
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

8 | P a g e

www.ijacsa.thesai.org

Phishing Websites Detection using Machine Learning

Arun Kulkarni1, Leonard L. Brown, III2

Department of Computer Science

The University of Texas at Tyler

Tyler, TX, 75799

Abstract—Tremendous resources are spent by organizations

guarding against and recovering from cybersecurity attacks by

online hackers who gain access to sensitive and valuable user

data. Many cyber infiltrations are accomplished through

phishing attacks where users are tricked into interacting with

web pages that appear to be legitimate. In order to successfully

fool a human user, these pages are designed to look like

legitimate ones. Since humans are so susceptible to being tricked,

automated methods of differentiating between phishing websites

and their authentic counterparts are needed as an extra line of

defense. The aim of this research is to develop these methods of

defense utilizing various approaches to categorize websites.

Specifically, we have developed a system that uses machine

learning techniques to classify websites based on their URL. We

used four classifiers: the decision tree, Naïve Bayesian classifier,

support vector machine (SVM), and neural network. The

classifiers were tested with a data set containing 1,353 real world

URLs where each could be categorized as a legitimate site,

suspicious site, or phishing site. The results of the experiments

show that the classifiers were successful in distinguishing real

websites from fake ones over 90% of the time.

Keywords—Phishing websites; classification; features; machine

learning

I. INTRODUCTION

While cybersecurity attacks continue to escalate in both
scale and sophistication, social engineering approaches are still
some of the simplest and most effective ways to gain access to
sensitive or confidential information. The United States
Computer Emergency Readiness Team (US-CERT) defines
phishing as a form of social engineering that uses e-mails or
malicious websites to solicit personal information from an
individual or company by posing as a trustworthy organization
or entity [1]. While organizations should educate employees
about how to recognize phishing e-mails or links to help
protect against the above types of attacks, software such as
HTTrack is readily available for users to duplicate entire
websites for their own purposes. As a result, even trained users
can still be tricked into revealing private or sensitive
information by interacting with a malicious website that they
believe to be legitimate.

The above problem implies that computer-based solutions
for guarding against phishing attacks are needed along with
user education. Such a solution would enable a computer to
have the ability to identify malicious websites in order to
prevent users from interacting with them. One general
approach to recognizing illegitimate phishing websites relies
on their Uniform Resource Locators (URLs). A URL is a
global address of a document in the World Wide Web, and it

serves as the primary means to locate a document on the
Internet. Even in cases where the content of websites are
duplicated, the URLs could still be used to distinguish real sites
from imposters.

One solution approach is to use a blacklist of malicious
URLs developed by anti-virus groups. The problem with this
approach is that the blacklist cannot be exhaustive because new
malicious URLs keep cropping up continuously. Thus,
approaches are needed that can automatically classify a new,
previously unseen URL as either a phishing site or a legitimate
one. Such solutions are typically machine-learning based
approaches where a system can categorize new phishing sites
through a model developed using training sets of known
attacks.

One of the main problems with developing machine-
learning based approaches for this problem is that very few
training data sets containing phishing URLs are available in the
public domain. As a result, studies are needed that evaluate the
effectiveness of machine-learning approaches based on the data
sets that do exist. This work aims to contribute to this need.
Specifically, the goal of this research is to compare the
performance of the commonly used machine learning
algorithms on the same phishing data set. In this work, we use
a data set, where features from the data URLs have already
been extracted, and the class labels are available. We have
tested common machine learning algorithms for the purpose of
classifying URLs such as SVM, Naïve Bayes’ classifier,
decision tree, and neural network.

The remainder of this paper is structured as follows.
Section II describes the related work in classifying phishing
URLs. Section III provides the details of the data set and
methodology, Section IV describes the results of the tests and
provides discussion. Section V describes limitations of the
present work and directions for the future work.

II. RELATED WORK

Machine learning techniques that identify phishing URLs
typically evaluate a URL based on some feature or set of
features extracted from it. There are two general types of
features that can be extracted from URLs, namely host-based
features and lexical features. Host based features describe
characteristics of the website, such as where it is located, who
manages it, and when was the site installed. Alternatively,
lexical features describe textual properties of the URL. Since
URLs are simply text strings that can be divided into subparts
including the protocol, hostname, and path, a system can assess
a site’s legitimacy based on any combination of those
components.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

9 | P a g e

www.ijacsa.thesai.org

Many machine learning techniques have been used for
detection of malicious URLs. Sadeh et al. [2] proposed a
system called PILFER for classifying phishing URLs. They
extracted a set of ten features that are specifically designed to
highlight deceptive methods used to fool users. The data set
consists of approximately 860 phishing e-mails and 6950 non-
phishing emails. They used a Support Vector Machine (SVM)
as a classifier in the implementation. They trained and tested
the classifier using 10-fold cross validation and obtained 92
percent accuracy.

Ma et al. [3] considered the URL classification problem as
a binary classification problem and built a URL classification
system that processes a live feed of labeled URLs. It also
collects URL features in real time from a large Web mail
provider. They used both lexical and host-based features. from
the gathered features and labels, they were able to train an
online classifier using a Confidence Weighted (CW) algorithm.
Parkait et al. [4] provide a comprehensive literature review
after analyzing 358 research papers in the area of phishing
counter measures and their effectiveness. They classified anti-
phishing approaches into eight groups and highlighted
advanced anti-phishing methods.

Abdelhamid et al. [5] built a system for detecting phishing
URLs called Multi-label Classifier based on Associative
Classification (MCAC). They used sixteen features and
classified URLs into three classes: phishing, legitimate, and
suspicious. The MCAC is a rule-based algorithm where
multiple label rules are extracted from the phishing data set.
Patil and Patil [6] provided a brief overview of various forms
of web-page attacks in their survey on malicious webpages
detection techniques.

Hadi et al. [7] used the Fast-Associative Classification
Algorithm (FACA) for classifying phishing URLs. FACA
works by discovering all frequent rule item sets and building a
model for classification. They investigated a data set consisting
of 11,055 websites with two classes, legitimate and phishing.
The data set contained thirty features. They used the minimum
support and the minimum confidence threshold values as two
percent and fifty percent, respectively.

Nepali and Wang [8] proposed a novel approach to detect
malicious URLs using only visible features from social
networks. Kuyama et al [9] proposed a method for identifying
the Command and Control server (C&C server) by using
supervised learning and features points obtained from WHOIS
and DNS information. They evaluated domain names and e-
mail addresses from the WHOIS as input values for machine
learning.

In addition to the above solutions, several researchers have
surveyed the field of malicious URL detection. Sahoo et al.
[10] provide a comprehensive survey and structural
understanding of malicious URL detection techniques using
machine learning.

III. METHODOLOGY

A. Dataset

The data set used in this paper was downloaded from the
University of California, Irvine Machine Learning Repository,

Center for Machine Learning and Intelligent Systems [11]. It
contains features from 1353 URLs. Out of these, 548 are
legitimate, 702 are phishing, and 103 are suspicious. The data
set also contains nine features that were extracted from each
URL. The attributes provide information such as the URL
anchor, popup window, age of the domain, URL length, IP
address, web traffic, etc. Each feature value holds categorical
values, either binary or ternary. Binary values indicate that the
existence or the lack of existence of the feature within the URL
determines the value assigned to that feature. For ternary
features, the existence of the feature in a specific ratio
determines the value assigned to that feature. The features that
we used in this research work are described in the following
paragraphs.

1) Server Form Handler (SFH): Usually information is

processed in the same domain where the webpage is loaded. In

phishing websites, the server form handler is either empty or is

transformed to another domain that is not legitimate.

2) Secure Socket Layer (SSL) final state: Phishing

websites may use HTTPs protocol. This is a warning to end

users letting them know that the site is not secured by SSL.

3) Popup windows: Usually, legitimate sites do not ask

users their credentials via popup windows.

4) Request URL: Often, in legitimate websites, objects are

loaded from the same domain where the webpage is loaded.

5) URL of the anchor: The hypertext reference is used to

specify a target for the anchor element. If the anchor points to

a different domain rather than the domain where the webpage

is loaded, then the website is suspicious or phishing.

6) Web traffic: High web traffic indicates that website is

used regularly and is likely to be legitimate.

7) URL length: Phishing websites often use long URLs so

that they can hide the suspicious part of the URL.

8) Age of the domain: Domains that are in service for a

longer period of time are likely to be legitimate.

9) Having IP address in the URL: The usage of an IP

address in the domain name is an indicator of a non-legitimate

website.

10) Class: In this data set, the URLs are categorized into

three classes: phishing, suspicious, and legitimate.

B. Classifiers

This work used the above data set to compare the
performance of four classifiers. Specifically, we used the
decision tree, Naïve Bayes’ classifier, SVM, and the Neural
Network to classify the URLs in the data set, and then we
compared the results using confusion matrices.

1) Decision tree: Decision trees are non-parametric

classifiers. As its name indicates, a decision tree is a tree

structure, where each non-terminal node denotes a test on an

attribute, each branch represents an outcome of the test, and the

leaf nodes denote classes. The basic algorithm for decision tree

induction is a greedy algorithm that constructs the decision tree

in top-down recursive divide-and-conquer manner [12]. At

each non-terminal node, one of attributes is chosen for the split.

The attribute that gives the maximum information gain is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

10 | P a g e

www.ijacsa.thesai.org

chosen for the split. A well-known algorithm for decision trees

is the C4.5 algorithm where entropy is used as a criterion to

calculate the information gain. The information gain is defined

as the difference between the entropy before the split and the

entropy after the split. Equations to calculate information gain

are below.

   

   

     

2logj j

j

i i

i

H T p p

Hs T p Hs T

Gain s H T Hs T

 

 

 





 (1)

Where () the entropy before the split, () is the
entropy after the split, and pj is probability of class j. One of
the main concerns with the decision tree classifier is that it over
fits the training data.

2) Naïve bayes’ classifier: This classifier calculates the

posterior probability for each class and assigns the sample to

the class with the maximum probability [13]. The posterior

probability for class i is given by Equation (2) and can be

calculated from the training set data.

     

   
1

where

i i i

n

i k i

k

P C P C P C

P C P x C






x x

x

 (2)

In Equation (2),  iP Cx is a conditional probability.

3) Support vector machine: This classifier uses a nonlinear

mapping to transform original training data into a higher

dimension and finds hyper planes that partition data samples in

the higher dimensional feature space. The separating hyper

planes are defined as

 (3)

where W is a weight matrix, and b is a constant. The SVM
algorithms find the weight matrix such that it maximizes the
distance between the hyper planes separating two classes.
Tuples that fall on the hyper planes are called as support
vectors [14].

4) Neural network: Neural networks are non-parametric

classifiers. Neural networks provide a powerful alternative to

statistical classifiers. Neural networks can learn with a training

set data and make decisions. We built the neural network using

MATLAB script. In particular, we implemented a three layer

neural network with a back propagation algorithm [15, 16].

The three layers are the input layer, hidden layer, and the

output layer. The number of units in the input layer is equal to

the number of features, and the number of units in the output

layer is equal to the number of classes. During the learning

process, weights in the network are set to small random values.

For each training sample, input values are propagated, and the

output values at the last layer is compared with the target

values to calculate the error. The backpropagation algorithm is

a well-known algorithm. It uses a gradient descent method to

find the minimum. The error is propagated backward to update

the weights so that with each iteration, the Mean Squared Error

(MSE) decreases. The iterations are terminated when the MSE

is less than some constant emin or the number iterations exceeds

the maximum set value. The backpropagation learning

algorithm can be described in the following steps.

Step 1: Initialize weights with small random values.

Step 2: Present an input vector and make a forward pass to

compute weighted sums iS and activations  i io f S for

each unit, where  .f represents the activation function.

Step 3: Backpropagation: Starting with the output units,
make a backward pass through output units and hidden layer
units using Equations 3 and 4.

   ' 1i i if S o o  (3)

   

 

'

'

,

for units in output layer

otherwise

i i i

i

m i m i

m

t o f S

w f S




 


  
 
 


 (4)

In Equations (3) and (4),
,m iw represents weights, and

it

represents target output.

Step 4. Update the weights using Equation 5 where α is a
learning rate.

, ,i j i j i iw w o  (5)

Repeat Steps 2 through Step 4 until the MSE is less that
emin for all samples in the training set.

IV. RESULTS AND CONCLUSIONS

A. Results

The data set we used from The University of California,
Irvine Machine Learning Repository has nine attributes and
contains 1,353 samples. The histogram for the first attribute is
shown in Fig. 1. It can be seen that there are three peaks in the
histogram that represents three classes. The architecture of the
neural network is shown in Fig. 2. There are nine units in the
input layer, one for each feature. The hidden layer consists of
ten units, and the output layer has three units. The three units in
the output layer represent the three classes. Thus, target
vectors {1, 0, 0}, {0, 1, 0}, and {0, 0, 1} represent the three
classes, which are phishing, suspicious, and legitimate,
respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

11 | P a g e

www.ijacsa.thesai.org

Fig. 1. Histogram for Attribute 1.

Fig. 2. A Three-Layer Neural Network.

Sixty percent of the samples were selected randomly for
training the neural network. of the remaining forty percent,
twenty percent were used for validation, and the other twenty
percent were used for testing. The graph for the mean squared
error during training states is shown in Fig. 3. for the decision
tree, Naïve Bayes’ classifier, and SVM, forty percent of the
records were randomly selected records for training, and the
remaining sixty percent were used for testing. The pruned

decision tree is shown in Fig. 4. The confusion matrix obtained
with the pruned decision tree class is shown in Table 1. We
used the same data set as a benchmark and compared the
results of all of the classifiers. The results compared included
the overall accuracy, True Positive Rate (TPR), and False
Positive Rate (FPR) for phishing URL samples. The results of
the tests are shown in Table 2.

Fig. 3. Mean Squared Error.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

12 | P a g e

www.ijacsa.thesai.org

Fig. 4. A Pruned Decision Tree.

B. Conclusions

In this work, we implemented four classifiers using
MATLAB scripts, which are the decision tree, Naïve Bayes’
classifier, Support Vector Machine (SVM), and the Neural
Network. The classifiers were used to detect phishing URLs. In
detecting phishing URLs, there are two steps. The first step is
to extract features from the URLs, and the second step is to
classify URLs using the model that has been developed with
the help of the training set data. In this work, we used the data
set that provided the extracted features. The data set, from The
University of California, Irvine Machine Learning Repository,
contained nine features.

One of the main concerns in the decision tree classifiers is
over fitting. Generally, the decision tree classifies the training
set data very well but yields poor results with a testing dataset.
It is often required to prune the decision tree to work well with
testing data. The pruned decision tree provided the highest
classification accuracy 90.39 percent. with more features in the
data set it may be possible to obtain higher accuracy. In
addition, the accuracy may be improved by using an ensemble
of trees.

It can be seen from Table 2 that the neural network
classifier yielded the lowest accuracy for this data set. One of
the reasons that it did not perform well is that feature vector
values were discrete which results in non-smooth decision
boundaries that separate the three classes. However, it is
possible to use more number of units in the hidden layer or use
deep learning techniques such as adding a number of hidden
layers to improve the performance of the network.

TABLE. I. CONFUSION MATRIX USING A DECISION TREE

 Phishing Suspicious Legitimate

Phishing 262 3 23

Suspicious 7 34 1

Legitimate 13 5 193

TABLE. II. RESULTS FOR THE TESTED CLASSIFIERS

Classifier TPR FPR Accuracy

Pruned Decision Tree 90.97 % 7.81 % 91.5 %

SVM 90.97 % 18.18 % 86.69 %

Naïve Bayes’ Classifier 88.19 % 16.21 % 86.14 %

Neural Network 85.61 % 15.91 % 84.87 %

V. FUTURE WORK

The research work presented here has some limitations and
it can be extended further. The first limitation is that we
considered a small data set that contains 1353 URLs, and there
are 9 features for each URL. The second limitation is that all
features are discrete. Often, classifiers such as decision trees,
Naïve Bayes classifier, and rule-based systems are more
suitable when features are discrete. Furthermore, we used
features that were already extracted from URLs. The present
work can be extended as below.

We can evaluate classifiers using a large data set that
contains a few thousands of URLs and extract more number of
features that may be significant in decision making. Larger
data sets are available in public domain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

13 | P a g e

www.ijacsa.thesai.org

We can generate associative rules using the frequent item
data sets with the minimum support and confidence values and
build a rule-based system using associative rules to classify
URLs. The rule-based classifier then can be compared with
other classification methods. another approach for generating
classification rules from data samples is to divide the feature
space using fuzzy membership functions and extract and
optimize classification rules [17]. The extracted rules can be
used to build a fuzzy inference system that can classify URLs.

In order to avoid the problem of overfitting a classifier, we
need to include a pre-process stage. In processing, we can use
clustering to find out outliers or noisy data samples. Such
samples should not be used in the training set data.

REFERENCES

[1] N. Lord, “What is a Phishing Attack? Defining and Identifying Different
Types of Phishing Attacks”. https://digitalguardian.com/blog/what-
phishing-attack-defining-and-identifying-different-types-phishing-
attacks, 2018.

[2] N. Sadeh, A. Tomasic, and I Fette, “Learning to detect phishing
emails”, Proceedings ofthe16thinternational conference on world wide
web, pp.649–656, 2007.

[3] J. Ma, S. S. Savag, G. M. Voelker, “Learning to detect malicious
URLs”, ACM Transactions on Intelligent Systems and technology, vol.
2, no. 9, pp 30:1-30:24, 2011.

[4] S. Purkait, “Phishing counter measures and their effectiveness–literature
review”, Information Management & Computer Security, vol. 20, no. 5,
pp. 382–420, 2012.

[5] N. Abdelhamid, A. Ayesh, F. Thabtah, “Phishing Detection based
Associative Classification”, Data Mining. Expert Systems with
Applications (ESWA), vol. 41, pp 5948-5959, 2014.

[6] D. R. Patil and J. Patil, J., “Survey on malicious web pages detection
techniques”, International Journal of u-and e-Service, Science and
Technology, vol. 8, no. 5, pp. 195–206, 2015.

[7] W. Hadi, F. Aburrub, and S, Alhawari, “A new fast associative
classification algorithm for detecting phishing websites”, Applied Soft
Computing vol. 48, pp 729-734, 2016.

[8] R. K. Nepali and Y. Wang, Y., “You look suspicious!! Leveraging
visible attributes to classify malicious short urls on twitter”, 2016 49th
Hawaii International Conference on System Sciences (HICSS). IEEE,
pp. 2648–2655, 2016.

[9] M. Kuyama, Y. Kakizaki, and R. Sasaki, “Method for detecting a
malicious domain by using whois and dns features”, The Third
International Conference on Digital Security and Forensics
(DigitalSec2016), p. 74, 2016.

[10] D. Sahoo, C. Liu, and C. H. Hoi, “Malicious URL detection using
machine learning: A Survey”, https://arxiv.org/abs/1701.07179, 2017.

[11] UCI Machine Learning Repository: Website Phishing Data Set (Online)
https://archive.ics.uci.edu/ml/datasets/Website+Phishing.

[12] J. R. Quinlan, “Induction of Decision Trees”, Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[13] J. Han and M. Kamber, “Data Mining–Concepts and Techniques”,
Morgan Kaufmann, San Francisco, CA, 2011.

[14] V. N. Vapnik, “Support-vector networks”, Machine Learning, vol. 20
no. 3, pp 273–297, 1995.

[15] R. P. Lippman, "An introduction to computing with neural nets". IEEE
ASSP Magazine, vol. 3 n,o. 4, pp. 4-22, 1987.

[16] S. L. Gallant, “Neural network learning and expert systems”, The MIT
Press, Cambridge, MA, 1993.

[17] A.D. Kulkarni, “Generating classification rules from training samples”,
International Journal of Advanced Computer Science Applications, vol
9, no. 6, pp 1-6.

