed that different cloud computing
datacenters are placed in different geographical locations (Fig.
1). There is a three tier topology in HDFS architecture which
consists of only one NameNode and a number of DataNodes
arranged within multiple racks. The primary task of
NameNode is to administer the file system namespace and to
maintain a virtual map of how different data blocks are
associated with different DataNodes. In Hadoop, DataNodes
are meant for the execution of applications.

The request for data block (read and update) goes from an
HDFS application to the NameNode which examines the pre-
stored mapping for data blocks to DataNodes to find an
appropriate DataNode to process the request. Each rack is
equipped with an Ethernet switch for facilitating
communication between the data nodes within the rack. For
inter-rack communication, aggregated Ethernet switches are

used. Thus, a logical network topology based on tree structure
is built with different switches which use the prevalent
communication protocol called spanning tree protocol (STP).
To this end, as shown in Fig. 1, core network, aggregation
network and access network layers constitute the interconnect
network in this scenario.

The three-tier cloud computing architecture as shown in
Fig. 1 maintain a number of databases among which the
central database (Central DB) is stationed in the highest layer.
This database stores entire datasets that are accessed by the
applications residing in the cloud. The other type of databases
hosted by data centers is primarily used to improve data access
efficiency and they are called datacenter database (Datacenter
DB). These databases are intended for copying the most often
accessed data items from Central DB. Furthermore, each rack
is equipped with a rack-level database (Rack DB) which
replicates data from datacenter databases.

A replica manager module in the NameNode performs
analysis of data accesses periodically and determines which
data items should be replicated and in which data nodes. The
goal is to improve data access efficiency and balance
workload of the data centers by spreading data replicas from
central database to appropriate data centers down the
hierarchy. Replica updates are only transferred from the
central database to the databases in the data centers in the
lower tiers. In addition to replica managers (as illustrated in
Fig. 2), a scheduling broker and data centers constitute the
system of could data service. The system is managed centrally
by the scheduling broker whereas the locations of the replicas
in different data centers are stored in replica managers.

A set of network links (E) interconnecting a set of data
centers (V) forms the targeted cloud topology as an undirected
tree T = (V, E). The data transfer cost is calculated as the sum
of the cost associated with each link along the path. Initially,
all data are stored in the central DB and are disseminated
down the cloud hierarchy in different data centers upon
request from the users in the lowest tier. Over an interval of
time, each user carries a count representing the access
frequency of a specific data file which indicates the popularity
of the file. Data consistency is maintained by propagating
updates from the central DB to the replica server nodes. In this
case, the associated cost is considered as maintenance cost for
previously created replicas.

Fig. 1. Three-Tier Cloud Computing DataCenter Architecture based on

HDFS [6].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

422 | P a g e

www.ijacsa.thesai.org

Fig. 2. Cloud Data Service Architecture.

Each data center node is associated with a workload
constraint. The workload constraint refers to the maximum
number of user requests that is served by a data center server
for a certain period of time. It is expected that the incoming
data requests from the users are satisfied while not exceeding
the workload capacity of replica data centers each having a
different workload constraint. If the aggregated workload of a
data center server exceeds its capacity, the data center will be
considered as overloaded.

Whenever a user needs to access data, it sends the request
to the closest data center server along with the QoS
constraints. A user (v) specifies his/her QoS requirement, q(v),
by means of an upper bound on some criteria. For example, a
user may request for a data item within a specific time or from
a specific distance in terms of network hops. The replication
strategy then confirms that there is a data center server within
this q(v) to satisfy the request. If the request is not satisfied
due to the absence of a data center server or any other reason
the requirement is said to be violated.

A. Data Access Cost

As mentioned above, whenever a datacenter server
receives a request for data it serves the request locally if data
is present in the server. Alternatively, the request is served by
any other closest replica server that holds the requested data.
In our data cloud architecture, each user carries an
aggregated count, which represents the total
number of accesses for a particular data item over a time
interval. This aggregated count determines the weighted
communication cost for a user requesting the targeted data
item. It is worthwhile to note that we have excluded the
communication cost among the users and their directly
associated datacenters as this does not affect the replica
placement decision. The overall cost for data access is given
as follows:

 ∑ (1)

where is the communication cost, is the data
consistency maintenance cost and is the storage cost.

Given the set of replica data center servers R and the set of
users requesting the data file (f) Q, the overall communication
cost () is computed as follows:

 ∑ ∑ (2)

where denotes different data file types and
represents the data access count of user u for file .

The storage cost () is determined as follows. Let
 be the cost of storage associated with a file stored at

replica server (data center) . Suppose is replicated over
sites. The total cost for storage for f is

 ∑ (3)

where, SCu,f denotes the cost of storage of a file with type f
in the data center u and the total cost for storage for different
types (F) of files will be:

 ∑ ∑
 (4)

where, denotes the set of replica servers that stores the file

of type f.

The consistency maintenance cost for the replicas of a data
file f with the update frequency µ(f), is formulated as follows:

 ∑ ∑ (5)

where, p(v) is the parent of node v and Tv is the sub-tree
rooted at node v in the update distribution tree. The
communication link (v, p(v)) participates in the update
multicast process if . Hence, the cost related to
consistency maintenance is determined by aggregating the
data transfer costs over the communication links (v, p(v)),
when

B. Problem Definition

We now devise the replica placement problem in a large-
scale cloud computing environment. In practice, the replica
placement problem can be regarded as an optimization
problem:

 and maximizing QoS

The goal is to select R data center locations from M
probable data centers (M > R) by optimizing the cost (storage,
communication, and consistency maintenance) of overall
replication and satisfying specified QoS requirements of the
users and the systems. More specifically, the goal is to identify
a suitable replication strategy (i.e., the set of replica servers,
R), with the minimal data access cost where the requests for
data can be met by a datacenter server while meeting the user
quality requirements and not exceeding the concerned data
center‘s capacity limits.

IV. QOS-AWARE REPLICA PLACEMENT ALGORITHM

This section first presents our base distributed heuristic
technique of multi-objective replica placement for cloud
computing environment (RPCC). The proposed QoS-aware
strategy will then be devised by extending the base algorithm

Scheduling

Broker

Replica Catalog

Replica Optimizer

Replica Manager Replica Manager

Users

Data Center 1 Data Center 2

a1

b2

a3 c1

a1

a2

b1

c1

a3

a2

b1

a1

c1 a2

b2

b1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

423 | P a g e

www.ijacsa.thesai.org

and incorporating both the users' and system's QoS
requirements.

We demonstrate that our multi-objective RPCC can be
designed as a dynamic programming problem and a
distributed technique can be adopted to find its solution in a
hierarchical cloud topology. In essence, the proposed
technique breaks the overall reapplication problem into
various sub-problems and advocates solving these sub-
problems separately and combining the solutions to achieve
the overall solution. Using the data access cost function, each
data center node in the hierarchical cloud topology can
determine the cost for creating a replica locally and
transferring a replica from another data center up in the
hierarchy as well. In RPCC, each data center needs to decide
(based on the cost) whether it should create a replica locally or
fetch the data from any replica server up in the hierarchy. A
parent data center node accomplishes this by accumulating the
results provided by its children. In reality, this is a bottom-up
approach which begins from the lowest tier users and stops at
tier-0. On the other hand, replica placement is done starting
from the tier-0 and stopping at the lowest tier users (based on
the previously calculated results). The details of the technique
is discussed below.

We also define a cost vector to be used in calculating
replication cost with respect to a particular data center node in
the cloud hierarchy. Let v be a data center node and there is a
sub-tree rooted at v. Now, let be the cost for
replication contributed by the above sub-tree where rd denotes
the replica distance from v towards the root data center. So, if
this distance is zero (i.e., the replica is in v itself) the
replication cost will include the communication cost for all
descendants of v, the consistency maintenance cost and the
storage cost at v. Moreover, if this distance is greater than zero
(i.e., the replica is located at any data center sitting on the path
from v towards the root), the replication cost will include the
communication cost for all the descendants of v only.

A. Calculation of Replica Cost and Location

Now, each data center's replication cost is calculated by
considering the location of a replica anywhere in the path from
the node itself towards the origin server or root. The
replication cost, Cost(v, rd), for each data center node v is
calculated based on the condition that the replica is located at
some distance towards the root. As mentioned below, the
optimum position of a replica is also calculated for each case.
Once the cost vectors for all the children of a data center are
calculated, the cost vector for the data center itself is
calculated.

Given data center v, leaf (user), when rd = 0, the data
center contains a replica in itself and thus QoS is satisfied.
Cost(v, 0) is calculated as the sum of the cost of storage at v
and the cost of update to maintain replica consistency
(CMCcost(v) + Scost(v)). Replica location is set to v. When rd> 0
we have two scenarios regarding the user QoS requirement,
q(v). First, if rd ≤ q(v) it means that the replica server (data
center) is located at a distance which meets the user QoS
requirement. The cost of replication of sub-tree Tv (i.e., v only
for this case) contains the read cost for v only. Second, if
rd>q(v), the QoS requirement is not satisfied by the replica

and hence the communication cost is assigned to infinity.
Now, the cost for rd = 0 is checked against the cost obtained
with all possible distance, rd ≥ 1, to identify the minimal cost
for replication and location of replica. If for rd = 0 the cost
(Cost(v,0)) is smaller than the cost for greater values of rd,
Cost(v,rd) is assigned to Cost(v,0) and the location of the
replica is set to the node itself. Otherwise, the replica will be
created somewhere on the path towards the root and the
location becomes rd-th ancestor of v. Replication cost will
only be v's communication cost (CC). Accordingly, the
minimal replication cost Cost(v, rd} and the respective replica
server location (RSL) for v using each distance possibility (rd
≥ 0) can be determined as follows:

{

 (6)

{

 (7)

Lemma 1. RPCC optimally places replicas in the sub-tree
Tv = T-r where r is the origin server or root and v is the leaf of
the targeted cloud tree T.

Proof. To determine the replica placement for a sub-tree Tv
where v is a leaf data center node in the tree T, we consider
two possibilities. First, when d (i.e., distance between the user
and the root) = 0, T consists of only one node which is the
root. This results in no communication, storage, or consistency
maintenance cost for replicas and hence the optimality of the
algorithm trivially holds true. Second, when d ≥ 1(i.e., replica
server is up on the way to the root) we need to compare the
replication cost obtained for d = 0 (i.e., replica is in v itself)
with the replication cost calculated for each value of d having
d ≥ 1 to decide on the optimal replication cost and locations of
replicas. Now, if the cost for d = 0 (i.e., replica storage and
update cost in v) is less than the cost for d ≥ 1 (i.e., data access
cost of v having a replica server up on the way to the root),
placing a replica in v itself would be cheaper. On the contrary,
the replica is placed at a higher data center node on the path to
the root based on the value of d, which is optimal.

For a data center node v, non-leaf (i.e., non-user), when rd
= 0, the node should contain a replica in itself. In this
situation, the cost of replication, rep_cost will include the cost
of all its children for rd=1, and the cost of storage and update
for replica consistency at v (rep_cost

= ∑

However, we have to check whether it is less expensive to
make a replica in each child of v by calculating the sum of
costs of all its children, Costchild(v) = ∑ and

comparing this with rep_cost. If Costchild(v) is less than
rep_cost the replicas are placed in v's children and the replica
location is set to ―children‖. Otherwise, the replica is created
locally at v. Thus, for optimal replication cost and replica
server locations, the dynamic programming equations are:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

424 | P a g e

www.ijacsa.thesai.org

 {

 (8)

 {

 (9)

To find Cost(v, rd) when rd>0, we determine the sum of
replication costs of all the v's children considering replica at a
location of rd+1 (childcost = ∑ . If

Cost(v,0) is less than this sum, Cost(v, rd) is assigned to
Cost(v,0) and the location of replica is assigned to the site
obtained from RSL(v, 0). On the contrary, the replica is
created somewhere on the path towards the root and the
location is rd-th ancestor of v.

{

 (10)

{

 (11)

Lemma 2. RPCC optimally places replicas in the sub-tree
Tv = T-r where r is the origin server or root and v is a non-leaf
data center node of the targeted cloud tree T.

Proof. As stated earlier, when the children of a data center
node complete the calculation of replication costs, the node
itself starts to calculate the cost functions. In Lemma 1, we
verified that replicas are allocated optimally in a leaf node for
all replica distance values. Thus, we can infer that the non-leaf
data center nodes one hop up from the bottom of T contain
children (leaf nodes) whose calculated replication costs are
optimal. Now, it remains to show that RPCC places replicas
optimally in the sub-tree with a root being any internal data
center, v, considering each possible value of d. First, when the
value of d equals to 0, we observe by considering Equations
(7) and (8) that the replication cost associated with sub-tree
rooted at v is the least of the following two scenarios:

1) v itself contains a replica. The cost becomes the

aggregate of the costs of the sub-trees having root as v‘s

children and the value of d equals to 1 and moreover storage

and consistency maintenance cost at v.

2) v does not contain a replica. The replication cost can be

obtained by aggregating the costs incurred from the sub-trees

having v‘s children as roots with d = 0.

Second, when d ≥ 1(i.e., replica server is up on the way to
the root) we need to compare the replication cost obtained
above for d = 0 (i.e., replica is in v itself) with the replication
cost calculated for each value of d having d ≥ 1 to decide on
the optimal replication cost and locations of replicas. Now, if
the cost for d = 0 is below the cost for d ≥ 1 (i.e.,
communication cost of the sub-trees rooted at the children of v
having a replica server up on the way to the root), placing a
replica in v itself will be cheaper. Otherwise, it will be

preferable to create a replica at any upper node on the path to
the root based on the value of d, which is optimal. The
minimum cost thus calculated is optimal for any node v.

Theorem 1. RPCC optimally allocates replicas for the
targeted cloud Tree, T for a given traffic pattern.

Proof. We provide the proof for our generalized replication
problem with the targeted cloud tree topology. The proof is
carried out based on induction where Lemma 1 is the
induction base and Lemma 2 is the induction step.

B. Placing Replicas

Placement of replicas starts at the root of the targeted
cloud tree and stops at the lowest-tier users. In this process,
every data center finds whether or not a new replica will be
created locally based on the calculated cost and location
vector. Once the bottom-up calculation is done, the root or the
origin server holds the optimum cost for data replication.
Cost(root, 0) of the whole cloud and the replica location
RSL(root, 0). The value of RSL(root, 0) can be either r (the
origin server itself) or ―children‖ (the origin server's children
nodes) which indicate that the replica is zero or one hop away
(towards the users) from the origin server. So, the origin
server sends a message rd = 0 or rd = -1. A data center node,
v, which receives the message being one hop away increases
the value of rd by one and investigates the valued of RSL(v,
rd). If v becomes RSL(v, rd)‘s value, a replica is created in v
itself and the message rd = 0 is passed the children of v. If
RSL(v, rd) value is -1 it assigns rd = -1 and forwards it to the
children. Finally, if the RSL(v, rd) value is a data center node
rd away up in the tree it sends rd message to its children
without changing the value. When all the users at the leaves
receive the message rd the replica placement process
terminates.

C. Complexity Analysis

Analysis of the computational and message complexity of
our algorithm is completed by performing the computation of
cost and location vectors and the placement of replicas in the
entire cloud. For every data center node v, we compute its
Cost(v, rd) for its sub-tree for each value of rd between 0 and
distance to the origin server or root by merging the results of
all its children. The computation of data center v is done by
adding |child(v)| rudiments of count (x + 1), where x represents
the distance between v and the origin data center and |child(v)|
represents the children count for data center v. Hence, the
number of computations for data center v appears as (x + 1).
|child(v)|. The total number of computations for all the data
centers in the cloud is:

∑

 | |

where xv represents the distance between v and the origin
server.

Given, the number of data centers, |V| = N, we can observe
that xv≤ N − 1 for each value of v. Hence, the following can be
deduced:

∑ | |≤ N.∑ | | = N (N-1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

425 | P a g e

www.ijacsa.thesai.org

This equality holds since there are N − 1 children nodes in
the cloud. This is because except the origin server, each
datacenter node has a parent. Consequently, O() is the
overall computing cost of Cost vectors for all the nodes. As
for the message, the first is the cost vector that is sent by each
node to its parents. The other message is rd sent by each node
to its children. If |V| = N is the total number of data center
nodes and each node sends two messages, the message
complexity is O(N).

V. SIMULATION SETUP

For the performance evaluation of our proposed replication
algorithm we have leveraged the use of a Java based simulator
program. Our hierarchical cloud structure consists of four tiers
having each tier with data centers. Each data center has five
children and thus the total number of data centers becomes
155 including the users in the lowest tier. Requests for data
come from the users only. Uniform distribution is used to
model the available link bandwidth with the range [0.622, 2.5]
(Gbps). According to the same distribution, data center storage
capacities are also modeled. The simulation experiments use
2500 data files where the size of each data file is 10 GB.
Hence, the total data size becomes nearly twenty-five tera byte
(TB). To measure the efficacy of our system, we utilized five
diverse storage settings of data centers which are created in
accordance to the relative storage capacity of data centers. The
relative storage capacity (RSC) is determined by a percentage
of total storage size of all data centers compared to the overall
data size in the system. For our experiments, we use RSCs
ranging from 13% to 75%. The use of relative storage capacity
is justified by the fact that it affects the decision to create
replicas on data centers in contrast to their absolute storage
capacities. Different storage settings as discussed above are
shown in Fig. 3.

(a)

(b)

Fig. 3. Storage Configurations of Data Centers based on Relative (a) and

Total (b) Capacity.

Upon requests for data from the users, each data center
replica server tries to meet the request. However, the number
of access requests served by each replica server is limited by
its workload constraint. In our experiments, six different
workload configurations according uniform distribution are
used as shown in Fig. 4. Simulation experiments are done by
submitting 50 different jobs each one having a fixed
probability of being submitted.

The simulation experiment allows each job to access a
sequence of data files. User requests for data files come
according to Poisson distribution and each request is issued in
an interval of 2500 milliseconds. Moreover, selected access
patterns determine the sequence of files that will be accessed.
In our experiment, two data access patterns namely Gaussian
and Zipf distributions are used. The Zipf distribution is
expressed as Pi = K, where Pi denotes the count for ith ranked
file, K represents the most popular data file (by means of
frequently accessed items) and s specifies the distribution
shape. Also, the temporal locality present in the data access
pattern is measured by this parameter s having values ranging
from 0.65 to 1.24. The level of locality in the data is indicated
by the value of s. We have experimented with a value of 0.85
for s and call it as Zipf-0.85 distribution. Besides, Gaussian
distribution also known as normal distribution is used in our
experiment. It is an important distribution in statistics and is
frequently used in natural and social sciences to characterize
real-valued random variables. Previously, other replication
techniques [36], [37] in the literature have used similar data
access patterns for their evaluation in data grids.

Our replication strategy was evaluated using the
performance metrics which include job execution time, mean
bandwidth use, storage utilization, number of replicas created,
and rate of satisfaction for users. Job execution time refers to
the overall time needed to execute the whole set of jobs and
also takes into account the data access time. replica
maintenance algorithm. The bandwidth usage for a data
transfer is the data size times the aggregate costs of the data
transfer route. The average cost for bandwidth usage is
calculated by dividing the overall bandwidth usage by total
data access counts. Storage consumption is the proportion of
the data center storage occupied by the replicas in the system.
Finally, user satisfaction rate represents number of users
whose QoS constraints are met compared to the total number
of users who requested for data access with some QoS
constraints. The target is to reduce total job execution time
and minimize average bandwidth and storage consumption
while maximizing the user satisfaction rate.

Config. Workload capacity constraint (GB)

1

2

3

4

5

6

[250-350]

[200-300]

[150-250]

[100-200]

[80-300]

[50-150]

Fig. 4. Workload Configuration of Data Centers.

0

20

40

60

80

1 2 3 4 5R
e
la

ti
v
e
 c

a
p

a
c
it

y
 (

%
)

Storage configurations of data centers

0

5

10

15

20

1 2 3 4 5

T
o

ta
l

c
a

p
a

c
it

y
 (

T
B

)

Storage configurations of data centers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

426 | P a g e

www.ijacsa.thesai.org

VI. PERFORMANCE RESULTS

In this section, we discuss the experimental results of our
proposed replication technique (RPCC) and compare it with
Greedy Add and Greedy Remove [37] protocols from the
literature. The QoS requirement of a user issuing a data access
request is specified by a range in terms of distance from the
user to the closest replica data center. This range is formulated
using a uniform distribution. For instance, if a user specifies
its QoS requirement of [1-2] it means that the replica data
center containing the requested data is expected to be one or
two hops away from the user.

A. Job Execution Time

Fig. 5 shows the job execution times based on different
data center workload configurations for RPCC, Greedy Add,
and Greedy Remove algorithms. In the experiment, the
relative storage capacity is set to 75%, user QoS requirements
of [1-3] and [0-1] are specified from a uniform distribution to
permit both relaxed and relatively more constrained distance
ranges respectively. For both the data access patterns (Zipf-
0.85 and Gaussian), the total job execution times required by
RPCC is shown to be lower than the other two algorithms.
This is attributed to the fact that RPCC creates a moderate
number of replicas in appropriate locations in the cloud
hierarchy in contrast to Greedy Add and Greedy Remove
techniques which in turn reduces access times for the data
requests. Accordingly, this cuts down the overall job
execution time. Fig. 6 shows the number of replicas created by
all three algorithms during a sampling simulation period for
the same workload and storage resource configurations. With
the decrease in workload capacity of replica servers, an
increased number of replicas are created (Fig. 6) and
consequently job execution times drop in most cases but by
varying amounts as shown in Fig. 6. Greedy Add mostly
exhibits lower execution time than Greedy Remove. For
relatively more constrained QoS requirement ([0-1]) and
Gaussian access pattern, Greedy Remove unexpectedly shows
lower job execution time compared to the other two
algorithms.

Fig. 5. Comparison of Job Times with 75% Relative Storage Capacity of

Data Centers.

Fig. 6. Comparison of No. of Replicas for Varying user QoS Requirements.

Generally, the performance gain of RPCC over Greedy
Add and Greedy Remove turns out to be more evident when
user QoS constraints of broader ranges are used.

The job execution times using relative storage capacity of
17.5% are shown in Fig. 7 for the same data access patterns as
before. Generally, RPCC exhibits shorter job times compared
to Greedy Add and Greedy Remove. However, the use of
more constrained storage size results in only a meager benefit
for RPCC in terms of job times in most cases. Furthermore,
job times for all three algorithms in this case got an increase
by varying amount compared to the case when relative storage
capacity of 75% is used.

Fig. 8 shows satisfaction rates of users for all methods
using relative storage capacity of both 17.5% and 75%.
Mostly, RPCC outperforms the other two algorithms.
Particularly, the performance gain of RPCC over Greedy Add
and Greedy Remove is more when the storage capacity of
replica data centers (17.5% relative capacity) is restricted.
Nevertheless, satisfaction rates of users decrease in case of
constrained storage space of replica data centers regardless of
quality requirements from users and the patterns used for data
access as shown in Fig. 8.

B. Average Bandwidth Use

Both network providers and end-users deem bandwidth
consumption as a key issue since undue bandwidth use can
cause slowdowns due to network congestion. We include two
different types of costs namely replication (create and update)
cost and read cost to measure average bandwidth use.

Fig. 9 displays the average bandwidth cost in terms of
varying workload for RPCC, Greedy Add, and Greedy
Remove algorithms. As before, the relative storage capacity is
set to 75% and 17.5%, user QoS constraints on replica server
distances of [1-3] and [0-1] are specified from a uniform
distribution to allow both relaxed and relatively more
constrained ranges respectively. RPCC mostly shows
moderate bandwidth consumption rate compared to Greedy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

427 | P a g e

www.ijacsa.thesai.org

Add and Greedy Remove algorithms. The reason is that both
data access (read) cost and replication cost are reduced on
account of the placement of a modest number of well-placed
replicas down the cloud hierarchy. On the other hand, Greedy
Remove mostly exhibits the lowest bandwidth cost among the
three algorithms. The reason is that more replicas are created
in the upper part of the cloud hierarchy. The replication cost
involved in this case is comparatively lower than the elevated
data access (communication) cost. With the decrease in
workload capacity of data center servers, a higher number of
replicas are created and consequently the bandwidth cost
increases for all three algorithms. For more constrained
relative storage capacity (17.5%) of data centers, RPCC
exhibits moderate bandwidth consumption compared to
Greedy Add and Greedy Remove as before. Greedy Remove
performs better than the other algorithms due to reduced
replication cost with Gaussian access pattern irrespective of
the user QoS ranges.

Fig. 7. Job Times with Relatively More Constrained Data Center Storage

Capacity (17.5%).

Fig. 8. Comparison of Satisfaction Rates for Varying Relative Storage

Capacity of Data Centers.

Fig. 9. Comparison of Average b/w Cost with Relative st. Capacity of 75%

and 17.5%.

C. Storage Use

The storage resources used in the system is vital to grid
providers. Since storages are relatively cheaper, we can come
to a trade-off in case improvements in job execution times and
network bandwidth consumption are achieved.

Fig. 10 shows the storage usage (y-axis) as a function of
varying workload (x-axis) for all algorithms with a relative
storage capacity of 75% and 17.5%. RPCC shows moderate
storage usage compared to Greedy Add and Greedy Remove
algorithms in all cases. When data centers‘ capacities in terms
of workload decreases, the number of replicas created
increases (Fig. 6) and accordingly storage overhead increases
in most cases but by varying amounts.

Fig. 10. Comparison of Storage Cost with More Constrained user QoS Range

[0-1].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the data replication problem in
data cloud considering the QoS requirements from users to
support big data applications. Aiming to put forward a multi-
objective solution to the replication problem, user QoS
constraints in terms of distance to replica data center servers
and workload constraints of replica servers are considered.
First, we formulate the replica placement problem as a
dynamic programming problem. Second, we propose a novel
distributed replica placement algorithm (RPCC) for a multi-
tier cloud platform so as to avoid the limitations usually found

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

428 | P a g e

www.ijacsa.thesai.org

in centralized algorithms such as scalability, reliability, and
performance bottlenecks. Performance analysis of the
proposed algorithm was done in terms of job execution time,
mean bandwidth usage, storage resource utilization, total
number of replicas that are created during a simulation period,
and satisfaction rates of users. The simulation results showed
that RPCC can considerably reduce job execution times which
include data access time while incurring modest bandwidth
and storage costs compared to two other algorithms. These
results are obtained by utilizing a variety of storage and
workload setting of data center servers and data access
patterns with a degree of temporal locality and randomness.

In the future, we envision to implement our proposed data
replication technique in a physical cloud infrastructure.
Besides, we plan to extend our replication technique to deal
with the bandwidth constraints imposed on the network links.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, ―Above the Clouds: A Berkeley View of Cloud Computing,‖
Technical Report UCB/EECS-2009-28, Dept. of EECS, California
Univ., Berkeley, Feb. 2009.

[2] J. M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
―Cloud Computing: Distributed Internet Computing for IT and Scientific
Research,‖ IEEE Internet Computing, vol. 13, no. 5, pp. 10-13, Sept.
2009.

[3] I.S. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
―Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the fifth Utility,‖ Future Generation
Computer Systems, vol. 25, no. 6, pp. 599-616, June 2009.

[4] Amazon. Amazon simple storage service (Amazon S3). Available:
http://aws.amazon.com/s3

[5] Ghemawat, S., H. Gobioff, and S.-T. Leung, The Google file system.
SIGOPS Oper. Syst. Rev., 2003. 37(5): p. 29-43.

[6] Hadoop at Twitter, http://www.slideshare.net/kevinweil/hadoop-at-
twitter-hadoop-summit-201.

[7] Bessani, A., Correia, M., Quaresma, B., Andr'e, F. and Sousa, P.,
DepSky: Dependable and Secure Storage in a Cloud-of-clouds, In Proc.
of the 6th Conference on Computer Systems, pp. 31-46, 2011.

[8] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, ―Hadoop High
Availability through Metadata Replication,‖ Proc. First Int‘l Workshop
Cloud Data Manage, pp. 37-44, 2009.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ―The Hadoop
Distributed File System,‖ Proc. IEEE 26th Symp. Mass Storage Systems
and Technologies (MSST), pp. 1-10, June 2010.

[10] A. Gao and L. Diao, ―Lazy Update Propagation for Data Replication in
Cloud Computing,‖ Proc. Fifth Int‘l Conf. Pervasive Computing and
Applications (ICPCA), pp. 250-254, Dec. 2010.

[11] W. Li, Y. Yang, J. Chen, and D. Yuan, ―A Cost-Effective Mechanism
for Cloud Data Reliability Management Based on Proactive Replica
Checking,‖ Proc. IEEE/ACM 12th Int‘l Symp. Cluster, Cloud and Grid
Computing (CCGrid), pp. 564-571, May 2012.

[12] C.Q. Huang, Y. Li, H.Y. Wu, Y. Tang, X. Luo, Modeling and
maintaining the reliability of data replica service in cloud storage
system, Journal of Communication. 36 (3), 2014.

[13] H. Shen, G.P. Liu, H. Chandler, Swarm intelligence based file
replication and consistency maintenance in structured P2P file sharing
systems, IEEE Trans.Computing, 64 (10), pp. 2953–2967, 2015.

[14] G. Liu, H. Shen, H. Chandler, Selective data replication for online social
networks with distributed datacenters, IEEE Trans. Parallel Distrib. Syst.
27 (8), pp. 2377–2393. 2016.

[15] S. Fu, L. He, X. Liao and C. Huang, Developing the Cloud-integrated
data replication framework indecentralized online social networks,
Journal of Computer and System Sciences 82 (2016) 113–129, 2015.

[16] S. Sun, W. Yao and X. Li, DARS: A dynamic adaptive replica strategy
under high load Cloud-P2P, Future Generation Computer Systems, 78
(2018) 31–40, Aug 2017.

[17] Sun D.W, Chang G.R. and Gao S.,‖Modeling a dynamic data replication
strategy to increase system availability in cloud computing
environments,‖ Journal of Computer Science and Technology, vol. 27,
no.2, pp. 256-272 Mar. 2012.

[18] D.-W. Sun, G.-R. Chang, C. Miao, L.-Z. Jin, X.-W. Wang, Analyzing
modeling and evaluating dynamic adaptive fault tolerance strategies n
cloud computing environments, J. of Supercomputing, 66 (2013), 193–
228, 2013.

[19] Wei, Q., Veeravalli B., Bozhao G., Lingfang Z. and Dan F., CDRM: A
cost-effective dynamic replication management scheme for cloud
storage cluster., in 2010 IEEE International on Cluster Computing.
2010. p. 188 – 196

[20] Y. Qu, N. Xiong, RFH: A resilient, fault-tolerant and high-efficient
replication algorithm for distributed storage, in: 41st Int. Conf. Parallel
Process., 2012, pp. 520–529.

[21] N. Gill and S. Singh. A dynamic, cost-aware, optimized data replication
strategy for heterogeneous cloud data centers. Future Generation
Computer Systems, 65 (2016) 10–32, 2016.

[22] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya,
Energy-Efficient Data Replication in Cloud Computing Datacenters, In
Globecom 2013 Workshop- Cloud computing systems, networks, and
applications, pp. 445-450, 2013.

[23] Long Sai-Qin, Zhao Yue-Long, Chen Wei. MORM: A Multi-objective
Optimized replication Management strategy for cloud storage cluster.
Journal of Systems Architecture, 60 (2):234–44, 2014.

[24] N. Mansouri, M. K. Rafsanjani, M.M. Javidi, DPRS: A dynamic
popularity aware replication strategy with parallel download scheme in
cloud environments, Simulation Modelling Practice and Theory 77
(2017) 177–196, 2017.

[25] H. Sun, B. Xiao, X. Wang and X. Liu, Adaptive trade-off between
consistency and performance in data replication, Softw. Pract. Exper.
47:891–906, 2017

[26] L. Chen and D. B. Hoang, Adaptive data replicas management based on
active data-centric framework in cloud environment, In Proceedings of
IEEE International Conference on High Performance Computing and
Communications, pp. 101-108, 2013.

[27] Z. Ye, S. Li and J. Zhou, A Two-layer Geo-cloud based Dynamic
Replica Creation Strategy, Applied Mathematics & Information
Sciences, Vol. 8, No. 1, pp. 431-440, 2014.

[28] J. Janpet and Y. Wen, Reliable and Available Data Replication Planning
for Cloud Storage, In Proc. of the IEEE 27th International Conference
on Advanced Information Networking and Applications, pp. 772-779,
2013.

[29] S. Kirubakaran, S. Valarmathy and C. Kamalanathan, Data Replication
Using Modified D2RS in Cloud Computing for Performance
Improvement, Journal of Theoretical and Applied Information
Technology, Vol. 58, No.2, pp. 460-470, 2013.

[30] Li, L.L. , Wang, Q.C., Han, Y.J., Ma, X.H., Jiao, Y., A dynamic
replication algorithm based on access popularity in cloud storage
environment, In Proc. of International Conference on Materials Science
and Computational Engineering, 2014.

[31] N. Mansouri, Adaptive data replication strategy in cloud computing for
performance improvement, Front. Comput. Sci., 10(5): 925–935, 2016.

[32] J. Lin, C. Chen and J. M. Chang, QoS-Aware Data Replication for Data-
Intensive Applications in Cloud Computing Systems, IEEE Transactions
On Cloud Computing, Vol. 1, No. 1, pp. 101-115, 2013.

[33] S. Varma and G. Khatri, QoS-Aware Data Replication in Hadoop

Distributed File System, Int. J. Advanced Networking and Applications
7(3), pp. 2741-2751, 2015.

[34] Kumar, P.J. and Ilango, P. MQRC: QoS aware multimedia data
replication in cloud. International Journal of Biomedical Engineering
and Technology, Vol 25, 2017.

[35] M. Shorfuzzaman, "On the Dynamic Maintenance of Data Replicas
based on Access Patterns in A Multi-Cloud Environment", International

http://aws.amazon.com/s3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

429 | P a g e

www.ijacsa.thesai.org

Journal of Advanced Computer Science & Applications (IJACSA),
Vol.8. No. 3, pp. 207-215, 2017.

[36] A.M. Soosai, A. Abdullah, M. Othman, R. Latip, M.N. Sulaiman, and H.
Ibrahim, ―Dynamic Replica Replacement Strategy in Data Grid,‖ Proc.
Eighth Int‘l Conf. Computing Technology and Information Management
(ICCM), pp. 578-584, Apr. 2012.

[37] C. Cheng, J. Wu, and P. Liu, ―Qos-aware, access-efficient, and
storageefficient replica placement in grid environments,‖ Journal of
Supercomputing, vol. 49, no. 1, pp. 42–63, 2009.

[38] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, T. Varvarigou,
Dynamic QoS-aware data replication in grid environments based on data
‗‗importance‘‘, Future Gener. Comput. Syst. 28 (2012) 544–553, 2012.

