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Abstract—To combat the problem caused by the Fall Army 

Worm in the country there is a need to come up with robust early 

warning and monitoring systems as the current manual system is 

labor intensive and time consuming. The automation of the 

identification and classification of the insect is one of the novel 

methods that can be undertaken. Therefore this paper presents 

the results of training a Convolutional Neural Network model 

using Google’s Tensorflow Deep Learning Framework for the 

identification and classification of the Fall Army worm moth. 

Due to lack of enough training dataset and good computing 

power, we used transfer learning, which is the process of reusing 

a model trained on one task as a starting point for a model on a 

second task. Googles pre-trained InceptionV3 model was used as 

the underlying model. Data was collected from four sources 

namely the field, Lab setup, by crawling the internet and using 

Data Augmentation. We Present results of the best three trials in 

terms of training accuracy after several attempts to get the best 

metrics in terms of learning rate and training steps. The best 

model gave a prediction average accuracy of 82% and a 32% 

average prediction accuracy on false positives. The results shows 

that it is possible to automate the identification and classification 

of the Fall Army worm Moth using Convolutional Neural 

Networks. 
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I. INTRODUCTION 

The Fall Army Worm possesses unique characteristics that 
make it a more devastating pest than other crop pests. It can 
spread quickly over a large geographical area, it can persist 
throughout the year meaning it is also able to affect irrigated 
plants and it can feed on over 80 different plant species 
[1][2][3]. The characteristics of the Fall Army worm enable it 
to cause massive damage to crops such as maize threatening 
the food security of countries where maize is the staple food. 
Its impact has been felt at national and household level [3]. 
Owing to its unique characteristics and the destructive nature 
of the FAW pest, the need to put up quick and proper 
monitoring systems of the insect can never be over 
emphasized. Currently the monitoring process of the insect 
being applied is the traditional pest monitoring process of 
manual observations and data collection and the use of 
Pheromone traps.  The manual process is labor intensive, time 

consuming, costly as it requires the engagement of field 
experts and requires one to count the insect for data collection 
which is likely to give false data [4][5].  Pheromone traps have 
proven to be effective in the monitoring of Pests in the field but 
still requires manual counting of the insect for data collection 
which is usually after weeks [6]. Delay in Pest data collection 
means a delay by would be stakeholders to apply appropriate 
counter measures to the Pest. In this regard, the use of 
computer based automated insect monitoring and classification 
is the solution [7] [8].  Machine learning is one of the 
technologies that are being applied in Agriculture in what is 
termed as Smart Farming to solve various challenges that the 
field faces. Its Application in Agriculture include but not 
limited to plant disease detection, farming area classification, 
plant recognition, fruit counting, Soil and vegetation mapping, 
Pest detection and management [9][10].  One of the problems 
in agriculture where machine learning can be applied also is the 
automation of Pest monitoring which requires in most cases the 
capture of images of live insects in the field. Deep learning is a 
recent branch of machine learning that constitutes modern 
techniques for image processing and recent studies show that it 
has successfully been applied in agriculture and has achieved 
unprecedented results [11]. Therefore in this paper we present 
the results of training a Convolutional Neural network model 
for identification and classification of Fall Army Worm. Due to 
lack of enough dataset and lack of computing power, we used 
data augmentation to supplement the dataset and transfer 
learning using the Google inceptionV3 model. The paper is 
divided into literature review, materials and methods, results, 
discussions and conclusion. 

II. LITERATURE REVIEW 

To supplement the results and get a broader understanding 
of the concepts of Deep learning and Convolutional Neural 
Networks, relevant literature was reviewed. 

A. Convolutional Neural Network 

Convolutional Neural Networks is the novel and most 
popular machine learning technology that has successfully 
been applied in computer vision and image classification. They 
are made up of a class of feedforward Artificial Neural 
Networks sharing weights [11]. The basic idea behind CNN is 
the local understanding of an image. They combine three 
architectural ideas, local understanding of the image, shared 
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weights and subsampling to ensure some degree of shift and 
distortion invariance [12].  The main architectural benefit of 
CNN is few parameters which in turn improve the learning 
time and a reduction in the amount of training data however 
enough training data increases the prediction accuracy. They 
are made up of Convolutional layers which act as feature 
extractors from input images, pooling layers which perform 
sampling operations on the  dimensions of the input image 
thereby reducing the dimensions  and fully connected layers 
which acts as classifiers by using the high level features 
learned [11][12][13][14]. Fig. 1 shows a typical Convolutional 
Neural Network Architecture where several convolutions are 
applied creating different representations of training datasets. 

Traditionally classification problems were solved by first 
manually extracting image features and then serving the 
features as input to a trainable classifier which meant that the 
accuracy of the task was dependent on the extracted features. 
This limited the use of the manual approach [11][14]. Deep 
learning algorithms particularly Convolutional Neural 
Networks have proved to overcome the challenges of manual 
feature extraction but the increase in the complexity and size of 
the networks meant that a huge amount of training dataset is 
required which brings in the need for good computing power 
[15]. Training a good CNN from scratch requires a huge 
dataset and good computational resources. Fortunately one can 
use a technique called transfer learning to solve a classification 
problem. Transfer learning is the process of using a CNN that 
has been trained on a generic image classification task to solve 
a more specialized classification task. It is the use of a pre-
trained model on another task as the starting point to another 
model of a different task. It falls into two categories: (i) Feature 
extraction which is the extraction of meaningful features from 
new samples by using representations learned by the pre-
trained model in the previous work. This involves the training 
of a Top layer (classification layer) which is usually a Softmax 
function which is the output function of the last layer in neural 
networks whose purpose is to turn the score produced by the 
network into values that can be interpreted by humans. The 
Softmax function is defined as follows [15]. 

The function is given by:          (    ) 

 (z) 
exp    1 

 ∑ exp  n
j 1   j 

   1 i  n                              (1) 

When   =1, (1) is called the standard Softmax function. 

(ii) Fine tuning which is trying to unfreeze a few layers 
from the pre-trained model and training them together with the 
new classification layer [16][17][18]. Fig. 2 shows an example 
of transfer learning architecture. 

There exists a number of pre-trained models which have 
successfully been used in recent years in transfer learning to 
solve classification problems such as ResNet50, inceptionV3, 
MobileNetV3 and VGG16. The models have been trained on 
huge datasets giving them the ability to generalize to new 
datasets when used in transfer learning [15]. Some of the 
models such as the InceptioV3 (Fig. 3) have been used in many 
image classification problems and have shown to have attained 
accuracies greater than 78.1% [19] [20]. 

The inceptionV3 was developed and trained using a Deep 
Learning framework called Tensorflow which provides several 
libraries for numerical computations [17][20][21][22]. In 
addition, Tensorflow provides a web based dashboard for 
visualizing the ongoing training called Tensorboard and makes 
it easy to deploy the trained model using what is called 
Tensorflow serving. In this research we are using the Feature 
extraction part of transfer learning since the inceptionV3 model 
has been trained on a large dataset enough for it to generalize 
to our datasets. of course Fine tuning will be the best option to 
get better and higher accuracies. 

 

Fig. 1. Typical CNN Architecture. 

 

Fig. 2. Typical CNN Architecture. 

 

Fig. 3. InceptionV3 Architecture. 
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B. CNN Application in Classification Problems 

The success that Convolutional Neural Networks have 
found in the classification problem domain can be attributed to 
a number of factors which may include but not limited to 
automatic feature detection, higher accuracies obtained, 
availability of good computing resources such as GPUs and 
availability of large datasets. Convolutional Neural Networks 
have successfully been used in many areas of agriculture in 
what is termed as Smart Farming. Some of the areas where 
CNNs have been used in agriculture include crop type 
classification, plant disease detection and recognition and so on 
[11]. In [18], the authors developed a model for predicting skin 
cancer cells by image classification using CNN and obtained 
more than 85% prediction accuracy and [23] tried to automate 
the classification of ovarian cancer using CNN to aid 
pathologists in cancer diagnosis. They used CNN based on 
AlexNet to predict ovarian cancer from cytological images. 
They obtained an accuracy of 78.20% by using augmented 
datasets. [24] Presented a self-operating stretcher developed 
using CNN transfer learning that solves the problem of 
transporting patients from long distances or short distances. 
The stretcher is trained to detect and identify the objects in its 
path. Authors in [17, 23, 24] showed that CNN are also 
applicable in medicine and are helping to solve many 
challenges that the field faces. [25] Applied CNN to the 
automatic classification of mosquitoes in the field. They used 
4,056 mosquito images as training dataset and obtained 
classification accuracy of 82%.  [26] Presented a method and 
the performance of the model for detection and classification of 
insects on sticky traps using CNN and obtained an average 
accuracy of 87.4%. Author in [27] applied CNNs in the 
identification of bacteria using 3D microscopy datasets. They 
tried to use CNNs to distinguish bacteria from non-bacterial 
objects from images obtained from zebrafish intestines using a 
microscopy. They deducted that CNNs are as accurate as 
human experts. The application of CNNs is broader and wide 
and results have shown that they are as accurate as they can be 
provided the correct training is done. 

III. MATERIALS AND METHODS 

A. Ethical Statement 

The field data collection did not involve any species that is 
considered endangered hence no permits were required for us 
to collect data from the field. 

B. Data Collection 

Data was collected from 4 sources namely the field, Lab 
setup, and Internet crawling and data augmentation. Field data 
was collected from the Zambia Agriculture Research Institute 
research farms and taking photos of identified male FAW moth 
using a Cannon PowerShot SX430 IS Camera. With the aid of 
entomologists who are experts in FAW moth identification, we 
were able to obtain data from pheromone traps and from maize 
plants as FAW favors maize fields and most of them were 
resting in the fields as they are active during the night due to 
their delicate nature when exposed to the sun.  In addition to 
taking photos and to supplement the collected data, we 
collected live FAW moths in beakers and set them up in a lab 
kind of environment. Since we will be dealing with the 
identification of live moths we tried as much as possible to take 

photos of live moths strategically positioned in the pheromone 
trap or in the beaker though we also had images of dead FAW 
moths which made it easier to strategically position them.  The 
collected data was not enough so we mixed the data from the 
field and lab setup with Internet images of FAW moths. We 
manually collected images from the internet by searching in the 
browser to make sure that the FAW moth images resemble the 
field images in terms of features and make sure that the 
collected image contains only the FAW moth as shown by 
Fig. 4. 

The data collected from the field, Lab setup and Internet 
was not enough to give us confidence that we will train a 
reasonable model. To get a dataset that gave us comfort in 
terms of model training and testing, we used data 
augmentation, in fact 60% of the dataset came from 
augmentation. We used a python script which generated atleast 
8 (67x65) more images as shown by Fig. 5 from an image by 
applying random cropping, random flipping, rotation using a 
rotation range of 40 degrees and random zoom. 

Our focus was mainly on the automated identification of 
FAW moth but Convolutional neural networks requires that 
there are atleast two classes to perform a classification problem 
properly therefore we used other insects and moths which we 
referred to us false positives. There was no big reason that 
compiled us to use certain insects as the false positive class 
because it is hoped that the lure used in the traps which will act 
as the source of images will attract only FAW moth and 
majority of the insects attracted are FAW male moths. We 
therefore included a variety of insects with majority of them 
being moths which included but not limited to African 
bollworm moth, African Fly, Mosquitoes, Corn Borer moth, 
cutworm moths, stalkborer moths, stem borer moths and so on. 
The images of other insects were all collected by crawling the 
internet and we applied data augmentation to increase the 
dataset. We wanted to see how the model will perform if it was 
trained on unclear images (pixilated at 10pixels) and tested on 
clear actual FAW images, so we created another dataset of 
blurred FAW images from the dataset we made using a python 
script. 

 

Fig. 4. Images Collected from the Field, Lab Setup and Internet 

Respectively. 

 

Fig. 5. Sample of Image Augmentation with the First One being the 

Original. 
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C. Data Selection and Distribution 

Once the dataset was structured, training, validation and 
testing images were determined. Before doing data 
augmentation, we selected 30 FAW images and 15 false 
positive images as test datasets. We selected mostly original 
clear unaugmented images as test images. The selected test 
images were not used in the training to avoid overfitting and 
were used only after the model was trained. We divided the test 
datasets into three parts of 15 images each namely Augmented, 
Actual Clear FAW and False Positives. The test Augmented 
images were a mixture of pixilated (at 5 pixels) images and 
randomly rotated, random vertically flipped and rescaled 
images.  A total of 750 FAW images and 400 false positive 
images were generated using the process described in data 
collection section when data augmentation was done. Out of 
750 FAW images, 10% were used as validation images since 
Tensorflow uses auto validation and the rest of the images 
were used as training dataset. From 400 false positives, 10% 
were used as validation dataset aswell and the rest as training 
dataset. Table I shows the division of the dataset. 

D. CNN Model Training and Testing 

We used Transfer learning to train a Softmax layer on Top 
of the InceptionV3 model trained on the imageNet dataset 
which is a dataset of about 15 million labeled high resolution 
images with around 22, 000 categories [20].  The inception 
model gives high accuracy but is slower during training and 
looking at the dataset we had, it was the ideal choice. The 
training of the model was done on a Corei5 machine with 4GB 
RAM and 1TB hard disk. The operating system used was 
Ubuntu 18.04. We created a python virtual environment were 
all the dependents were installed to avoid conflicting 
dependent versions. Before training, Convolutional Neural 
Network algorithms demands defining parameters before 
training as they are likely to influence the classification results 
therefore we left all the parameters such as dropout, batch size, 
image crop and so on as they are defined in the pre-trained 
model and only altered the learning rate and training steps. We 
ran 8 trials and in each trial changing the learning rate and the 
number of training steps (epochs) in order to get the best and 
tested the models. From the 8 trials we got the best two trials 
which gave the best test accuracy and error rate. Out of the two 
selected trials, we picked the parameters of the model that gave 
the best results after being tested on test data and trained a 
pixilated FAW images model. The purpose of the pixilated trial 
was to test how the model will perform if trained on pixilated 
(blurred) images and tested on clear, augmented and false 
positive images. after training the Pixilated FAW images 
model, we ran the test data using the model and recorded the 
results and at the end we had three trials, namely, i) Clear 
FAW images, 0.01 learning rate, and 1500 training steps; 
ii) Clear FAW images, 0.001 learning rate and 5500 training 
steps; and iii) Pixilated (blurred) FAW images at 10 pixels, 
0.01 learning rate and 1500 training steps and ranked them 
according to the best performing model in terms of identifying 
the actual and augmented FAW images and false positives. 

TABLE. I. DATA DISTRIBUTION 

Category Total Training Validation Test 

FAW 780 645 75 30 

False positives 400 360 40 15 

IV. RESULTS 

After a couple of trials to try and get the best learning rate 
and training steps, we finally got two of the best learning rates, 
0.01 using 1500 training steps and 0.001 using 5500 training 
steps. We used 0.01 learning rate with 1500 steps to train 
another model using pixilated FAW moth images just to test 
the performance of the model when tested with clear images. 
We have grouped the results of the three tests into groups 
according to the model that performed better on all categories 
of test data. 

A. Clear Faw Images, 0.01 Learning Rate, and 1500 Training 

Steps 

Classification accuracies of round one model on all the 
three test categories are given by Table II. The model gave an 
average classification accuracy of 82% on actual clear FAW 
images, an average of 70.84% on augmented images and an 
average accuracy of 32.1% on false positives. The predication 
accuracy was low in augmented images due to the fact that the 
images were distorted with most of them being pixilated. The 
model performed well in false positives which were images of 
other insects not FAW and were not used in the training 
dataset. Fig. 6 and 7 shows the Tensorboard training graphs 
and Fig. 8 shows the prediction accuracies. 

TABLE. II. ROUND 1 PREDICTION ACCURACIES 

# Augmented % Actual % False positives % 

1 97.8 90.1 54.7 

2 84.3 98.2 49.8 

3 97.6 97.6 24.1 

4 19 90.9 47.5 

5 40 99.4 42.9 

6 95.8 93.7 80 

7 31.6 51.7 45 

8 89.4 94.2 0.1 

9 77.9 94.4 71.1 

10 47 43.5 0.2 

11 64.1 74.8 7.4 

12 87.9 86.2 1.2 

13 79.6 69.8 52.7 

14 92.6 47.9 1.3 

15 58 97.5 2.7 
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Fig. 6. Round 1 Training Accuracy. 

 

Fig. 7. Round 1 Cross Entropy. 

 

Fig. 8. Round 1 Prediction Accuracy. 

B. Clear Faw Images, 0.001 Learning Rate, and 5500 

Training Steps 

Table III shows the prediction accuracies of the second 
round model and gave average prediction accuracies of 75.8% 
on actual clear FAW images, 76% on augmented images and 
48.8% on false positives. The drop in the accuracies on actual 
images might be attributed to the rate at which the model was 
learning as we reduced the learning rate. Fig. 9 and 10 shows 
the Tensorboard training graphs and Fig. 11 shows the 
prediction accuracies. 

C. Pixilated (Blurred) Faw Images at 10 Pixels, 0.01 

Learning Rate and 1500 Training Steps 

Table IV shows the prediction accuracies of the third round 
model. The model performed badly in all categories when 
tested on all three test categories as shown in Fig. 12. 

TABLE. III. ROUND 2 PREDICTION ACCURACIES 

# Augmented % Actual % False positives % 

1 95.8 90.1 5.2 

2 80.9 96.3 33.8 

3 95.2 67.5 20 

4 12.2 74.2 19.1 

5 41.1 91 4 

6 86.5 91.7 2.9 

7 73.5 50.3 93.4 

8 77.5 89 46.8 

9 80.9 98.7 94.5 

10 85 17.9 47.8 

11 77.5 89.2 94 

12 89 95.7 56.7 

13 93.6 39.3 73.5 

14 95.2 50 87.4 

15 61 96.7 53.1 

 

Fig. 9. Round 2 Training Accuracy. 

 

Fig. 10. Round 2 Cross Entropy. 
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Fig. 11. Round 2 Prediction Accuracy. 

TABLE. IV. ROUND 3 PREDICTION ACCURACIES 

# Augmented % Actual % False positives % 

1 94.3 17 93.2 

2 3.9 7.8 99.7 

3 66 1.6 99.6 

4 8.6 62.6 1.2 

5 13.3 9.2 1.9 

6 99.1 28.5 9.7 

7 12.6 11.2 93 

8 25 1.2 53 

9 9.6 1.3 14.8 

10 53.9 16 42 

11 99.8 9.4 100 

12 40.7 0.3 100 

13 6.5 11.8 97.5 

14 39.3 12.6 0.5 

15 51 14.8 0.7 

 

Fig. 12. Round 3 Prediction Accuracy. 

V. DISCUSSION 

We tested a model for the automatic identification and 
classification of Fall Army worm using convolutional neural 
networks. The major challenges we faced in the study included 
but not limited to; the size of test data which was fairly little 
and we had to rely on data augmentation which most likely 
affected results since to train a good CNN a good amount of 
data is needed. The lab setup was a bit challenging when 
dealing with live moth as it was near impossible to place them 
strategically hence we relied on the dead ones most of the time. 
The other challenge was the lack of previous work on Fall 
Army Worm using CNN which could have provided us with an 
opportunity to build on what others have done. Lack of good 
computing power meant that we had to use a pretrained model 
instead of building our own from scratch which would have 
given us an opportunity to fine tune the network in a way that 
suits our needs and hence get better results. 

As CNNs requires a fairly large amounts of data to train a 
good recognition model and we had little data, we applied 
transfer learning using the inceptionV3 pre-trained model. The 
prediction accuracies were largely affected by little training 
data. After several trials the results of round one gave a better 
prediction accuracy (82%) which could greatly be attributed to 
the higher learning rate. Many improvements can be done to 
try and improve the prediction accuracies such as using fine 
tuning instead of feature extraction transfer learning and 
unfreeze a few feature extraction layers of the inception model 
and train them together with our new classification layer.  We 
could also try and increase the training data set by collecting 
more images from the field and the internet and applying 
augmentation even though augmentation does not guarantee 
that the model will learn any new features. The other 
improvements we could use is the removal of noise from the 
current dataset such as removing the entire background from 
images. Another factor to consider would be the introduction 
of other insect classes because in the presented results our 
focus was on FAW only hence we just introduced a false 
positive class and added insects which are likely to be attracted 
to the FAW pheromone hormone. 

VI. CONCLUSION 

In this paper we investigated the use of Convolutional 
Neural Networks to identify and classify Fall Army Worm 
moth. We have presented results of three models built using 
transfer learning and the best model gave an average prediction 
accuracy of 82%. This is an ongoing research and future work 
may include but not limited to; increasing and cleaning the 
dataset by continuing to collect more from the field and the 
internet, trying the feature extraction of transfer learning and 
use the extracted features in a support vector machine and see 
how the results compare with the results of this paper, apart 
from the inceptionV3 we intend on trying out other pre-trained 
models such as mobileNet and compare the results with that of 
inceptionV3. The other work that will attempt to do is the use 
of more advanced deep learning algorithms and see how the 
results compares. The results show that it is possible to build a 
CNN model for FAW classification hence we develop a 
monitoring tool based on the model to achieve near real-time 
monitoring of the Fall Army worm. 
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