
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

604 | P a g e

www.ijacsa.thesai.org

New Approach based on Model Driven Engineering

for Processing Complex SPARQL Queries on Hive

Mouad Banane1, Abdessamad Belangour2

Ben M’sik Faculty of Science, Hassan 2 University

Casablanca, Morocco

Abstract—Semantic web technologies are increasingly used in

different domains. The core technology of the Semantic Web is

the RDF standard. Today with the growth of RDF data it

requires systems capable of handling these large volumes of data

and responding to very complex requests at the join level, Several

RDF data processing systems have been proposed, but are not

dedicated to handling complex SPARQL queries. in this paper

we present a new approach based on model driven engineering

for processing complex SPARQL queries using one of the big

data processing tools named Hive. We evaluate our system using

three datasets from LUBM Benchmark. The results of this

evaluation show the performance, and the scalability of our

approach, also give very interesting results when it is compared

with existing works.

Keywords—SPARQL; big data; model driven engineering;

RDF

I. INTRODUCTION

Since its appearance in the early 1990s, the web has
profoundly transformed contemporary society. It is now
ubiquitous in our lives, whether in the way we communicate,
work, play, buy products, and so on. It is now the most used
application of the Internet to create, share and use information.

Victim of its success, the web has become a huge reservoir
of information that sometimes makes finding information
difficult, especially when it comes to finding reliable and
relevant information. Faced with this problem, web inventor
Tim Berners-Lee came up with the idea of adding "semantics"
to web documents [1]. This idea considers the semantic web as
an evolution of the web that would allow the available data
(content and links) to be more easily usable and interpretable
by both human and machine.

In the Semantic Web, information contained in resources
such as web pages, databases, services ... will be available and
understandable not only for men but also for machines,
programs or IT agents. The Semantic Web is designed so that
the content of resources on the Web can be made semantically
"understandable" and accessible by software. Resources
available on the Internet such as documents, images, services
or even physical resources that are not on the Internet but their
references are available such as physical books, people have an
associated semantics. Thanks to this semantics, the
organization, the backup, the search for information could be
realized, processed automatically by software. The semantics
of the content of resources in the Semantic Web must,
therefore, be made explicit and available to the machines in a
formal and standardized representation. Standardization can

help different programs to interoperate or exchange data. The
way to represent semantics in the Semantic Web is to use the
RDF standard. Today the amount of RDF data continues to
grow in a very remarkable way, it is no longer possible to store
all linked data sets on a single machine while being able to
evolve requests from multiple and varied users. Thus, such
volumes of data have raised the need for distributed storage
architectures and query processing frameworks. The arrival of
Hadoop and especially its MapReduce framework greatly
improved the development of massively parallel applications.
Nevertheless, the MapReduce API does not allow complex
operations making the development of large programs a
difficult task for intermediate programmers. To overcome the
limitations, higher level languages have been developed as
Hive, providing a declarative way of writing programs that are
then automatically translated into MapReduce jobs.

As part of model-driven software engineering, model
transformation is an increasingly important activity in the
development cycle: code generation, maintenance, code
optimization, aspect composition, reverse engineering, etc.
Thus, model transformation languages represent prime
components of a development environment. The basic object of
these languages is the model that requires the definition of new
operators, among others, construction, navigation,
composition, comparison and evaluation.

On the other hand, the explosion of Web data offers a new
challenge to manage them. For the management of these large
volumes of data we present a new technique of RDF data
queries based on the principle of meta-models that allows to
transform a given SPARQL queries into a Hive program. To
evaluate the SPARQL2Hive approach we use The Lehigh
University Benchmark LUBM [2], the results show the
efficiency of SPARQL2Hive when the amount of RDF data is
very important.

The outline of the paper is as follows: Section 2 exposes
some existing related works on this topic. Section 3 describes
semantic web technologies RDF and SPARQL, and also Hive.
Section 4 presents our main contribution SPARQL2Hive.
Section 5 evaluates and analyzes our approach with the Lehigh
University Benchmark. Finally, we conclude in Section 6.

II. RELATED WORK

Recently, many research efforts have been devoted to
developing a new scalable RDF data volume management
system, such as Jena-HBase [3]: a distributed RDF triplestore
based on HBase [4] the NoSQL database management system

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

605 | P a g e

www.ijacsa.thesai.org

The schema of this system consists of two parts storage and
querying, it stores the RDF documents in HBase tables, and for
querying this data this system uses the Jena Framework to
execute the SPARQL queries. PigSPARQL [5] is an RDF data
manipulation system, the principle of PigSPARQL is the
translation of SPARQL queries into an executable program of
PigLatin [6] language of Apache Pig [7], the translation
process starts with the analysis than a compile step of algebra,
then optimization of algebra before it is translated into
PigLatin, this program will be transformed into a Job
MapReduce. The work in [8, 9] presents comparative studies of
existing systems based on NoSQL technology and which
propose the management of large volumes of RDF data
according to the NoSQL models: key/value model, document
model, column model, and graph model. From us we have
presented a new, more detailed [10] study and brings together
about all Distributed RDF Stores based on NoSQL. Galarraga
et al. present [11] an evolutionary system that is based on a
technique for optimization in the case of large volumes of RDF
data.

III. PRELIMINARIES

A. RDF

Developed by the W3C as part of the Semantic Web
activities, RDF is not strictly speaking a metadata schema. It
constitutes a structured data description model inspired by the
logic of first-order predicates and graph theory.

Its genericity and flexibility provide an interoperable
framework for describing all types of resources in a networked
environment such as the Web. RDF is a model that allows
expressing assertions in a very simple model comparable to a
simple sentence: [subject] [predicate] [object]. Each assertion
forms a triple whose different components are expressed as a
URI. The interest of RDF lies in the fact that it is possible to
exploit RDF triplets without conversion and whatever the
vocabulary used, unlike XML for which it is necessary to
convert the data if they do not. Do not use the same scheme.
Thus, it does not require the different producers to agree
strictly on a metadata structure. The expression "social contract
written by john jack rousseau" can be expressed by writing an
RDF triple, which can be represented as a subject-predicate-
object graph (Fig. 1):

B. SPARQL

To enable the construction of RDF data queries, the W3C
has developed the SPARQL standard. It is both a protocol, a
query language, and a formalism for the expression of results.
SPARQL queries are used to dynamically query data in RDF
without downloading all raw data.

Fig. 1. Example of a RDF Triple.

With RDF and the SPARQL language, it is possible to
query the structured information contained in the metadata
without having a lower common denominator. As there are
many data warehouses structured according to RDF, it is
mostly possible to build web or mobile applications with RDF
data linked together by URIs. These URIs take mostly the form
of URLs, i.e. web addresses. This is the principle of linked
data.

C. Model Driven Engineering

In Model Driven Engineering (MDE) [12], a formalism, or
modeling language, in which a model is expressed, is described
by a meta-model. The meta-model has the particularity of
containing all the concepts necessary to create models in a
domain, a particular context: the meta-model is at the heart of
the MDE. More precisely, the role of a meta-model is to
define, as a minimum, the abstract syntax of a formalism, by
defining concepts and relations between them [13].

For example, the meta-model of a programming language
represents its grammar, the meta-model of an XML file
represents its DTD (Document Type Definition).In MDE
everything is model, a meta-model is also a model, described
according to a certain formalism: the meta-meta-model.

In a MDE context, we call model transformation any
program whose inputs and outputs are models. We also speak
of "source model" and "target model". Depending on whether a
transformation outputs a model or code, it will be referred to as
"Model To Model" ("M2M") or "Model To Text" ("M2T").
However, let us nuance this definition, because from a rigorous
point of view, in MDE, "everything is model".

IV. SYSTEM ARCHITECTURE

In this section, we present a meta-modeling of our
approach. The Metamodel describes our approach
independently of the source and target models used. Then, we
illustrate the two meta-models of Hive and SPARQL with the
case of the transformation of a query of the SPARQL language
into a HiveQL program.

The aim of the SPARQL2Hive approach is to transform a
given model, expressed in a formalism: SPARQL standard of
the Semantic Web into another model expressed in another
formalism: Hive tool for the management of Big Data. Fig. 2
illustrates the different stages of operation of our approach. The
source model contains a set of elements to transform. We
randomly assign a transformation possibility for each element
of the source model.

We evaluate, via an objective function, the quality of the
proposed transformation. Finally, the last step is to refine the
solution or proposed solutions and iterate the different steps
until converging towards an acceptable solution (target model
of good quality).

We use the principle of model-driven engineering to realize
this transformation of SPARQL to Hive, the help is to first
realize the two metamodels SPARQL and Hive then in the
second stage we propose a transformation between its two
meta-models using transformation languages like ATL [14,15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

606 | P a g e

www.ijacsa.thesai.org

Fig. 2. System Architecture.

A. SPARQL Metamodel

The structure of a SPARQL query is very similar to that
used in the SQL language, so a SPARQL query can be a
SELECT, ASK, CONSTRUCT query. A SELECT query, of
the interrogative type, is used to extract from the RDF graph a
subgraph corresponding to a set of resources that satisfy the
conditions defined in a WHERE clause. But a CONSTRUCT
request, of constructive type, generates a new graph which
completes the interrogated graph. In addition, a SPARQL
query can have other purposes than providing a set of matches
to the variables specified in the SELECT. Indeed, in the
SPARQL language, it is possible to ask if a request has at least
one solution. To do this, the SELECT is replaced by an ASK.

The SELECT clause contains as SQL: SELECT, FROM
and WHERE, There are also other elements in the SPARQL
language that make it possible to specify prefixes (PREFIX),
conditions (FILTER), disjunctions (UNION), filters on the
production of results (LIMIT and OFFSET). Fig. 3 presents the
SPARQL meta-model. Fig. 4 presents the Hive meta-model.

Fig. 3. SPARQL Meta-Model.

B. Hive Meta-model

Fig. 4. Hive Meta-Model.

C. Transformation

After the creation of the OMG MDA standard, many tools
based on this approach have emerged, such as Atlas
Transformation Language (ATL) [15] for model
transformation. This language is close to the standard QVT
(Query, View, Transformation), proposed by the OMG. This
resemblance is historic since ATL is the first attempt to
implement QVT [15]. ATL is now one of the most mature
model transformation languages, so naturally we chose this
language. Fig. 5 shows our transformation engine.

Fig. 5. Transformation Engine.

An ATL program consists of rules that specify how the
elements of the target model should be created based on the
elements in the source model. These rules are always
established according to the following schema:

 Rule, from and to are the language instructions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

607 | P a g e

www.ijacsa.thesai.org

 i (resp., o) is the name of the variable that in the body of
the rule represents an instance of the source (or target)
meta-class in the source (or target) model.

 Attribute1,2 (respectively A, B) are the attributes of the
target meta-class (or source) of the target (or source)
meta-model.

The exclamation point is used to specify which meta-model
belongs to a meta-class. A translation into everyday language
would give:

The Rule rule creates for each instance i identified in the
source model an instance o of the target meta-class in the target
model, giving Attribut1 the value of AttributA and Attribut2
the value of the sum AttributA plus AttributB.

ATL makes it possible to factorize the rules with the use of
helper, which one can assimilate to functions.

The execution of this transformation gives the result
obtained in the following figure (Fig. 6).

Fig. 6. Conversion Example of SPARQL Query to HiveQL.

V. EVALUATION

To evaluate our approach, we performed a validation using
the LUBM Benchmark [16], we execute LUBM queries on
three datasets of different sizes to better analyze our
SPARQL2Hive system. We present, in the first subsection, the
context of our experiments. Then we will analyze the results
obtained. Finally, we will evaluate the impact of the size of the
sample database on the quality of model transformation.

SPARQL2Hive is implemented on the Hadoop 3.xy
version and the Hive 3.1.0 version on a machine with a 2.3
GHz Intel Xeon processor; this machine can store up to 4 TB
of hard disk storage and RAM storage of 16 GB. LUBM1,
LUBM2 and LUBM5 these three datasets used in this
experiment, they have the following triplets’ number: 138
million triples, 275M and 689M and the sizes of these three
datasets are: 11.4 GB, 22, 77 GB and 56, 8 GB. The results
obtained for the loading time of these three games to give are
presented in Table I:

TABLE I. LOADING TIME

Dataset LUBM1 LUBM2 LUBM5

Loading Time(ms) 1,26 3,05 7,9

TABLE II. SYSTEM RUNTIME FOR LUBM QUERIES (MS)

Queries LUBM1 LUBM2 LUBM5

Q1 481 537 752

Q2 429 516 641

Q3 535 583 633

Q4 509 621 627

Q5 743 797 851

Q6 657 720 773

Q7 678 736 794

Q8 179 216 201

Q9 129 130 142

Q10 181 237 252

Q11 121 135 150

Q12 83 103 126

Q13 376 405 451

Q14 325 361 404

Table II illustrates the results of running the 14 LUBM
queries on the three instances of this Benchmark.

We compare our SPARQL to Hive system with Jena by
always using the three datasets LUBM1, LUBM2, LUBM5,
generally on the majority of the queries; SPARQL2hive is
more powerful than Jena at the runtime of LUBM Benchmark
queries. Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 show the
results of this comparison for all LUBM queries.

The results obtained after this experiment show the
SPARQL2Hive efficiency when the RDF data volume is very
large, SPARQL2Hive does not take a lot of time to load the
data. Because it performs a simple translation of a given
SPARQL query into a program Hive [17], Query Language.
But with the Jena Framework, the operation becomes a little
complicated because the request goes through a set of steps,
which takes a lot of time, especially for loading data, preparing
data for recovery, more than Jena uses a lot of resources such
as RAM.

Fig. 7. LUBM Q1 Runtime.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

608 | P a g e

www.ijacsa.thesai.org

Fig. 8. LUBM Q2 Runtime.

Fig. 9. LUBM Q3 Runtime.

Fig. 10. LUBM Q4 Runtime.

Fig. 11. LUBM Q5 Runtime.

Fig. 12. LUBM Q6 Runtime.

Fig. 13. LUBM Q7 Runtime.

Fig. 14. LUBM Q8 Runtime.

Fig. 15. LUBM Q9 Runtime.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

609 | P a g e

www.ijacsa.thesai.org

Fig. 16. LUBM Q14 Runtime.

VI. CONCLUSION AND FUTURE WORK

The explosion of RDF data offers a new challenge for
researchers to manage these large volumes of RDF data,
searches are oriented towards Big Data storage systems likes
HBase, and for management we find query systems like Hive.
In this work, we presented SPARQL2Hive a system based on
the principle of meta-models for transforming a SPARQL
query into a HiveQL program. in our future work we are going
to work on RDF data management in real time, we combine the
solution to present in this work with a streaming system like
Spark streaming and Storm.

REFERENCES

[1] Schmidt, M. (2018). Fondations of SPARQL query optimization. PhD
Thesis, Albert-Ludwigs-Universität Freiburg (Germany).

[2] Chebotko, A., Lu, S., Jamil, H. M. et Fotouhi, F. (2006). Semantics
Preserving SPARQL-to-SQL Query Translation for Optional Graph
Patterns. Technical Report TR-DB-052006-CLJF.

[3] V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, et P. Castagna, «
Jena-HBase: A Distributed, Scalable and Efficient RDF Triple Store »,
p. 4

[4] Azqueta-Alzúaz, Ainhoa, et al. "Massive data load on distributed
database systems over HBase." Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE
Press, 2017.

[5] Schätzle, Alexander, Martin Przyjaciel-Zablocki, and Georg Lausen.
"PigSPARQL: Mapping SPARQL to pig latin." Proceedings of the
International Workshop on Semantic Web Information Management.
ACM.

[6] Fuad, Ammar, Alva Erwin, and Heru Purnomo Ipung. "Processing
performance on Apache Pig, Apache Hive and MySQL cluster."
Proceedings of International Conference on Information,
Communication Technology and System (ICTS) 2014. IEEE.

[7] I. Kurtev, « State of the Art of QVT: A Model Transformation Language
Standard », in Applications of Graph Transformations with Industrial
Relevance, vol. 5088, A. Schürr, M. Nagl, et A. Zündorf, Éd. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, p. 377‑393.

[8] Banane, M., Belangour, A., & Labriji, E. H. (2018). RDF Data
Management Systems Based on NoSQL Databases : A Comparative
Study, 58(2), 98–102

[9] Banane M., Belangour A., El Houssine L. (2019) Storing RDF Data into
Big Data NoSQL Databases. In: Mizera-Pietraszko J., Pichappan P.,
Mohamed L. (eds) Lecture Notes in Real-Time Intelligent Systems.
RTIS 2017. Advances in Intelligent Systems and Computing, vol 756.
Springer, Cham.

[10] Banane M., Belangour A. (2019) A Survey on RDF Data Store Based on
NoSQL Systems for the Semantic Web Applications. In: Ezziyyani M.
(eds) Advanced Intelligent Systems for Sustainable Development
(AI2SD’2018). AI2SD 2018. Advances in Intelligent Systems and
Computing, vol 915. Springer, Cham

[11] Galárraga L., Hose K., Schenkel R.: Partout: A distributed engine for
efficient RDF processing. Proceedings of the companion publication of
the 23rd international confer- ence on World Wide Web companion,
International World Wide Web Conferences Steering Committee, 2014,
p. 267÷268

[12] Da Silva, Alberto Rodrigues. "Model-driven engineering: A survey
supported by the unified conceptual model." Computer Languages,
Systems & Structures 43 (2015): 139-155.

[13] Boussaïd, Ilhem, Patrick Siarry, and Mohamed Ahmed-Nacer. "A
survey on search-based model-driven engineering." Automated Software
Engineering 24.2 (2017): 233-294.

[14] ATLAS group, LINA & INRIA: ATL: Atlas Transformation Language,
User Manual, Nantes, January 2005,

[15] F. Jouault et I. Kurtev, « Transforming Models with ATL », in Satellite
Events at the MoDELS 2005 Conference, vol. 3844, J.-M. Bruel, Éd.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, p. 128‑138.

[16] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL
knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005

[17] Du, Dayong. Apache Hive Essentials. Packt Publishing Ltd, 2015.

