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Abstract—One of the issues with spinlock protocols is 

excessive spinning which results in a waste of CPU cycles. Some 

protocols use the hybrid, spin-then-block approach to avoid this 

problem. In this case, the contending thread may prefer 

relinquishing the CPU instead of spinning, and resumes 

execution once notified. This paper presents a machine learning 

framework for intelligent sleeping and spinning as an alternative 

to the spin-then-block strategy. This framework can be used to 

address one of the challenges faced by this strategy: the delay in 

the critical path. The work suggests a reinforcement learning 

based approach for queue-based locks that aims at having 

threads learn to spin or sleep. The challenges of the suggested 

technique and future work are also discussed. 
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I. INTRODUCTION 

Spinlocks have been widely used in multicore systems as a 
mechanism to guarantee concurrent access of threads to a 
critical section of code. A thread will poll (spin on) a variable 
in a loop to grab the lock, to enter such a shared piece of code. 
Once the lock is free, the thread will flip it and can enter the 
critical section. After it has finished executing the critical 
region, it flips the flag back to its original value so that other 
threads can acquire the lock as well. 

Researchers have developed different types of spinlock 
protocols. Test-and-test-and-set with exponential backoff 
(TTSE) is the simplest among them [1]. Here, all threads spin 
on a globally shared lock flag by issuing a read operation on it 
until the lock is found free. At this point, a thread issues the 
test-and-set atomic instruction to acquire the lock. A random 
delay is inserted between consecutive spins, to reduce the 
simultaneous thread attack upon lock release. TTSE protocol 
is recommended for low and medium contention levels, as it 
scales poorly when contention for the lock is high. 

Ticket locks [2] maintain global counters to provide 
concurrent access of threads to a critical section. The lock is 
composed of two variables: a ticket and a grant variable.  
Whenever a thread wants to acquire the lock, it atomically 
increments grant variable value and spins unless the two are 
equal. Once these variables are equal, the thread can enter the 
critical section. When the thread exits the critical section, it 
advances the value of the grant variable. Ticket locks 

guarantee First-In-First-Out (FIFO) order but suffer from the 
same issue of ―thundering herd‖ that TTSE protocol does. 

Queue-based locks [3, 4, 5] spread contention on the lock 
by maintaining a list of linked nodes created by contending 
threads. Threads do not spin on a single lock variable, but 
each thread spins on a flag of its successor [3] or the flag of 
its own [4], thereby spreading contention among different 
memory locations in the system. Once the lock holder exits 
critical section, it updates either its flag (when predecessor 
spins on it) or the predecessor’s flag (when the predecessor 
spins on its flag). Though vulnerable to preemption [6], 
queue-based locks are an elegant solution for high contention, 
and they guarantee FIFO order. 

Spinlocks are an attractive synchronization solution when 
the critical section is short. However, when contention for the 
lock is high, spinning can be inefficient either, since 
concurrent threads may cause unnecessary CPU utilization. To 
avoid burning CPU cycles, the spin-then-block approach is 
used: a thread does not spin but relinquishes the CPU, and 
upon lock release, the holder wakes up the waiting thread 
which in turn grabs the lock. From the other hand, this adds up 
to the critical path of the application because every unlock 
phase requires waking up the waiting thread. A better option 
would be not to block and sleep until notified but to go into a 
timed sleep so that to wake up just in time – right before the 
lock release. Thus, this would achieve two important goals at 
the same time: first, avoid unnecessary CPU burn and second, 
remove lock handoff delay. We call it spin-then-sleep strategy. 

The questions this work addresses are the following: Once 
a node created by a contending thread joins a queue, should 
the thread spin or should it sleep? Also, if it decides to take a 
sleep, then how much it should sleep? For the first question, 
the thread has to estimate which either of the two ways will 
utilize fewer CPU cycles. As to the second question, the 
thread has to be able to predict when the lock will be released. 

Key idea: The suggestion is to treat the thread as an agent 
whose goal is to automatically learn the cheapest and fastest 
way to acquire lock via interaction with the system. 

The rest of this paper is structured as follows:  Section 2 
reviews related work. A short background is provided in 
Section 3. The suggested approach is presented in Section 4. 
Finally, the challenges, limitations and future work are 
discussed in Section 5. 
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II. RELATED WORK 

This paper presents an approach that can serve as an 
alternative to the spin-then-block strategy. The key feature is 
to feed adaptivity into spinning and sleeping. So, the closest 
works to the one presented here are adaptive spinlocks [7, 8, 
9], that have been of particular interest to researchers as well. 
These works aim at making spinlocks self-aware. That is the 
algorithm monitors and tunes itself accordingly. Thus, in [7] a 
reactive algorithm is developed which utilizes three protocols: 
TTSE, combining tree [10] and MCS lock [4] which is a 
queue-based lock. The algorithm switches between protocols 
depending on the contention level on the lock. For example, 
when the TTSE protocol fails to get the lock after some 
number of times, it switches to the MCS lock. In the opposite 
direction, the algorithm makes a switch when the queue is 
found to be empty for a number of successful fetch-and-op 
requests. 

Another work [8] develops a backoff protocol that does 
not require experimentally tuned parameters. Here, the finding 
is that backoff delay depends strongly on the delay outside of 
critical section (DoCS) which is defined as the time between 
when the lock holder releases the lock and the first attempt to 
reacquire the lock. A heuristic,      , is found that depends 
on DoCS and which has the following form: 

 asel  
a DoCS  

DoCS
                (1) 

The DoCS variable is computed via overhead that is 
defined as follows: 

overhead  
latency  of remote memory reference

latency of L  cache reference
            (2) 

The algorithm needs only this variable. Function       is 
computed once for each lock, and the algorithm adjusts 
backoff delay from this value depending on the load level that 
is divided into two phases: load rising phase and load 
dropping. Whenever a spinning thread observes a rise or drop 
in the load, it adjusts its delay derived from the variable      . 

Authors of [9] have developed a spinlock library 
Smartlocks that uses reinforcement learning method of 
machine learning to achieve a user-defined goal which can be 
related to performance, power, problem-specific criteria or 
some combination of these. The application must be 
connected to a specific framework that measures the 
performance characteristics of it. Performance related data that 
arrive from this interface serve as a reward signal to the 
machine learning engine of the Smartlocks that run in separate 
helper threads. The library currently supports TTSE, Ticket 
Locks, MCS and a few other and maintains three main 
components: The Protocol Selector, the Wait Strategy 
Selector, and the Lock Acquisition Scheduler. Protocol 
Selector is responsible for switching between protocols when 
a predefined threshold of contention level is reached. The 
Wait Strategy Selector defines what action threads must take 
when they fail to get the lock and is not implemented since 
each protocol has a fixed waiting strategy. The function of the 
Lock Acquisition Scheduler component is to generate policies 
for lock acquisition and to switch between them. The policy is 

not updated at every lock acquisition request but every few 
attempts which are not related to application lock acquisitions. 

III. BACKGROUND 

This section gives brief information on the spin-then-block 
strategy. We also motivate the need for intelligent learning of 
sleep duration, as well as when to spin and when to sleep and 
provide a short background on reinforcement learning too. 

A. Anatomy of Spin-Then-Block Strategy 

Once a thread links its node to a queue of nodes created by 
contending threads for acquiring the lock, it has two options: 
spin or release CPU and resume when notified. If the 
contention for the lock is low, the thread would prefer 
spinning, since it will provide faster lock acquisition and avoid 
scheduler interaction. In case the contention for the lock is 
high, the thread may prefer giving up the CPU by suspending 
itself which involves a context switch. The thread, then, will 
wait until the lock holder explicitly wakes it up upon lock 
release. The notification will be followed by another context 
switch, to restore the state of the thread to what it was before 
the suspension. This behavior is known as a spin-then-block 
method. Solaris mutex [11] is an example of it. This mutex 
spins at low and medium contention and switches to blocking 
when contention rises. Spin-then-block strategy suffers from 
one major drawback: notification and subsequent wakeup of 
the waiting thread lengthen the critical path. If the thread 
could approximate timestamp of lock release, then it could 
have gone into timed sleep so that to wake up right before the 
lock is freed which would eliminate lock handoff delay, 
thereby reducing the length of the critical path. The third 
option is to spin for a while and then park itself out which is 
known as spin-then-park strategy. In this work, we don’t 
consider this. 

B. Motivation 

An important factor here is duration of the sleep. Assume, 
a thread    which holds the lock is executing the critical 
section. Suppose, it has acquired the lock at time   

  and will 
release it at time   . A thread     adds a node the queue and 
sleeps such that it wakes up at       . Another thread   , 
then, enters the system, links its node to the queue and sleeps 
as well such that it will wake up at      . Once thread    
wakes up at time    , it will spin from    to   . If, in 
comparison to      

  the difference       is huge, then the 
sleep duration was too small which will cause unnecessary 
spinning. Thread    could have slept instead, should it predict 
lock release time more accurately. 

Additionally, thread    will not be able to grab the lock 
once it is free, since by the time lock is released it will not 
have its sleep finished (if a thread that has gone into a timed 
sleep, there is no way to wake it up). Thread    should have 
slept for shorter amount of time. In other cases, a thread 
should not sleep at all if sleeping for the smallest amount of 
time always yields sleeping more than necessary, no matter 
how many threads contend for the lock and how loaded the 
system is. İn this case pure spinning should the preferred 
choice. Fig. 1 illustrates these scenarios. Hence, it is crucial to 
be able to decide whether sleeping at all is a good choice or 
not and if it is then to sleep for such a period of time that will 
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minimize spinning by maximizing sleep duration without 
sleeping unnecessarily (still sleeping even though the lock is 
free). 

C. Reinforcement Learning Paradigm 

Reinforcement Learning (RL) is a class of supervised 
learning algorithms in machine learning [12]. The goal of RL 
is to have an agent learn how to behave in an uncertain 
environment by interacting with it. A scalar reward signal 
guides the learning process and the agent has to learn to 
maximize it. 

RL is formalized using the Markov Decision Process 
(MDP). MDP is defined as a tuple           , where   
is a set of states,   is a set of actions,   is a transition 
probability function, and   is a scalar reward. A state is 
collection of characteristics that represent every state that the 
agent can be in.  The transition function a is probability 
distribution over the state space for each state     and action 
   . Reward function is an expected reward for performing 
an action in a state. Transition function together with reward 
function defines the model of the environment. 

RL is a model-free technique, i.e. it assumes that the agent 
does not possess any information about the environment. 
Thus, the agent must interact with the environment to collect 
the reward. At each step, the agent senses the current state, 
chooses an action and transitions to the next state followed by 
receiving a reward for choosing this action at this state. The 
goal of the agent is to learn an optimal policy that maps states 
to actions and maximizes its cumulative reward over the long-
term. The agent tries to learn the optimal policy without 
learning transition and reward functions. Fig. 2(a) depicts 
agent-environment interaction. 

lock          lock    

acquired by           released by     

 

 
            
 
                              

  
                           
                
     

            t2                 t1            t3    time   

                           spin           sleep 
                     

         

            lock release        

  
                                    
                

                  

          t1                           t2                      time   

       spin           sleep       context switch 

Fig. 1. (a). Sleeping and Spinning Redundantly; Thread    could have 

Continued Sleeping from t2 to t1 Rather than Spin; Thread    should not have 
Slept from t1 to t3; (b). Sleeping for the Shortest Amount of Time Always 

Yields Unnecessary Sleeping Since the Lock is Passed by. 

 

Fig. 2. A Reinforcement Learning Agent Interacting with the Environment; 

(b) Thread as an RL-Agent. 

Fig. 2(b) shows how spin-then-sleep strategy maps to the 
RL framework. The thread, which represents the agent, takes 
actions, such as spin or sleep. As a result, the thread receives a 
reward signal. The reward can be designed in different ways. 
For example, if any sleep that does not yield unnecessary 
waiting is enough, then the reward can take only three values: 
0 for pure spinning, 1 for a sleep that does not result in 
unnecessary sleeping and -1, otherwise. The thread then 
transitions to a different state where it takes the same or 
different actions. In this way, thread learns the best action at 
each state. The next section discusses the state, and the reward 
structure is in more detail. 

IV. RL-BASED SPIN-THEN-SLEEP STRATEGY 

This section explains how the spin-then-sleep strategy can 
be formulated as an RL problem. It describes what serves as a 
reward, action, and state. 

Reward. The reward has to lead to the goal. A thread that 
linked its node to a queue has two choices to proceed: spin 
only or sleep followed by spinning. The latter should be 
preferred if it does not yield redundant sleeping because it will 
be cheaper. Otherwise, pure spinning is preferred. From the 
other hand, to eliminate spinning completely, the thread may 
sleep for a sufficiently large period of time. In such a case, 
upon wakeup, the thread will grab the lock right away because 
it is free. However, the lock could have been freed long ago. 
The length of the critical path will be delayed dramatically 
then. Thus, upon acquiring the lock, the thread must know 
whether its sleep resulted in unnecessary sleeping or not. The 
thread can find it out by requiring at least one spin to fail and 
the subsequent spin to succeed. At least one failed spin will 
guarantee that by the time the thread requests the lock, the 
holder has not yet released it yet. So, the reward is defined as 
follows: given that a sleep followed by spinning does not 
result in redundant sleeping, the more a thread sleeps, the 
more reward it receives. On the contrary, if a sleep for some 
duration followed by spinning does result in redundant 
sleeping, then it receives a negative reward. Pure spinning gets 
a reward of 0. Fig. 3 depicts these cases. 

 

ENVIRONMENT 

Reward r(t) 
Agent 

State s(t) 
Action a(t+1) 

SYSTEM 

Sleep duration (t) 
Thread 

State Attributes (t) 
Spin/Sleep(t+1) 
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           Reward (0) 

 
           Reward (t) 

    t 
                       Reward (-t) 

               t 

 
           t1   time 

                                      spin           sleep 
               

Fig. 3. Rewards for Sleeping and Spinning. Lock is Released at Time t1. 

acquire_lock (duration, …) { 

if (duration = 0) then spin; 
 else {sleep(duration); spin;} 

                                     } 

Fig. 4. Pseudo Code for Action Acquire_Lock. 

Action. Spinlock protocols usually maintain three 
methods: a method for lock acquisition, lock release, and 
execution of critical section. Typically, it is the method for 
lock acquisition, say spin(), where thread continuously spins 
until it gets the lock. This method of the protocol and routine 
for sleeping (which includes sleep and wakeup), say sleep(), 
can be united into a single action of the thread as an agent, say 
acquire_lock(). That is, the action acquire_lock acts as a 
function of a single parameter – sleep duration. If this duration 
is zero, then no sleeping is involved, and the thread only spins. 
Otherwise, it sleeps for the specified duration and spins the 
rest of the time. Fig. 4 shows a pseudo code for this. 
Additionally, the thread-agent will have other two actions (for 
execution of critical section and lock release) that are no 
different from the two methods of the thread. Action 
acquire_lock will always be followed by the action for 
executing critical section which in turn is followed by the 
action for releasing the lock. 

State. It is assumed that the system is running on Linux. In 
order to derive state attributes, one needs to determine what 
affects the time it takes the thread to resume when it intends to 
take a sleep. Whenever a thread is about to do so, the 
scheduler is invoked. Scheduler activity results in scheduling 
latency and dispatch latency. The former is the time it takes to 
make scheduling decisions, i.e. time to insert a thread into 
scheduler runqueue (queue of threads that are ready to run on 
CPU but cannot because CPU is busy) or pick up one from the 
runqueue to run on CPU. Starting from the 2.6.23 kernel, 
Linux implements the Completely Fair Scheduler (CFS) [13]. 
CFS spends         time for insert and delete operations, 
where N is the number of threads in the runqueue, and 
constant time for a search operation. It achieves that by 
making use of the red-black tree to hold tasks sorted by their 
weights and always picking up the leftmost node of the tree to 
run on the CPU. Thus, scheduler latency which is essentially a 
function of number threads in the runqueue (perhaps of 
priority classes as well), contributes to time it takes the thread 
to be rescheduled on CPU. 

Dispatch latency is the time it takes to complete a context 
switch which is the time to store the state of the thread going 
into sleep and restore the state of another thread to run. After 
the first context switch is completed, the current thread now 

sleeps. Sleep duration should take into consideration the 
number of contending threads for the lock. The more threads 
contend for the lock, the more a thread should sleep to 
eliminate spinning as much as possible. Once sleep duration is 
over, there is no guarantee that it will get access to the CPU 
immediately (in an overloaded system). It depends on how 
loaded (busy) the system is. The load of the system can be 
expressed as a function of scheduler runqueue and number of 
threads executing on CPU, for example, as a ratio of average 
number of threads running on CPU to the average number of 
threads in the scheduler runqueue per unit of time. 

Therefore, the number of threads in the scheduler 
runqueue, number of threads currently running on CPU and 
number of threads contending for the lock can serve as 
candidates for state attributes. At this point, the spin-then-
sleep strategy can be regarded as an RL problem. 

V. DISCUSSIONS AND CONCLUSION 

Modeling of the spin-then-sleep strategy as a 
reinforcement learning problem promises competitive results. 
However, certain challenges and limitations are encountered 
as well. 

State space, as well as action space, is continuous. 
Therefore, the learning process may be inefficient both from 
performance and storage point of view. Besides, since the 
state space is large, the thread may never have a chance to 
visit the same state more than once. Hence, the thread will not 
be able to try actions at that particular state. In such a case, a 
generalization technique such as CMAC [14] can be utilized. 
One can use it to generalize the learned experience from 
previous states to new states. 

Another challenge is related to the exploration-exploitation 
tradeoff. From one side, threads need to try different actions to 
see their results (rewards), and from the other hand, threads 
are not willing to spend much time on learning, since they 
have to progress the application for which performance is 
crucial. To balance the exploration-exploitation tradeoff, one 
can use soft-max policy. To improve it further, one can trigger 
computations (reward calculation, policy update) not after 
every action of every thread but every few actions, like in [9] 
or every few time units. 

Reward evaluation is easy to do, and policy update can be 
embedded into threads lock release phase which, intuitively, 
should require much fewer CPU cycles than lock handoff. 
Another option is to have additional threads to maintain it. 
However, if each lock would maintain a separate policy, then 
space requirements can be dramatic. Locks can be clustered on 
some property. An appropriate candidate for it can be the 
length of critical section protected by the lock. Locks 
clustered to a particular group will maintain a separate policy. 
It, thus, will reduce the number of total policies, even though 
additional contention points may arise as multiple threads may 
attempt to update the same policy at the same time. Future 
experiments will reveal more details on this. 

Though the presented approach is generally quite 
promising, there exist situations in which case it cannot be 
applicable. First, it assumes that context switch time is 
constant which is not always the case. The direct cost of 
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context switch that includes pipeline flush and Translation 
Lookaside Buffer (TLB) reload will be different for different 
threads. Moreover, context switch also has associated indirect 
cost. When a thread wakes up and resumes execution, it may 
not find the data it needs in the CPU cache, and thus a cache 
miss will occur. This will affect the time it takes the thread to 
resume. For different memory access models, this cost will 
vary. Also, the reward structure is entirely agnostic of the load 
of the scheduler. It targets at minimizing the cost associated 
with lock acquisition and may do so even at the expense of 
deteriorating scheduler performance. In an extremely 
overloaded system, mostly sleeping will be preferred but too 
many context switches can make the scheduler very busy. 

This work has explored one of the challenges faced by the 
spin-then-block method related to critical path delay at the 
lock handoff phase. As a solution, a more generic, a machine 
learning based approach is suggested to have threads learn 
when to sleep or spin. The technique models lock acquisition 
and release as a reinforcement learning problem. It can also be 
used to release the software designer from hardcoding cases 
that decide sleeping or spinning. As of now, no experimental 
setup has been done to test this design. Future studies will 
concentrate on running experiments to improve it, for 
example, by refining the reward structure. Certain 
developments can be made to reduce the action space as well. 
All this is a part of future work. 
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