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Abstract—Multilayer perceptron neural network (MLPNN) is 

considered as one of the most efficient forecasting techniques 

which can be implemented for the prediction of weather 

occurrence. As with any machine learning implementation, the 

challenge on the utilization of MLPNN in rainfall forecasting lies 

in the development and evaluation of MLPNN models which 

delivers optimal forecasting performance. This research 

conducted performance analysis of MLPNN models through data 

preparation, model designing, and model evaluation in order to 

determine which parameters are the best-fit configurations for 

MLPNN model implementation in rainfall forecasting. During 

rainfall data preparation, imputation process and spatial 

correlation evaluation of weather variables from various weather 

stations showed that the geographical location of the chosen 

weather stations did not have a direct correlation between 

stations with respect to rainfall behavior leading to the decision 

of utilizing the weather station having the most complete weather 

data to be fed in the MLPNN. By conducting performance 

analysis of MLPNN models with different combinations of 

training algorithms, activation functions, learning rate, and 

momentum, it was found out that MLPNN model having 100 

hidden neurons with Scaled Conjugate Gradient training 

algorithm and Sigmoid activation function delivered the lowest 

RMSE of 0.031537 while another MLPNN model having the 

same number of hidden neurons, the same activation function 

but Resilient Propagation as training algorithm had the lowest 

MAE of 0.0209. The results of this research showed that 

performance analysis of MLPNN models is a crucial process in 

model implementation of MLPNN for week-ahead rainfall 

forecasting. 
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I. INTRODUCTION 

Multilayer perceptron neural network (MLPNN) is 
considered as a widely used artificial neural networks 
architecture in predictive analytics functions. The architecture 
of an artificial neural network, that is, its structure and type of 
network is one of the most important choices concerning the 
implementation of neural networks as forecasting tools. The 
design of MLPNN is motivated by the structure of a biological 
neuron system capable of parallel processing like a human 
brain, but the processing elements of this machine learning tool 
has gone far from their biological inspiration [1, 2, 3]. For this 

reason, MLPNN have been successfully used by most of the 
researchers in the field of forecasting, science and engineering 
to predict the behavior of both linear and nonlinear systems 
without the need to make assumptions that are implicit in most 
traditional statistical approaches [2, 4, 5, 6]. With all its 
promising results, the biggest challenge with MLPNN is the 
selection of an appropriate model since there are different 
MLPNN model structures, training algorithms, activation 
functions, learning rate, momentum and number of epochs to 
choose from [1, 7]. This makes it hard to find the proper model 
for a particular problem [4]. Modelers and researchers who use 
MLPNN in forecasting still rely on performance analysis of 
MLPNN models in order to implement domain-specific 
applications that generate close to accurate predictions. 

The field of rainfall forecasting is one of the domains that 
utilize MLPNN in generating predictions of various 
granularities [1, 3, 5]. Rainfall is the metric used to measure the 
amount of rain that accumulates at any given point in the 
earth’s surface. This measurement is usually reported in 
millimeters and is most often associated with its more violent 
counterpart which is flooding. Out of the historical data 
collected from various rain gauges, MLPNN models show 
great potential in discovering patterns from preprocessed data 
which in turn forecast rainfall used for life-saving applications 
such as flood management and airport administration. The 
nature of the combination of meteorological parameters such as 
relative humidity, air pressure, wet bulb temperature, 
cloudiness, and rainfall at the point of measurement as well as 
from surrounding stations poses challenges in data preparation 
as well as in the input and hidden layers of MLPNN models [7, 
8]. Furthermore, in the output layers of MLPNN applications 
for rainfall forecasting, modelers usually generate week-ahead 
forecast to give ample time for decision makers in the 
dissemination of disaster preparedness measures to the affected 
stakeholders [3].  With the consideration of the continuous data 
gathered from rainy and non-rainy periods, data representation, 
data cleaning, correlation evaluation and data transformation 
are also modeling challenges that need to be considered before 
using any MLPNN model as a supervised learning framework 
in the forecast of life-saving predictions [1, 5, 8]. With this, 
performance analysis of MLPNN models that takes into 
consideration appropriate data preparation which optimizes 
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various neural networks parameters is an important function in 
week-ahead rainfall predictions. 

The choice of a dataset and the quality of its data is a 
defining factor in the accuracy of the MLPNN model’s output. 
Data quality for the dataset has to be maintained else the 
prediction process of the MPNN and its testing will potentially 
suffer from anomalies and inconsistencies [9, 10].  In addition, 
the selection of the study area, time span of the data, and 
important variables in the dataset must be conducted in order to 
produce the best possible case scenario for the research 
problem. Furthermore, without the proper representation of 
MLPNN model results, discussions, and error assessment, 
rainfall forecasting will fail to capture the validity of its output 
and leave these implementation efforts vulnerable to 
misinterpretation [2, 8]. Thus, the choice of the MLPNN 
model, multiple runs of data pre-processing, model 
construction, and the analysis and presentation of MLPNN 
model performance are all required to present a working 
solution to the prediction of rainfall and other weather 
phenomena. This research aims to focus on evaluating the 
performance of MLPNN models in choosing a suitable 
candidate for implementation in week-ahead rainfall 
forecasting. Specifically, this study exhibits foundational 
methodologies in MLPNN model design creation which 
involves data preparation procedures and decisions on the 
parameter values to be implemented. The results of this study 
can provide methods on testing the validity and accuracy of 
MLPNN models as well as comparing and measuring the 
performance of its various forecasting parameters. This study 
hopes to contribute to the recent technology of rainfall 
forecasting by evaluating MLPNN models which can be used 
to optimally implement close to accurate predictions that 
provide accurate rainfall forecast to specific localities. 

II. METHODOLOGY 

A. Rainfall Data Preparation 

Data preparation involves the exploration, analysis, and 
other general pre-processing methods and techniques that must 
be performed before data is fed to the MLPNN model. Initially, 
data selection and data representation which are the processes 
of choosing the appropriate dataset and the representation of 

key variables to be considered as well as the transformation of 
non-numeric variables into numerical representations need to 
be followed by testing these variables for correlation with 
rainfall and spatial autocorrelation along with other geographic 
locations [9, 11, 12]. Weather data gathered from Tutiempo 
Network S.L. of seven weather stations in Mindanao, the 
Philippines was considered due to the geographical surface 
area and proximity within the path of a number of storms and 
typhoons. Moreover, the weather dataset shown in Table I was 
segregated into multiple years for each of the seven stations 
segregated by their month with each month constituting of 
daily recorded observations. The 12-year weather data from 
2006-2017 from the seven weather stations totaling to 398,853 
units of data underwent data preparation. Additionally, ISO 
8601 standard for dates, yyyy/mm/dd was also used to 
represent the dates corresponding the weather data. 

Missing data is a type of data anomaly in weather and 
climate data that occurs when measuring instruments fail, 
leaving behind gaps in the dataset. The percentage of missing 
data in the dataset was computed in order to determine how 
much data was missing. It is important to determine the 
percentage of missing data in a dataset because it can cause 
significant prediction error when data is not uniform [11]. It is 
an important calculation to make because without 
understanding the scale of missing data, it would be difficult to 
gauge how much the imputation process will affect overall 
accuracy. The larger the amount of missing data, the larger 
amount of values that have to be filled in by the imputation 
process, thus lesser missing data implies better overall 
accuracy. Aside from determining the total of missing data per 
set, the missing data per climate variable is also an important 
metric to determine. It needs to be accounted for due to later 
steps involving individual variables being used for correlation 
measurements. A variable that has a large number of missing 
data will also affect the computation of the Pearson’s 
correlation coefficient to be conducted in the study. Random 
Forests Imputation method was then used to fill in the 
identified missing data. The Random Forests Imputation 
method is an ensemble learning method for classification and 
regression which uses multiple decision trees and outputs 
either the mode for classification problems or the mean 
prediction for regression problems of the individual trees. 

TABLE I. WEATHER DATA VARIABLES 

SYMBOL CLIMATE FEATURE UNIT SYMBOL CLIMATE FEATURE UNIT 

T Average Temperature °C V Average Wind Speed km/h 

TM Maximum Temperature °C VM Maximum Sustained Wind Speed km/h 

Tm Minimum Temperature °C VG Maximum speed of wind km/h 

SLP 
Atmospheric Pressure at Sea 

Level 
hPa RA 

Indicate whether there was rain or 

drizzle 
0 or null 

H Average Relative Humidity % SN Indicate if it snowed 0 or null 

PP Total Rainfall/ Snowmelt mm TS Indicate whether there was a storm 0 or null 

VV Average Visibility km FG Indicate whether there was fog 0 or null 
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Variable correlation evaluation was then conducted to 
determine which variables in the weather dataset are correlated 
against the target variable which is rainfall. As suggested by 
researches, to confirm which of the variables in the dataset fit 
the criteria, the Pearson’s Correlation Formula was used to 
determine the correlation strength of each climatological 
variable with regards to rainfall [13]. Results range between 
[−1, +1], indicating weak to strong correlation with values 
close to 0 indicating no correlation. For this study, a 95% 
confidence interval was used with a considered p-value of less 
than or equal to 0.005. As shown in Equation 1, the Pearson’s 
Correlation Formula was run multiple times for each rainfall 
combination per weather station. The Pearson’s Correlation 
Coefficient r provided values of two different variables xi and 
yi of equal cardinality n where   ̅  and  ̅ are the means of the 
two variables respectively. 

            (1) 

As applied in this study, xi was used to denote rainfall 
values and yi was used to denote values for one other climate 
variable aside from rainfall like average temperature and 
humidity. 

In order to increase the predictive power and include more 
data for training the MLPNN, the identification of clusters was 
conducted in the entire geographic area using Spatial 
Autocorrelation. This will result in the identification of a base 
weather station along with other stations in the initial study 
area that has rainfall values spatially correlated with one 
another. The data present in the base station and the identified 
stations that exhibit correlation was included as inputs for the 
MLPNN to predict the rainfall values of the base station. To 
test for particular locations that exhibit local spatial 
autocorrelation of their values, Local Moran’s I, an extension 
of the Pearson’s Correlation formula with the addition of a 
spatial weights matrix which represents the weight given to the 
distance between points in space was used. A 95% confidence 
interval was used, meaning that a p-value of less than or equal 
to 0.005 was considered. The Local Moran’s I for location i 
provided two locations in space i and j as shown in Equation 2, 
where zi and zj are the deviations from the mean at both 

locations,   
  being the standard deviation at location i and ωij 

being a spatial weights matrix. 

     
  

  
   ∑                    (2) 

As applied in this study, zi and zj are deviations from the 
mean at weather stations i and j. To acquire a spatial weights 
matrix, a list of neighbors was needed. The k-nearest neighbor 
algorithm was used to generate a list of neighbors. The 
algorithm returns a list of neighbors that correspond to the 
number k attached to each weather station. The local Moran 
formula was applied in different stages, at each stage 
increasing the number of neighbors for each weather station. 
After the list of neighbors was acquired, a row standardized 
weight matrix was calculated from it. Since the list of 
neighbors differs at every iteration k, a different weight matrix 
was generated at every step. Once a spatial weight matrix has 
been generated, the local Moran formula was then calculated. 

Since the spatial weights matrix differs at every iteration of k, a 
different set of Moran indices were calculated. After 
transforming the dataset using Min-Max Normalization, the 
dataset was then partitioned into different sets namely the 
Training Set and the Testing Set. The dataset was partitioned 
according to the number of years instead of percentages as 
suggested by researches on rainfall forecasting conducted in 
tropical counties [11, 12]. 

B. MLPNN Model Evaluation 

The MLPNN architecture and model define the structure of 
the neural network which includes the number of layers, the 
direction of data flow in each layer, number of neurons per 
layer, and how these neurons are arranged. The neurons 
comprising the input layer is completely and uniquely 
determined once the specifications of the training data have 
been identified with the number of neurons comprising the 
input layer to be equal to the number of features in the data set. 
According to researches, the three most significant data inputs 
in rainfall prediction aside from the actual daily rainfall or 
precipitation values are relative humidity, air pressure and 
average temperature as these core elements constitutes the 
formation of rain or storm [4, 14]. Temperature affects the 
evaporation process causing increase in humidity while 
pressure affects the flow of air carrying these two. In order to 
predict rainfall with a high level of accuracy, these three 
parameters should be used. But since this research also 
considers the correlation between stations and its variables, 
other input data such us wind speed and visibility will also be 
tested with the aim to find out if the results yields an acceptable 
correlation evaluation, then the variable will be included as an 
input. The next matter to be resolved following the 
identification of the input layer is the number of hidden layers 
to be used along with its hidden neuron. According to the 
studies, a single hidden layer of a MLPNN is sufficient enough 
to approximate any complex nonlinear function with any 
desired accuracy [2, 4, 10]. As for the number of neurons in the 
hidden layer, the formula shown in Equation 3 as suggested by 
a study would give an upper bound limit of values that will not 
result in over fitting [15]. Stathakis’ formula uses an arbitrary 
scaling factor from 2-10 that is multiplied by the sum of the 
total input plus total output in order to gradually decrease the 
value of the number of neurons as the arbitrary factor reaches 
to 10. 

   
  

           
              (3) 

In this formula, Nh is the total number of hidden neurons to 
be calculated. This is done by dividing the total number of 
samples in the training data set Ns with the product of the 
arbitrary scaling factor α multiplied to the sum of the total 
input Ni with the addition of the total number of output No. 
The result will be tested individually as the number of input 
neurons in the hidden layer decreases. Along with other 
MLPNN parameters, models that reach the local minima with 
the lowest MAE and RMSE will be selected as the optimal 
number of hidden neurons. Since this study aims to predict 
rainfall data on a weekly basis, the number of output neurons 
will correspond to the requirement which is to produce 7 
prediction outputs corresponding to 7 days as represented by 
the 7 output neurons. 

This work is supported by the Mindanao State University-Iligan Institute 
of Technology (MSU-IIT) as an internally funded research under the Premier 

Research Institute of Science and Mathematics (PRISM) Applied 

Mathematics and Statistics Group. 
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Training algorithms, activation functions, learning rates and 
the momentum are important MLPNN model parameters that 
should be identified. The MLPNN training algorithm is the 
parameter that tunes the network so that its outputs are close to 
the desired values [16]. In choosing the training algorithm, 
several factors have to be considered including the complexity 
of the problem, the number of data points in the training set, 
the number of weights and biases in the network, the error goal 
and whether the network is being used for pattern recognition 
or function approximation [5, 16]. Since this study is dealing 
with rainfall forecasting which relies heavily on statistical 
calculations given historical data in order to get future values, 
the researchers focused on the function approximation 
algorithms. Function approximation algorithm shown in 
Equation 4 allowed researchers to find ways of separating 
objects into different classification given an input vector x, a 
weight vector w, and a threshold value T, an output of 1 
indicating membership of a classification, consequently an 
output of 0 indicating exclusion from the class [17]. With this, 
a select function approximation algorithm will be used for the 
training algorithms. 

∑                         (4) 

The activation function indicates the output of a neuron in 
terms of its input. Activation functions are important in order 
for the MLPNN to learn and make sense of complicated and 
non-linear complex functional mappings between inputs and 
response variable [6, 12]. Its main purpose is to convert the 
input signal of a node to an output signal which will be used as 
input in the next layer. There are a number of activation 
functions that can be used such as Sigmoid, Threshold and 
Linear activation functions. Among MLPNN implementations, 
the activation functions often chosen for rainfall forecasting are 
the logistic sigmoid and hyperbolic tangent [2, 3, 8, 16]. These 
functions are used because they are mathematically convenient 
and are close to linear near origin while saturating rather 
quickly when getting away from the origin allowing MLPNN 
to model strongly and mildly nonlinear mappings. 

As for the learning rate η, which determines how fast 
weights changes in order to reach local minimum, the goal is to 
find a value low enough that the network converges to an 
acceptable result but high enough that the network do not have 
to spend years just training. Some studies in rainfall prediction 
use 0.8 as the default value for learning rate [6, 18, 19]. There 
can be a situation in the MLPNN model where the algorithm 
converges to a local minimum or saddle point and may think it 
reached the global minima leading to a sub-optimal result. 
Momentum is used to avoid this situation though a value 
between 0 and 1 that increases the size of the steps taken 
towards the minimum by trying to jump from local minima. If 
the momentum is large, then the learning rate should be kept 
small. A large value of momentum also means that the 
convergence will happen fast. But if both the momentum and 
learning rate are kept at large values, it might skip the 
minimum with a huge step, or else momentum cannot reliably 
avoid local minima and slows down training of the system. 

Momentum also helps in smoothing out the variations, if the 
gradient keeps changing direction. A right value of momentum 
can be either learned by trial and error within 0.1 and 0.9 as 
suggested in a research or through cross-validation [5]. Thus, 
this study simulated different combinations of training 
algorithms and activation functions along with a range of 
values for momentum and learning rate in formulating the 
MLPNN models. 

After identifying the model architecture and formulating 
different models, the researchers conducted a supervised 
training process of each model by feeding the training data set 
into the MLPNN. Training is an essential step in order for the 
MLPNN models to do forecasting [10]. It is during this process 
that the MLPNN adapts itself to a stimulus and eventually 
produces a desired response. In conducting the supervised 
training, the training data set already underwent data 
preparation in which it was imputed to fill the missing values, 
correlation evaluated to remove variables that have no 
significant influence in rainfall, normalization to normalize 
dataset into (0, 1). When feeding the training data set into the 
MLPNN model, an ideal or desired output was introduced 
along with the input stimulus. Then the response is compared 
with the desired output and if response differs from the desired 
value, the network generates an error signal, which was used to 
calculate the adjustment that should be made to the network’s 
synaptic weights so that the actual output matches the target 
output possibly getting an error close to zero. In order to test 
the accuracy of the trained models, testing was conducted. 
Testing results was used to compute the MAE and RMSE for 
the error measurement in order to identify the optimal model.  
To properly compute the MAE and RMSE, the researchers 
group the data by week from Day 1-7 i.e. January 1 to 
January 7 as first week then increment the starting day of the 
next week by 1 each time. So that the second week starts at 
Day 2-8 i.e. January 2 to January 8, so on and so forth. This 
process continues until the whole result has been grouped by 
week. MAE and RMSE were then calculated per week. Once it 
was done, the average of all values obtained was calculated and 
recorded. These steps were repeated for all formulated models. 
The model that produced the smallest MAE and RMSE error 
will be chosen as the optimal MLPNN model of the 
performance analysis. 

III. RESULTS AND DISCUSSION 

A. Rainfall Data Preparation Results 

There were variables in the dataset that were found to be 
variables that have no bearing in the prediction of rainfall, as 
they merely indicate the occurrence of different weather 
phenomena. These variables were RA, SN, TG, and FG; these 
variables along with the columns they represent were removed 
from the dataset. The percentage of missing data in the dataset 
was then calculated in order to better understand the amount of 
information lost during the recording of the data. Table II 
shows the amount of missing data present per weather station 
and its percentage when compared to the total amount of data 
units. 
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TABLE II. MISSING DATA PER WEATHER STATION 

Station Missing data Total data %of missing data Station Missing data Total data %of missing data 

Butuan 442 39789 1.11% Malaybalay 2741 39789 6.89% 

Davao 216 39789 0.54% Surigao 974 39789 2.45% 

Dipolog 359 39789 0.90% Zamboanga 252 39789 0.63% 

Hinatuan 601 39789 1.51%     

The three stations that exhibit the least amount of missing 
data are Davao Airport, Zamboanga, and Dipolog with 0.54%, 
0.63%, and 0.90% respectively. These stations are the prime 
candidates to use as the base station due to the missing values 
being brought down to the minimum, ensuring that the 
accuracy of the dataset is true to the real world and not 
artificially filled in through imputation. Stations with the most 
missing data are Malaybalay with 6.89%, Surigao with 2.45%, 
and Hinatuan with 1.51%. Tables III and IV shows the state of 
the dataset during pre-imputation and post-imputation for a 
chosen weather station for the first 3 days of January 2006, 
respectively. This research requires the usage of an imputation 
technique due to succeeding methodologies requiring a 
complete set of data. Correlation formulas need as many 
existing data as possible in order to determine an accurate 
correlation measure. Removing the missing data while possible 
results in information loss; in some stations the information 
loss will be severe like Malaybalay. Furthermore, by not 
imputing the missing data the research loses out on predictive 
power when developing the MLPNN. This is an important 
factor to consider since without much data, the forecasting 
accuracy will be severely affected. 

For each dataset, the rainfall variable and another variable 
in the same set were tested using Pearson’s Product-Moment 
Correlation Test. After the Pearson’s Correlation test was 
performed on the dataset, the results were given in pairs of two, 
the first element being the value of the coefficient, and the 
second being the p-value of the coefficient. This is an 
important step because more data was needed to include in the 
MLPNN and other climate variables are the best indicator for 
correlation with rainfall. Furthermore, since rainfall is the 
target climate variable to be forecasted, other climate variables 
are bound to influence the amount of, frequency, and severity 
of rainfall. Thus, correlation between variables and rainfall was 
calculated. It is important to recall that the study will be using a 
95% confidence interval, so p-values less than or equal to 
0.005 will be considered. Among the seven sets of data, 
Zamboanga station has the most variables correlated with 
rainfall being 8 and the least amount of variables being 
correlated is Hinatuan with 5. Dipolog and Malaybalay stations 
have 6 correlated variables, while Davao Airport and Surigao 
has 7 correlated variables. Fig. 1 and 2 graphically shows the 
Pearson’s r and their p-values, respectively. 

Once the variables correlated with rainfall were 
determined, spatial autocorrelation was measured between 
stations in close proximity with each other using Local 
Moran’s I. The list of neighbors was acquired by using the k-

nearest neighbor algorithm. Each k indicates the number of 
neighbors attached to a weather station, so for example k=2 
means that there are two weather stations attached to every 
station in the study area and k=5 means that there are five 
weather stations attached to every station. This step was 
conducted to determine potential clusters in the study area for 
initial consideration. Without determining potential clusters, 
the autocorrelation measurement can no longer be called a 
Local Indicator of Spatial Autocorrelation which cannot be 
used for the scope of this study.  The results of the process are 
shown in Table V where each column marked by k represents 
the number of neighbors attached to a particular station. 
Davao’s closest neighbor would be Malaybalay at k=1, at k=2 
there will be two stations attached as neighbors: Hinatuan and 
Malaybalay. This process repeats for all seven weather 
stations. 

 

Fig. 1. Graph of All Collected Pearson’s r. 

 

Fig. 2. Graph of All Collected p-Values. 
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After the list of neighbors was acquired, a row standardized 
weight matrix was calculated from it. A row standardized 
weight matrix is a matrix whose values represent the numerical 
weight the algorithm gives to emphasize the importance of the 
distance between two neighboring points in space. The higher 
the number, the more weight is given to the distance between 
locations. This weight matrix was needed to calculate the local 
Moran index for every identified potential cluster under 
consideration. Table VI shows the results of that process at 
k=1, where k is the number of neighbors attached to a weather 
station. 

After the weights matrix was calculated, the required 
parameters of the local Moran formula were now met. The 

process was iterated for every value of k, increasing the 
number of neighbors. A different set of Moran indices and p-
values were calculated at every iteration. It was observed that 
due to extreme values of rainfall, there were cases when the 
Moran index returns a Not a Number (NaN). These situations 
were encountered when there exists a day where the rainfall 
values across all considered weather stations were 0. In this 
situation, the value was converted to a 0. Tables VII and VIII 
details a sample table of the local Moran indexes per day at 
k=1 as well as the p-values associated with them, respectively. 
These results are important because they determine whether or 
not the Moran indices throughout time are uniform and 
consistent, as well as determine if these Moran indices are 
significant at the accepted 95% confidence interval. 

TABLE III. PRE-IMPUTATION DATASET OF THE WEATHER STATION 

Y M D T TM Tm SLP H PP VV V VM 

2006 1 1 28.1 32.3 23.5 1008.8 87 0 15.9 3.5 10.7 

2006 1 2 27.6 28.8 25.7 1009.2 86 9.91 12.6 4.4 7.2 

2006 1 3 
         

TABLE IV. POST-IMPUTATION DATASET OF THE WEATHER STATION 

Y M D T TM Tm SLP H PP VV V VM 

2006 1 1 28 32 24 1009 87 0 16 3.5 11 

2006 1 2 28 29 26 1009 86 9.9 13 4.4 7.2 

2006 1 3 27 30 24 1010 87 11 14 3 9.9 

TABLE V. RESULT OF THE K-NEAREST NEIGHBOR ALGORITHM 

Station k=1 k=2 k=3 k=4 k=5 k=6 

Butuan Surigao Malaybalay Hinatuan Davao Dipolog Zamboanga 

Davao  Malaybalay Hinatuan Butuan Surigao Dipolog Zamboanga 

Dipolog Malaybalay Zamboanga Butuan Surigao Davao Hinatuan 

Hinatuan Butuan Malaybalay Davao Surigao Dipolog Zamboanga 

Malaybalay Butuan Davao Hinatuan Surigao Dipolog Zamboanga 

Surigao Butuan Hinatuan Malaybalay Dipolog Davao Zamboanga 

Zamboanga Dipolog Malaybalay Davao Butuan Surigao Hinatuan 

TABLE VI. RESULT OF THE SPATIAL WEIGHTS MATRIX AT K=1 

 
Butuan Davao Dipolog Hinatuan Malaybalay Surigao Zamboanga 

Butuan 0.000000 0.000000 0.000000 0.3333333 0.3333333 0.3333333 0.000000 

Davao 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 

Dipolog 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.500000 

Hinatuan 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Malaybalay 0.333333 0.333333 0.3333333 0.000000 0.000000 0.000000 0.000000 

Surigao 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Zamboanga 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

TABLE VII. SAMPLE TABLE OF COLLECTED LOCAL MORAN INDEXES AT K=1 OF A CHOSEN WEATHER STATION 

Station Day1 Day2 Day3 Day4 Day5 Day6 Day7 

Butuan −0.23741 0.11511024 −0.5840033 −0.4812947 0.34175831 −0.10306089 −0.0260774 

Davao 0.1613777 0.41525523 0.381054 0.5636944 −0.03057254 −0.41368012 0.59088377 

Dipolog 0.1359339 0.06561247 0.3668329 0.3555742 0.38138875 0.42227707 0.51195061 

Hinatuan −1.1727723 0.78774914 −0.9067904 −1.0368087 1.13056531 0.08142846 −0.04060727 

Malaybalay 0.1839798 0.08734511 0.3770831 0.4908609 −0.01572634 0.09587238 0.37478806 

Surigao 0.2302712 −0.22120921 −1.2262734 −0.8615195 −0.12905408 −0.63906866 −0.06406317 

Zamboanga 0.1115774 0.06323564 0.3645246 0.2567042 0.80314769 0.39171443 0.51685907 
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TABLE VIII. SAMPLE TABLE OF COLLECTED P VALUES AT K=1 OF A CHOSEN WEATHER STATION 

Station Day1 Day2 Day3 Day4 Day5 Day6 Day7 

Malaybalay 0.1815233 0.26302077 0.1015762 0.06259734 0.35697344 0.2583876 0.1023129 

Surigao 0.2284913 0.53194755 0.8828206 0.77941166 0.48061866 0.7447528 0.4540085 

Dipolog 0.2394622 0.31630871 0.1784729 0.18571222 0.14882041 0.1202729 0.1200828 

Davao 0.2693683 0.19619077 0.2693726 0.20909464 0.43020454 0.634613 0.1968113 

Zamboanga 0.3010429 0.3677157 0.275534 0.31943323 0.10507711 0.2183319 0.2207365 

Butuan 0.5728002 0.24091351 0.8356553 0.76843441 0.10846802 0.4375946 0.3709408 

Hinatuan 0.9703086 0.08033877 0.7969135 0.83260397 0.04684826 0.3648206 0.4435583 

Each of the rows in the table correspond to each weather 
station, each of the columns represent the days in the time 
frame, and each data cell the Moran index associated with the 
day and station. As can be observed, some values do not 
conform to the typical range for the Local Moran’s Index 
formula, which is −1 to +1. A researcher has already 
established that the Local Moran Index formula does not 
actually have a set range of (−1, +1) [20]. Moreover, the exact 
range of indices actually conforms to the smallest and largest 
eigenvalue of among n−1 eigenvalues of the weights matrix W. 
So this means that depending on the spatial weights matrix 
generated, the values for the indices will differ and might not 
conform to the usual standard range. The spatial weights 
matrix is more effective when the locations in question are 
close to each other, and thus have more weight established 
between them. Furthermore, the results differ at every day with 
values indicating a positive relationship other a negative 
relationship indicating a sporadic pattern. 

As shown, the collected p-values for each Local Moran 
index of each weather station across all the days of the time 
frame, 2006-2017. Each of the rows in the table correspond to 
each weather station, each of the columns represent the days in 
the time frame and each data cell the p-value of the Moran 
index that correspond to the day and weather station. The p-
values are all above 0.005, the maximum requirement for a 
value to be considered significant at a 95% confidence interval. 
This indicates that the calculated Moran indices are not 
considered to be significant for study which creates a problem. 
From the generated values, a line graph was drawn up to show 
the variation of each Moran Index value per day. The same 
process can also be generated for the p-values per day. The line 
graphs are for the Moran Indexes and p-values taken at k=1 for 
a chosen weather station across the entire time span ranging 
from 2006 – 2017, respectively. Fig. 3 shows that for all the 
days in the duration 2006 – 2017, the calculated Moran indices 
for each day come out to an interval between 1 and −1.5. 
Although it does not conform to the range, it still indicates 
whether or not particular locations have correspondence. 
However, Fig. 4 further shows that the Moran indices do not 
exhibit uniform and consistent values through time. This means 
that these Moran indices are highly variable and differ at points 
in time, making these values sporadic and difficult to predict. 
As shown, none of the Moran indices calculated are within a 
95% confidence interval. This means that none of these indices 
are significant and cannot be used as indicators for spatial 
autocorrelation. 

Upon further calculation of Local Moran indexes and their 
p-values with increasing k, the number of neighbors attached, it 
was found out that any and all settings result to the same 
pattern. The pattern being indices not conforming to the 
standard range, and the p-values being greater than the 95% 
confidence interval will allow. This means that according to 
the formula, none of the locations in the geographic space have 
correlation with regards to their rainfall values, regardless of 
the number of neighbors attached. This may be due to factors 
that cannot be controlled, such as the topography between each 
station or the distance between locations. The shorter the 
distance the greater would be the correspondence, however as 
shown, it will seem that the distance between stations are too 
much to determine an accurate measure of relationship. 
Furthermore, the topography of Mindanao, the Philippines 
consists of flat plains and mountain ranges, and other types of 
topography which directly influences the behavior of rain 
clouds or storms as they approach each station. 

 

Fig. 3. Local Moran Indexes at k=1 for a Chosen Weather Station. 

 

Fig. 4. Collected P-Values at K=1 for a Chosen Weather Stations    
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With this, since none of the stations exhibit rainfall 
correlation, an alternate course of action was taken. Instead of 
using correlation and neighboring stations’ rainfall values as an 
addition for feeding data into the MLPNN, a single station’s 
data was used to feed data to the MLPNN. The selection of this 
single station depended primarily on the percentage of missing 
data on its dataset reducing the need to impute the remaining 
missing data and the number of local variables correlated with 
the location’s rainfall attribute. Ultimately, data set from the 
Davao station with its 0.54% missing data percentage and 
having 7 climate variables correlated with rainfall was used in 
the alternate action. In total, the Davao dataset will bring with 
it 11 variables to be used as data for the MLPNN: 8 climate 
variables including the rainfall variable and 3 numerical 
variables, corresponding to the day of the month, month, and 
year, respectively. As shown in Table IX, the Training Set 
starts at the beginning of the time series which is the 1

st
 of 

January 2006 and ends on the 31
st
 of December 2016. The 

Testing Set starts right after the end of the Training Set which 
is the 1

st
 of January 2017 and ends in the 31

st
 of December 

2017. 

B. MLPNN Model Evaluation Results 

The architecture defines the structure of the MLPNN which 
includes the number of inputs in the input layer, number of 
neurons in the hidden layer and the number of outputs in the 
output layer. Shown in Fig. 5 are the input layer, hidden layer 
and output layer of the MLPNN. With respect to the number of 
input neurons, results of the data preparation process led the 
researchers in identifying the final eleven variables to be used 
as inputs in the input layer namely (1) average temperature, (2) 
minimum temperature, (3) maximum temperature, (4) average 
wind speed, (5) maximum wind speed, (6) relative humidity, 
(7) total rainfall, (8) visibility, (9) day, (10) month, and (11) 
year. These parameters resulted in a high p-value indicating its 
correlation with respect to rainfall. This implies that these 
parameters influence the formation of rain at some point, thus 
its inclusion as inputs. A study found out that the three most 
significant data inputs in rainfall prediction aside from daily 
rainfall or precipitation are relative humidity, air pressure, and 
average temperature [14]. Air pressure on the other hand was 
not included as the final input after getting a p-value greater 
than 0.005 or not within a 95% confidence interval on the 
correlation evaluation of each variable with respect to rainfall 
as shown in Table X. This implies that for the Davao dataset, 
air pressure does not hold weight in rainfall forecasting. The 
logical explanation would be due to Davao’s topography and 
geography that has been captured by the MLPNN during the 
training phase using years of data about Davao’s air pressure 
readings.  

TABLE IX. DATA PARTITIONING 

Study 
Set 

Month/s or Year/s 
Used 

Number of 
months/years used 

Amount of data 
records 

Training 
Set 

2006-2016 12 years 4019 records 

Testing 
Set 

2017 1 year 365 records 

 

Fig. 5. The Architecture of the Multi-Layer Perceptron Neural Network. 

In a study which used present hourly rainfall data and 
meteorological parameters of relative humidity, air pressure, 
temperature, visibility, and rainfall from surrounding rain 
gauge stations as input variables, the MLPNN was able to 
promisingly predict rainfall 1 to 6 hours ahead at 75 rain gauge 
stations as forecast point [4]. For the number of neurons in the 
hidden layer, the result of the Stathakis formula are shown in 
Table XI and was used as the values to be tested as the number 
of neurons in the hidden layer [15]. The number of hidden 
neurons is the maximum number of neurons that can be used 
with respect to the arbitrary scaling factor. Thus, if the scaling 
factor is 10, the number of hidden neurons the researchers can 
use are between 1-22 starting with the maximum value 
gradually decreasing as the researcher tests each value. 

Another important observation the researchers had was the 
behavior of the models with respect to the number of hidden 
neurons. It was observed that Hyperbolic Tangent activation 
function does not converge to the maximum error unless the 
number of hidden neuron is less than 50. Anything above that 
number simply does not converge. However, Sigmoid exhibits 
the opposite since it converges to maximum error when the 
number of hidden neurons is greater than 50. Considering all 
these observations and running the MLPNN model multiple 
times with those range of values, 50 neurons for the Hyperbolic 
Tangent activation function and 100 neurons for the Sigmoid 
function were identified as the optimum number of hidden 
neurons to use for the respective activation functions. 
According to a study on hidden neurons in MLPNN, as the 
number of hidden nodes increases, the local minima point’s 
also increases [21]. Increasing the number of hidden neurons 
enables the MLPNN to reach deeper local minima but also 
increases the possibility of getting stuck as the increase in the 
number of local minima is directly proportional with the 
increase in hidden nodes. Another study also found out that the 
Sigmoid’s function values lies in the range from 0 to 1 which 
means that at some point in the graph, the gradient is 
approaching to zero and the network tends to stop learning on 
that point [22]. This can be addressed by increasing the number 
of neurons in the hidden layer in order to scale the Sigmoid 
Activation function. Thus, those behaviors observed might be 
due to these restrictions and limitations. As for the number of 
neurons in the output layer, the main objective of the study is 
to forecast week-ahead rainfall. This means that the MLPNN 
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model will be running on machine mode giving the neural 
network multiple output nodes, 7 output nodes to be exact, 
which represents the 7 days of the week from Monday to 
Sunday in no particular sequence to be predicted. The training 
algorithm is the parameter that tunes the network so that its 
outputs are close to the desired values [4, 10, 19]. Among the 
function approximation algorithms, most of the studies in 
rainfall forecasting use Backpropagation, Resilient Propagation 
and Quick Propagation as their training algorithms [1, 4, 7, 8, 
18]. After evaluating more researches and looking at related 
studies, the researchers were able to identify two additional 
function approximation algorithms aside from the three 
mentioned that were suited for rainfall forecasting namely: 
Scaled Conjugate Gradient and Levenberg-Marquardt [7, 12, 
19]. A total of five training algorithms, namely, 
Backpropagation, Resilient Propagation, Quick propagation, 
Scaled Conjugate Gradient, and Levenberg-Marquardt were 
used. 

As for the learning rate, the researcher used the default 
standard value of 0.001-0.8 suggested by studies [5, 6, 18, 19]. 

With the 0.8 values, researchers were able to reach acceptable 
percent errors on their respective models which gives 
reasonable bases for using the same standard learning rate 
value. Moreover, higher learning rates speed the convergence 
process, but can result in overshooting or non-convergence. 
Consequently, lower learning rates product more reliable 
results at the expense of increased training time. For the 
momentum parameter, it is important to take note not to set the 
parameter too high as it can create a risk of overshooting the 
minimum values that can cause the system to become unstable 
but not too low as well as it cannot reliably avoid local minima 
and slow the training of the system. The optimal value of 
momentum can be achieved through trial and error between 0.1 
and 0.9 as these values had been tested to work best with 
Backpropagation, Resilient Propagation, and Quick 
propagation approximation functions [1, 8, 18]. After these 
parameters had been identified, different models were 
formulated and used the same learning rate of 0.001 and 
momentum of 0.8 with training and testing results shown in 
Table XII. 

TABLE X. EVALUATION RESULT FOR DAVAO VARIABLES 

Davao  Variables Correlation Evaluation p-Value Davao Variables Correlation Evaluation p-Value 

Ave Temp -0.1512712 2.20E-16 Rel. Humidity 0.1703603 2.20E-16 

Max Temp -0.1082898 5.22E-13 Visibility -0.09161644 1.04E-09 

Min Temp -0.09997687 2.70E-11 Ave. Wind Speed -0.08984917 2.17E-09 

Air Pressure -0.00881795 0.5578 Max. Wind Speed -0.0460988 0.00217 

TABLE XI. RESULT OF STATHAKIS’S FORMULA 

Arbitrary Scaling Factor Hidden Neurons Arbitrary Scaling Factor Hidden Neurons Arbitrary Scaling Factor Hidden Neurons 

2 112 5 45 8 28 

3 74 6 37 9 25 

4 56 7 32 10 22 

TABLE XII. MLPNN MODEL EVALUATION TRAINING RESULTS 

Models Training Algorithm Activation Function Max Error Reached 

Model 1 Back Propagation 

Sigmoid 

0.0011 

Model 2 Resilient Propagation 0.00129 

Model 3 Quick Propagation 0.00143 

Model 4 Scaled Conjugate Gradient 0.00157 

Model 5 Levenberg-Marquardt Did not reach max error 

Model 6 Back Propagation 

Hyperbolic Tangent 

0.00145 

Model 7 Resilient Propagation 0.00136 

Model 8 Quick Propagation 0.00141 

Model 9 Scaled Conjugate Gradient 0.00138 

Model 10 Levenberg-Marquardt Did not reach max error 

Model 11 Back Propagation 

Gaussian 

Did not reach max error 

Model 12 Resilient Propagation Did not reach max error 

Model 13 Quick Propagation Did not reach max error 

Model 14 Scaled Conjugate Gradient Did not reach max error 

Model 15 Levenberg-Marquardt Did not reach max error 

Model 16 Back Propagation 

Sin 

Did not reach max error 

Model 17 Resilient Propagation Did not reach max error 

Model 18 Quick Propagation Did not reach max error 

Model 19 Scaled Conjugate Gradient Did not reach max error 

Model 20 Levenberg-Marquardt Did not reach max error 
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All MLPNN models were run using the same identified 
parameters. With respect to the number of neurons in the 
hidden layer, since the researcher found an important 
observation about the behavior of some activation function 
with respect to the number of neurons, models were 
categorized into two: (1) Models running with 100 hidden 
neurons (2) Models running with 50 hidden neurons. That 
means each model was run twice for 50 and 100 hidden 
neurons then identified which models do converge and reach 
max error. Results showed that most of Gaussian and Sin 
models did not reach the maximum error so these models will 
not be included in the testing phase while most of Sigmoid and 
Hyperbolic Tangent models except Models 5 & 10 with 
Levenberg-Marquardt training algorithm reached a maximum 
error. A study which had almost similar setup trained an 
MLPNN with Sigmoid activation function using 50 hidden 
neurons and found out that although 50 hidden neurons was 
faster to learn, the model produces a smooth curve with more 
error, thus increasing the number of hidden neurons to 300 
solved that problem [7]. During the testing phase, models that 
reached maximum error were used. These trained MLPNN 
models were loaded back and the testing dataset were fed. As 
shown in Table XIII, MAE and RMSE were then calculated in 
order to assess the performance of the MLPNN models. 

For models running in 100 hidden neurons, Model 2 with 
Sigmoid activation function and Resilient Propagation training 
algorithm got the lowest MAE while Model 4 with Sigmoid 
activation function and Scaled Conjugate Gradient training 
algorithm got the lowest RMSE. For those running in 50 
hidden neurons, Model 9 with Hyperbolic Tangent activation 
function and SCG training algorithm has the lowest MAE and 
RMSE. A graphical representation of MAE and RMSE is 
shown in the Fig. 6. 

In order to determine the optimum performing model for 
the 100 hidden neurons, the researchers decided to use RMSE 
as the deciding factor in determining the optimal MLPNN 
model since there is only a 0.000664 difference between model 
2 and 4. Thus, the best optimal MLPNN model for the 100 
hidden neurons was Model 4 and for the 50 hidden neurons 
was Model 9. It can be noticed that both of these models used 
SCG as their training algorithm. 

TABLE XIII. MAE AND RMSE DURING TESTING PHASE  

Models MAE RMSE Remarks 

Model 1 0.025051015 0.041653867 

100 hidden neurons 
Model 2 0.020899512 0.034208070 

Model 3 0.023180201 0.037797543 

Model 4 0.021564216 0.031537630 

Model 6 0.022685495 0.031717446 

50 hidden neurons 
Model 7 0.022258201 0.031266462 

Model 8 0.028053257 0.039392566 

Model 9 0.021483081 0.030660975 

 

Fig. 6. MAE and RMSE During the Testing Phase. 

IV. CONCLUSION AND RECOMMENDATIONS 

Performance analysis of MLPNN models was conducted in 
this study among the weather station datasets in order to 
identify which MLPNN models can be optimally implemented 
in week-ahead rainfall forecasting. Techniques on weather data 
preparation, MLPNN model design along with its training and 
testing was conducted in this study. During rainfall data 
preparation, imputation process was a crucial part in addressing 
incorrect and inaccurate values in the datasets as it can greatly 
affect the outcome of the data being predicted. Random Forest 
Imputation technique was able to fill in the missing 5% rainfall 
values on the dataset. Pearson’s Correlation was also able to 
correlate 95% of the total inputs identified except for air 
pressure. However, the Moran’s Spatial Autocorrelation 
showed that geographical location of the stations did not have a 
direct correlation between stations with respect to rainfall 
prediction. During MLPNN model design creation, it was 
found out that the number of neurons for the hidden layer plays 
an important role in the prediction outcome as some models 
behaved differently with respect to the number of neurons. 
Other parameters such as activation function, training 
algorithm, learning rate and momentum was substantial to 
minimal effects on the outcome of the prediction. With this, an 
MLPNN model with Sigmoid activation function used 100 
neurons in the hidden layer while an MLPNN model with 
Hyperbolic Tangent activation function used 50 hidden 
neurons. The MLPNN models that had the lowest MAE and 
RMSE were the ones who used Sigmoid and Hyperbolic 
Tangent as the activation function and Scaled Conjugate 
Gradient as the training algorithm with MAE of 0.021564 and 
0.021483, RMSE of 0.031537 and 0.030660, respectively. 

The researchers would like to recommend further studies 
on the aspect of hidden neuron selection and the behaviors of 
activation functions and training algorithm with respect to 
these hidden neurons. The need to explore different methods in 
selecting MLPNN parameters is also highly recommended as 
this will help establish a reliable MLPNN model performance 
analysis on rainfall forecasting. The researchers also suggest 
that further studies would be conducted on proper ways of 
performing training and testing that are suited and optimized 
for MLPNN architecture in weather forecasting as this will also 
help in improving the accuracy of the models which are subject 
to performance analysis. Overall, the results of this study 
showed that MLPNN models have the potential to be a viable 
week-ahead rainfall forecasting technique given that proper 
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data preparation, model architecture selection, model 
formulation and model validation are performed. 
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