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Abstract—The classical uni-directional conversion algorithms
are based on the assumption that prices are arbitrarily chosen
from the fixed price interval [m, M| where m and M represent
the estimated lower and upper bounds of possible prices 0 <
m < M. The estimated interval is erroneous and no attempts
are made by the algorithms to update the erroneous estimates.
We consider a real world setting where prices are interrelated, i.e.,
each price depends on its preceding price. Under this assumption,
we derive a lower bound on the competitive ratio of randomized
non-preemptive algorithms. Motivated by the fixed and erroneous
price bounds, we present an update model that progressively
improves the bounds. Based on the update model, we propose a
non-preemptive reservation price algorithm RP* and analyze it
under competitive analysis. Finally, we report the findings of an
experimental study that is conducted over the real world stock
index data. We observe that RP* consistently outperforms the
classical algorithm.

Keywords—Time series search; one-way trading; online algo-
rithms; update model

I. INTRODUCTION

In an online problem setting, decisions are made with no
or partial information about the future. A classic example is
the uni-directional conversion problem, where a player wants
to convert an asset in hand to a desired asset, say dollars to
yens. The objective is to obtain the maximum amount of the
desired asset (yens) at the end of a fixed length time horizon.
The caveat is the unavailability of future conversion prices and
the inability to accept a price from the past. The uni-directional
conversion problem is an extension of time series search
problem, which is a well-studied problem in computer science
and operations research with applications in many financial
domains, e.g., robust option pricing, secretary selection, job
employee searches, and lowest price of goods [1].

Formally, we define online conversion problem as follows.
Let m and M be the estimated lower and upper bounds of all
price offers. Assume (w.l.0.g) that at the start of the investment
horizon, the online player has Dy = 1 units of an asset and
Yo = 0 units of the desired asset. At each time point ¢t = [1, T,
the online player is offered a price ¢; € [m, M] to convert D
to Y. She has to make an irrevocable conversion decision,
with the objective to maximize the amount of Y at the end
of the investment horizon. If the online player accepts ¢; ,
she converts D (whole or a portion) to Y. The game ends
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when the player has converted all of D into Y or the last
price qr is revealed, which must be accepted. The player may
convert all her wealth at one point of time (non-preemptive
conversion) or may divide her wealth and spend little by
little (preemptive conversion). In this work, we restrict to non-
preemptive conversion.

Competitive analysis is the prevalent method for the design
and analysis of online conversion algorithms. Competitive
analysis measures the performance of an online algorithm
against an optimum offline algorithm. Let OAN be an online
algorithm for a profit maximization problem P, Z be the set of
all inputs instances, and OP7T be an optimum offline algorithm
for the same problem P. Given any I € Z, ON(Z) and
OPT(Z) denote the performance of ON and OPT on input
I € T respectively. ON is called c—competitive if VI € Z,

ON(T) > % LOPT(T) 0

A considerable body of literature is devoted to online
conversion problems [2], [3], [1], [4], [5]. To design online
algorithms for uni-directional conversion problems with a
bounded competitive ratio, it is imperative to assume a-priori
information about the future [3]. For instance, the classical
reservation price policy (RP) of El-Yaniv [3] assumes a-
priori knowledge of m and M, and calculates a reservation
price ¢* = vVMm . Any offered price which is at least ¢*
is accepted, if no such price is observed then the last price
offer is accepted. RP guarantees a worst case competitive
ratio /M /m [3]. The assumption of RP and other algorithms
about a priori information is impractical when the real world
applicability of online algorithms is considered.

In the real world; 7) such information is either not available
or is prone to errors. Algorithms presented in the literature
(see Mohr et al. [6]) keep the estimated information fixed for
the complete duration of the investment horizon and make no
attempt to improve the quality of the assumed parameters. %)
The price fluctuation is bounded and is enforced by the circuit
breaker rules (Chen et al.,[2]; Hu et al. [4]). The rules fix a
minimum and a maximum permissible price movement and re-
strict the drastic change in stock prices. Most of the algorithms
including RP consider the arbitrary price movement in the
range [m, M] , which permits the inter-day price fluctuation to
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Time Time.

(a) Overestimated M’, underesti- (b) Underestimated M’, overesti-
mated m/’ mated m/’

Time Time.

(c) Underestimated M’, and m/’ (d) Overestimated M’, and m’

Fig. 1. Estimating the price interval [m, M] can lead to four types of errors;
the green dots represent the true (observed) lower and upper bounds, whereas
the red dotted line represents the estimated bounds

be M/m, i.e., M can be followed by m and vice versa. These
facts motivate us to study the problem of uni-directional non-
preemptive conversion under the assumptions that the lower
and upper price bounds are erroneous, fixed and arbitrarily
drawn from the interval [m, M]. It must also be noted that
source for acquiring the estimated values of m and M is not
relevant as the values can be obtained by using a variety of
forecasting techniques [7].

Let the true (exact) lower and upper bounds in a time series
be represented by m’ and M’ respectively. The estimation
errors in the values of m and M can be classified into four
categories (see Fig. 1).

1. m’ is underestimated and M’ is overestimated, i.e., m <
m' and M > M’ (Fig. 1a).
7. m' is overestimated and M’ is underestimated, i.e., m >
m’ and M < M’ (Fig. 1b).
143. Both m’ and M’ are underestimated, i.e., m < m’ and
M < M’ (Fig. 1¢)
iv. Both m’ and M’ are overestimated, i.e., m > m' and
M > M’ (Fig. 1d)

This work is restricted to the type of error where M >
M’ and m < m’ . Other cases are not considered as it is
not possible to design an online algorithm with a bounded
competitive ratio when M’ > M (i.e., M’ can be infinity)
and/or m’ < m (i.e., m’ can be zero) [3], [6].

This work contributes towards the applicability of online
conversion algorithms in the real world by considering the
bounded daily return model [4] where the current price ¢,
depends on the previous price q;—1 as follows:

1=Yag—1 <@ < (1+7)q-1 (2)

Note that v €]0, 1[.
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Rest of the paper is organized as follows: Section II briefly
presents the relevant literature review. Next, based on the
assumption that prices are interrelated, a lower bound on the
competitive ratio for any randomized non-preemptive reserva-
tion price algorithm is derived in Section III In Section IV,
an update model is introduced that dynamically improves the
erroneous bounds (m and M) based on the inter-day price
fluctuation. As an application, the update model is applied to
the classical algorithm RP resulting in the modified policy
RP*. RP* policy is analyzed under competitive analysis and
minimum improvement in the competitive ratio is derived in
relation to RP. Further, the extension of the update model
and algorithm RP* to the general price function of Chen et
al. [2] is also discussed. In Section V, RP and RP* are
simulated over the real world stock index and the relative
performance of each algorithm with respect to the optimum
offline algorithm is reported. Section VI concludes the work
and provides directions for future research.

II. RELATED WORK

Besides the work of El-Yaniv [3], and El-Yaniv et al. [1],
other major works includes that of Chen et al. [2], Hu et
al. [4], and Schroeder et al. [5]. Chen et al. [2] observed that
in the real world, the prices movement is not arbitrary but
is restricted and governed by a set of rules. For example, in
Bangkok stock market the current day price can fluctuate at
maximum of 10% of the yesterday’s price. Chen et al. [2]
claimed, that the current day price ¢ € [q"(;l, Bqt,l] with
o, > 1. Hu et al. [4] simplified the Chen et al. [2] model
by presenting a bounded daily return model of stock prices
where each price offer depends on the yesterday’s price with
(I =9)g—1 < ¢ < (1 +)gs—1 for some fixed 0 < v < 1.

Igbal and Ahmad [8] considered k-min search problem and
proposed an optimum algorithm. The algorithm is based on
reservation price and threat based algorithms of El-Yaniv et
al. [1]. The authors validated the performance of their proposed
algorithm against that of Lorenz et al. [9] by conducting
experiments on the real world data. Wand and Xu [10] focused
on a special case of the secretary problem where the number
of applicants are not large, and there is a parameter to measure
the ability of the applicant. The authors proved that their
policy is better than that of Lorenz et al. [9]. Hasegawa
and Itoh [11] considered multi-objective time series search
problem (MOTSS) and put forth a modified version of
competitive analysis for M OT'SS. The authors presented an
online algorithm called Balanced Price Policy for M OT'SS
and discussed that the presented policy is the best under the
competitive analysis paradigm. Fung [12] considered two way
trading problem, knowledge of m and M to derive a lower
bound of ¢ = M/m for a single trade problem. Further, the
author generalized the work to k-trade problem and shown the
competitive ratio to be ¢(2k+1)/3

Schroeder et al. [5] considered the time series search
problem with inter-related prices and a profit function. The
authors presented algorithms with bounded competitive ratio,
and proved the optimality of the algorithms as well. For a
detailed survey on online algorithm for conversion problems,
the reader is referred to Mohr et al. [6].

To the best of our knowledge, there is no conclusive
evidence of any study which examines the online algorithms
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under the estimated values of parameters and suggests mea-
sures to improve the competitive ratio by improving the quality
of the estimated parameters. Mahdian et al. [13] analyzed
different online problems under estimated values of input
parameters. One such problem is allocation of online adver-
tisement space. In an online allocation of advertisement space,
a search engine allocates an advertisement slot to a bidder
based on the query term of the user. In order to optimally
allocate the advertisement space, the estimated frequency of
each search term is assumed to be known and the problem
is solved using linear programming. However, the estimation
can turned out to be completely wrong and the solution is no
more optimal and competitive. Mahdian et al.[13] analyzed
the problem under incorrect estimates but did not discuss any
mechanism to improve the erroneous information in order to
improve the performance of the algorithm.

III. LOWER BOUND FOR RANDOMIZED ALGORITHM
WITH INTER-DAY PRICE FLUCTUATION FUNCTION

Yao’s minmax principle is used to obtain a lower bound
on the competitive ratio of randomized algorithms [14]. In
simple words, Yao’s principle states that in order to obtain a
lower bound on the competitive ratio of the best randomized
algorithm, it is sufficient to calculate the performance of the
best deterministic algorithm for a chosen probability distribu-
tion of input instances (see Borodin and El-Yaniv[14]; Lorenz
et al. [9] for details). The same technique is employed to
derive the lower bound of best uni-directional non-preemptive
randomized algorithm when the prices are governed by the
price function of Hu et al. [4](cf. Eq. (2)).

Theorem 1. Assuming that prices follow the inter-day price
fluctuation function as shown in Eq (2). Let fluctuation ratio
¢ > 1, for online uni-directional non-preemptive conversion
problem, no randomized algorithm can achieve a better com-
petitive ratio than c where;

Y
1+7v)log(1+7)

c= log¢2( (3)

Proof: Let T be the set of all input instances, we consider
I7 € 7 such that all I € Z7 follows the price function of
Hu et al. [4]. Let RAND be the best randomized algorithm
for online uni-directional non-preemptive conversion problem.

Vol. 10, No. 6, 2019

with a factor (1 — ). I; represents a worst case instance
because if the only player accepts an offered price (too early
error), adversary has the option to keep on increasing the price
sequence to achieve a maximum profit. Similarly, if the online
player keeps on rejecting offered price (too late error), the
adversary can drop the offered price gradually to m and force
the online player to accept the last offered price m.

Our distribution of sequences follows price function and
we are only interested in price sequence which is in the form
of I;. We define the probability distribution y on Z7 by

~ ifIes”
n=I~ U
y(d) {O otherwise

Remark 1. The maximum fluctuation ¢ of any price sequence
in S7 is bounded by (1 +~)N.

The above remark can easily be proved by considering the
price sequence In_1;

Iy—y=m(1+9)% ... .mA+)"" L md+ )" (1 - ),
m(L+ 1)Y= )2, m
The maximum price observed is m(1 + v)V~! and the

minimum observed price is m. Therefore, the fluctuation ratio
p=1+" <1 +N.

Now we compute F { OO IiVT((I I))} as under;

Consider the last price sequence In_1;

IN—l = m(l + 7)07 ... 7m(1 + V)Nﬁlﬂm(l + V)Nil(l - ’7)’
m(1 —|—’y)N_1(1 -3 ...m

Assume (w.l.o.g) that, ON accepts m(1 + )P on Iy_q, it
means that on all sequences where m(1 + «)P appears, ON
will accept m(1 + ~)P. This case corresponds to too early
error. On all other sequences, ON will convert at the last
offered price m which corresponds to roo late error. As all
worst case sequences are increasing up to time point j + 1,
m(1 + )P appears in I; where j = p to N — 1. Therefore,
E[oNm

OPT(I)

} will be;

We need to show that competitive ratio achieved by RAND, ON(I) 1 m m(1+ )P

¢(RAND) > c. Using the Yao’s principle it will be sufficient £ | 35777 | = § — T § pevean vl I
o LI C ! OPT(I)] N\, “~=_ m1+7) —~ v m(1+7)

to show that on the worst case probability distribution y(I), 0<j<p—1 p<j<N

the ratio of average optimum offline return to average return 1 (149 =0+ (1+7) = (1 4Pt
of any deterministic algorithm ON € ON is bounded below =N ( ~ + ~
from c [15], [9], i.e.,

ON() T\ 1+7)2— (14PN — (14+7)7P

In order to prove Eq. (4), we consider the worst case sequences
I; € S7 such that S C Z7 denotes the worst case price  To find the value of p, where maximum value of E [m

sequences. We define our worst case input to be of the  is observed, we take the derivative of Eq (5) with respect to

following form; (0 < j7 < N —1) P;
d ON(I)
~(E —
dp ( {OPT(I)D ’

I; =m(1+ N0 m(1+) . m(1 4+ 5),
m(1+7) (1 =7),m(1+9) (1 =7)?%...,m

It shows that the worst case sequence I; is increasing with a d (A+79)2-0+y)P N -(0+9)") _ 0

factor (1 + ~y) till time point j + 1, after which it decreases dp N~y -

ON(I) }
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We obtain, p = N/2. Replacing the value of p = N/2 and
N = log(HW)qﬁ, we obtain;

ON(I) 1 [2(147)log(1+7)
E <
o [OPTUJ = logo { 7
Applying the Yao’s principle;
ONI) 1\ "
> I S
¢(RAND) > <maxON€@NE [OPT(I)})
Y
>1 6
= 1090 log 1+ 7) ©
The proof follows. ]

Remember that ¢ cannot be co as otherwise it will not be
possible to design an online algorithm with bounded compet-
itive ratio [3].

Lorenz et al. [9] showed that for online uni-directional
non-preemptive conversion problem, no randomized algorithm
can achieve a competitive ratio better than ¢ > % . The
authors assumed that the prices are arbitrarily drawn from the
known interval [m, M] and did not enforce an inter-day price
functi(?n. A é> log.}qu lower boynd of is derived
assuming that the inter-day price movement is bounded by the
price function of Hu et al. [4]. Fig. 2 shows the ratio ¢/¢ based
on the increasing value of v €]0,1[. The results conform to
the real world observation.

1.40 4

1.354
1.304

1.254

¢

IG 1.20

Cl

1.154
1.104
1.054

1.004
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Ratio of ¢ and ¢

Remark 2. Intuitively speaking, the lower the inter-day price
fluctuation, the lower the price movement and thus a better
performance can be achieved. Our results confirms the same,
for values of v closer to 0, ¢ is considerably lower than c. As
~ approaches 1, ¢ approaces ¢. However, our lower bound is
lower than the lower bound shown by Lorenz et al. [9] for all
values of v €0, 1].

IV. PROPOSED MODEL AND ALGORITHM

In the following, the update model and the deterministic
non-preemptive reservation price policy RP* is presented and
analyzed. The performance improvement of RP* in compar-
ison to RP is derived and the applicability of results for a
general price fluctuation function is discussed.

Vol. 10, No. 6, 2019

A. Update Model

The basic purpose of the update model is to keep the
initial estimated upper and lower bounds realistic based on
the observed price, the inter-day price fluctuation and the
remaining number of days. Further, the need of using the price
function of Hu et al. [4] is discussed and the update model is
presented.

A challenging aspect of any update mechanism is to model
the stock prices. The behavior of stock prices is highly volatile
and a plethora of work is dedicated to obtain an accurate
view of stock price movement [16], [17]. Geometric Brownian
Motion (GBM) is one of several attempts to model the
random stock price movement in Black-Scholes model [18],
[19]. However, it is hard to obtain an accurate GBM and the
approximation of GBM is utilized [2].

In this work, the bounded daily return model of stock
market introduced by Hu et al. [4] is considered. Recall that
the price function restricts the price movement as under;

I=-Yg-1<@a<({1+7)q-1 with0<y<1l (7)

Eq.(7) is considered as an approximation to GBM [4]
which can be used to model the stock price behavior.

El-Yaniv [3] assumed a fixed price interval in which all the
prices must lie whereas Hu et al. [4] considered the bounds
for inter-day price fluctuation. In this work, a dual approach
is employed and the initial estimated bounds [m, M] as well
as the inter-day price fluctuation factor ~ are considered.

The update model computes the minimum and the max-
imum price bounds that can be achieved in the remaining
number of days based on the current day price ¢; and ~, as
shown in Fig. 3. On each day ¢ a price offer ¢; is observed
and compute:

Prices

ar

m

Time

Fig. 3. Computing the achievable lower and upper bounds on day ¢

1. The minimum price (lower bound) that can be reached
if prices keep on decreasing with a factor v of which is
a1 =" —t

#¢. The maximum price (upper bound) that can be reached

if prices keep on increasing with a factor v of which is
(1 +y)" —t.
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Considering the type 1 error (Fig. la) i.e., M > M’
and m < m/, the update model should improve the upper
bound in a non-increasing manner whereas the lower bound
in a non-decreasing way. At time period ¢ = 0, the initial
estimated lower and upper bounds are my = m and My = M
respectively such that my < ¢; < M. For each price offer g,
where ¢t € [1,T — 1], the price interval [my, M;] is updated as
follows:

my = max{m;_1,q(1 — )"t} ®)

My = min{M;_1,q(1++)" "} ®

It can be seen that M, is non-increasing whereas m; is non-
decreasing with respect to time i.e.,M; < M;_1 and m; >
my—_1 . The updated price bounds [m;, M;] are used for re-
computing the reservation price for the proposed algorithm

RP>.
B. Proposed Algorithm

The formal description of RP* is given by Algorithm 1.
It must be noted that the lower and upper bounds are updated

Algorithm 1 RP*
Require: m, M, ~,T
1: Set mg =m,My=M
2: for t=1 to T-1 do
3: A new price ¢, is observed.
4:  Compute achievable lower bound m;:
my = max{m;_1,q:(1—~)"""}
5. Compute achievable upper bound M;:
M; = min{M;_1,q:(1+~)"""}
6:  Calculate new reservation price g; = v/mM,;
7. if ¢+ > ¢f then
8 Accept the offered price ¢
9:  end if
10: end for
11: If no price offer is accepted till the last day 7', accept the
last price gy which may be the minimum.

till 7" — 1 as if the online player has not accepted a price till
the last day, then she must accept the last offered price gp.
Therefore, updating the bounds on the last day is irrelevant.

C. Competitive Analysis of RP*

Theorem 2. Algorithm RP* is ¢’ (RP*) such that;
(149"

gi(1 =)

where i and j are the time points where the last update occurs
in the value of m and M, respectively.

(RP*) = (10)

Proof: Let q* be the reservation price (threshold) for
accepting a price. The player waits for an offer such that
g+ > q*. Two cases are possible.

Vol. 10, No. 6, 2019

Too Early Error:: If the reservation price computed by r P*
is too low, the adversary offers ¢* early in the price sequence
and then raises the offered price to the maximum g¢,,q; =
qj(1+~)T~7. Thus, RP* converts at ¢*, and OPT converts
at gmmqo resulting in a competitive ratio as follows:

OPT
RP* |
g (1+7)"

. T—j
_ A +y)T (11
gi(1 =)

Too Late Error:: If the reservation price calculated by
RP* is too high, the adversary offers the prices such that
Gmaz < q¢* . The player waits ¢* for which never occurs in the
price sequence. Thus RP* converts at ¢in = ¢;(1 — )77,

and OPT converts at ¢* — € where 0 < ¢ << 1. Thus, the
competitive ratio achieved by RP* is as follows:

*

61:

. OPT
= Rpr
N
(1 -7

VG =TT g1 -7 e
gi(1 =)
o L+
R C )
In both too low and too high scenarios, the competitive ratio
is no worse than ¢*(RP*). The theorem follows. [ |

12)

D. Improvement in Competitive Ratio

In this section, the minimum improvement in competitive
ratio of RP* in relation to RP is derived. It is pertinent
to mention that improvement can only be observed when
there is an update in the values of m and/or M, otherwise
it is nonsensical to discuss improvement. The argument is
inline with that presented in the literature related to online
search problem such as that of Al-Binali [20]. Al-Binali [20]
claimed that improvement in the competitive ratio can only be
observed when the forecast is true. In the underlying case, the
improvement in competitive ratio is restricted to cases, when
an update in the bounds of m and/or M occurs, if no update
occurs, it means that the estimated values of m and M were
accurate enough and the update model is not required. Let, c”
be the restricted competitive ratio when an update in the m
and/or M occurs.

Lemma 1. The minimum improvement observed in the com-
petitive ratio of RP* in relation to RP is as follows:

1=~ T 1
Ac = min \/ 1/ 1+7T1, 1+7 \/

13)
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Proof: Depending on the modified value of m and/or M,
there are three possible scenarios;

i. Update in the value of m only: As there is an update in
the value of m, the upper bound M remains unchanged.
The restricted competitive ratio ¢f(RP*) is as follows:

M
(1 =)'

As M is constant, the maximum competitive ratio
¢ (RP*) is observed when the update occurs at day 1,
i.e., 7 = 1. The restricted competitive ratio observed is as
follows:

{(RP*) =

M
@(l—7)"""

The minimum improvement in the competitive ratio of
RP* in comparison to ¢ (RP) is as follows:

i (RP*) <

c”(RP) < VM/m

¢ (RP*) — — Jvi)
> L)Tl (14)

m

11. Update in the value of M only: When an update in the
value of only M is observed, c¢;(RP*) achieved is:

: g;(1+~y)T-

T RP* AN 7

ch( ) = m

To maximize c¢5(RP*), ¢;(1 +7)T 7 must be maximized
(m being constant). ¢;(1+~)? 7 is maximized at j = 1,
and thus the competitive ratio c5(RP*) is achieved as
follows:

a(l+7)7"

ch(RP*) < -

The improvement in the competitive ratio is:

¢ (RP) < VM/m
ch(RP*) = [q(14)T—1
M
15
“Va(d+y)Tt (1)

112. Update in the value of m and M: When an update in the
value of m and M is observed, c§(RP*) is achieved such
that

. T—j
¢(RP) = | BT
ai(1—~)"
To maximize cj(RP*), ¢;(1++)T 7/ must be maximized,
whereas ¢;(1—)? % must be minimized. The maximum
value of ¢;(1+4~)7~7 is observed for j = 1, whereas the
minimum value of ¢;(1 — )T =% is observed for i = 1.
The restricted competitive ratio ¢§(RP*) is as follows:

Vol. 10, No. 6, 2019

ct(RP™) 1/ (1
\/ 1 —

The improvement in competitive ratio is as follows:

(RP) M/m
c5(RP*) N
()
M
e — 16
<1 + A/) m (16)
The proof follows from Egs. (14,15, and 16). [ |

E. Extending Results to a General Price Function

In this work, the price function of Hu et al. [4] is used,
which is based on a constant price fluctuation factor ~. The
results can be extended to the general price fluctuation function
of Chen et al.[2] where the inter-day price fluctuation is
bounded by two constants « and f3, i.e., ¢; can either decrease
by a factor a of ¢;_1 or increase by [ times ¢;—;. In the
following, the competitive ratio achieved by RP* using the
price fluctuation function of Chen et al. [2] is discussed.

Lemma 2. ¢ (RP*) is valid for the general price function of
Chen et al. [2].

Proof: Recall the price fluctuation function of Hu et al. [4]
is given as follows:

I=—g-1<qg<{A+v)q-1, witho<~y<1l. (17)

The price fluctuation function of Chen et al. [2] is given as
follows;

qt—1

— < ¢ < Bgp—1, with, S > 1. (18)
@

Comparing both Eq. (17) and (18) follows;

T
B=(1+)

From Eq. (10), the competitive ratio ¢*(RP*) achieved by
RP* is as follows:

(1 T—j

o (RPY) = | BT

ai(1 ="

Replacing (14 ) by 8 and (1 — ) by 1/«;
w( pp q;(B)"

c(RP*) == | —V—F+—

W) ==\ @ ey

The proof follows. [ |
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V. EXPERIMENTAL SIMULATION

The online algorithms for conversion problems are exper-
imentally evaluated using real world data. For details, the
reader is referred to Chen et al. [2], Hu et al. [4], Igbal et
al. [21] and Mohr et al. [6] (Section 5). In this section, OPT,
RP, and RP* are simulated over the daily closing prices of
Deutscher Aktien Index (DAX30) for ten years (01.Jan.2008
to 31.Dec.2017). Recall that OPT is the optimum offline
algorithm that always converts on the maximum observed
price.

A. Methodology

As OPT, RP, and RP* perform only a single transaction,
therefore, no transaction fee is considered. It is also assumed
that the algorithms have the required a-priori information (v
and 7). However, in a real world setting, the true (exact)
lower and upper bounds (m' and M’) of prices are unknown.
Therefore, it is assumed that there is error in estimation in the
values of m’ and M’. If true bounds are known, the reservation
price calculated by RP is ¢* = v/ Mm. The algorithms rely on
the estimated bounds (m, M). Therefore, the reservation price
q* can either decrease or increase depending on the estimation
error in bounds, i.e., ¢* = §v Mm where 0 < § < oco.

The estimation error ¢ in the lower and upper bounds
are introduced such that the reservation price ¢* (of RP )
is either decreased (0 = 0.85) or increased (6 = 1.15) by
15% of its exact value. The findings are based on the monthly
as well as the yearly performance of algorithms. The dataset
is partitioned into subsets where each subset represents an
investment horizon of one month, thus resulting in 120 subsets
for 10 years. The price fluctuation factor ~ is extracted from
each subset using Eq. ( 2).

On a given input o, let, OPT (o), RP(c) and RP*(0) be
the performance of OPT, RP, and RP* respectively. The
performance of each algorithm (OPT, RP, and RP* ) is
observed by executing them over 120 subsets of data. For

ease of comparison, the performance ratios c¢(RP) = ORIZT(ES)

and c¢¢(RP*) = %I;T((g)) is computed. As no algorithm can
perform better than O PT', the performance ratios ¢®(RP), and
c®(RP*) are at least one. The lower value of performance
ratio (close to 1) indicates a better outcome. Further, the per-
formance improvement of RP* over RP by the improvement
factor ;(%, based on the varying values of the estimation

error o = [0.75,1.25] is shown.

B. Results

Fig. 4 summarizes the monthly competitive ratios by RP
and RP* for 0 = 0.85. It is observed that on all 120 monthly
data sets, c®(RP*) < cP(RP). On average, c®(RP*) is 2.5%
better than ce(RP). It is noticed that on few isntance, the
experimental competitive ratio of RP is worse (greater) than
the guaranteed worst case competitive ratio, i.e., ¢¢(RP) >
¢ (RP). This behavior suggests that the estimation error can
render the worst case guarantee useless. In contrast to RP ,
algorithm RP* performs better by consistently achieving lower
competitive ratio. On all 120 subsets, RP* never performs
worse than /M /m , thus ensuring that the worst case bounds
are always respected. The worst (highest) value of c¢(RP)
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and c®(RP*) are 1.21 and 1.09 respectively. Similarly, for
o = 1.15, RP* outperforms RP as depicted in Fig. 5.
Interestingly, the maximum (worst) ¢°)RP) is 1.21 whereas
the corresponding value of ¢¢(RP*) is 1.09, i.e., the same
values of ¢?(RP) and c?(RP*) is observed when o changes
from 0.85 to 1.15.. It must be noted that for ¢ = 0.85, the
worst (maximum) value is observed in Oct 2008, whereas for
o = 1.15 the worst value is observed for Feb 2009.

——CY(RP)  ——c¢(RP) c:(RP¥)

AMM

66 76 81 86 91 96 101 106 111 116

A\/\ M/\/\«A M

1 6 11 16 21 26 31 36 41 46 51 56 61

Fig. 4. Monthly Performance with Estimation Error § = 0.85

——CcY(RP) ——c(RP) c:(RP¥)

L |\/ﬁW/\\AvA‘AM"« W/\t/ ‘vf\”\ﬁuA\N/\ AN \[\/\ANJ\J

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Months

Fig. 5. Monthly Performance with Estimation Error § = 1.15

The competitive ratios of RP and RP* over yearly data
with ¢ = 0.85 are shown in Fig. 6. The worst ¢?(RP) is 1.06
observed for year 2009. In contrast, the worst ¢¢(RP*) over
10 years period is 1.04 also seen in year 2009. RP* beats
RP over all the years and never violates the worst case bound
W (RP*) . The performance of both algorithms with o = 1.15
is shown in Fig. 7. The same trends is observed for o = 1.15
as is seen for o = 0.85. Again, RP* outperforms RP.

In order to observe the improvement in experimentally
achieved competitive ratio for varying values of o, consider
o = {0.75,0.76,...,1,...,1.24,1.25}. For each value of o,
the average competitive ratio of RP and RP* is computed over
the 120 monthly subsets of data. Fig. 8 plots the improvement
factor ¢°(RP)/c°(RP*). An improvement factor greater than
1 depicts that RP* outperforms RP . For ¢ < 0, RP*
performs better than RP. A constant improvement of 1.014
is observed when o = [0.75,0.9] . For o = 1, both algorithms
achieve a same competitive ratio. Over a small range when
o = [1.01,1.04] , the performance of RP is better than RP*.
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Fig. 6. Yearly Competitive Ratios with Estimation Error 6 = 0.85
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Fig. 7. Yearly Competitive Ratios with Estimation Error § = 1.15
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Fig. 8. Improvement Factor for 6 € [0.75,1.25]

However, a consistent improvement is reported in competitive
ratio of RP* to that of RP , for o > 1.04.

VI. CONCLUSION

This work focused on bridging the gap between the theory
and practice of online conversion problems by improving
the quality of the estimated bounds using the update model.
The model is a first step towards modifying the erroneous
information for improving the performance of algorithms. A
lower bound on the competitive ratio of randomized non-
preemptive algorithms assuming the prices are interrelated is
derived. Furthermore, algorithm is presented and evaluated
using theoretical as well as experimental measures. The ex-
perimental simulation of algorithms over the real world data
validated the approach of the update model. The work can be
extended to investigate the preemptive algorithms under the
update model. Further, the online algorithms under estimated
values of the parameters can be studied in other areas such as
job scheduling, cache algorithms, online advertisement space
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