
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

184 | P a g e

www.ijacsa.thesai.org

A Constraint-based Approach to Deal with Self-

Adaptation: The Case of Smart Irrigation Systems

Asmaa Achtaich
1
, Nissrine Souissi

2
, Ounsa Roudies

5

CRI, Université Panthéon Sorbonne Siweb

Univ. Mohammed V Paris, France1

ENSMR2

Siweb, Univ. Mohammed V Rabat, Maroc2, 5

Camille Salinesi
3
, Raúl Mazo

4

CRI, Université Panthéon Sorbonne Paris, France3, 4

Lab-STICC, ENSTA Bretagne Brest, France3

GIDITIC, Universidad EAFIT Medellín

Colombia

Abstract—Smart irrigation is a specific application of the IoT,

where devices composed of sensors and actuators, collect

environmental data, like soil humidity, air temperature and

brightness, in order to lunch or plan irrigation cycles. These

systems function according to a configuration that dictates the

way in which every component should operate. Static

configurations are limited, as they only represent a set of fixed

requirements. However, in domains such as the IoT, technology is

continuously evolving, and various users, sometimes with various

needs, interact with the system. This leads to dynamic

requirements, which are fulfilled by dynamic configurations. This

purpose uses the case of an irrigation system to illustrate such

requirements, and proposes a constrained-based approach to

design self-adaptive smart irrigation systems.

Keywords—IoT; irrigation systems; smart; constraint; product

lines; self-adaptive systems

I. INTRODUCTION

Irrigation is the application of water to a farmed land, to
accompany the growth of plants. Efficient irrigation is the main
key enabler for durable and profitable agricultural production.
Along with the composition of the soil and the temperature and
brightness of the environment, the amount of water
administered to a plant is crucial to its prosperity. The term
“irrigation system” essentially refers to a device or a machine
that (semi) automates the process of irrigation, like drip lines,
sprinklers or center pivot irrigation systems. Aside from the
ones that still require man force, these devices are programmed
to water a surface with a specific amount of water, at a certain
frequency, or when instructed to do so. These “traditional”
irrigation methods have proved wasteful, and in some cases,
ineffective. Thus, the need for a controlled alternative, which
answers to real time needs.

Smart irrigation systems (SIS) refer nowadays to all of the
above, and they are concerned with various aspects of the
agricultural process; soil fertility, temperature and brightness
monitoring and adjusting, and humidity management, of both
soil and air. This can be attainable by assembling a variety of
smart devices, like humidity sensors, temperature sensors,
brightness sensors, cooling systems, adjustable bulbs,
humidifiers, various irrigators, etc. All of which have the
ability to communicate, interact with the environment, and in
some cases, modify it. Hence, smart irrigation systems became
one of the leading applications of the Internet of Things (IoT)
[1]; a paradigm that connects smart devices to enable services

from the most basic ones to the most complex, innovative and
sophisticated. Today’s irrigation systems can monitor real time
indicators, like the humidity, temperature or brightness, and
react accordingly. Depending on the planted plant, and its
requirements in terms of moisture, heat and light, an irrigator
can regulate the soil humidity, an air conditioner can maintain
an optimal temperature, and shades or bulbs can correct the
brightness, all in response to measures collected from various
sensor types. Some of these actuators can also be connected to
a weather based system, and use local weather data to adjust
irrigation, heating and lightning schedules [2].

Typical SIS is programmed to collect data from specific
devices, and react to a set of parameters in a predefined
manner. Authors in [3], [4] and [5] implemented smart farming
and irrigation systems using wireless sensor networks [6], to
monitor moisture level, daylight intensity and other relevant
information, and automatically plan irrigation cycles, water the
farmland, or notify users with appropriate times to water. So
far, similar works have indeed brought major benefits when
compared to manual irrigation. However, some limitations
have arisen. First, real life circumstances are sometimes
unpredictable, then, user’s needs are dynamic, and finally, the
system itself, is prone to various evolutions (software and
hardware). Therefore, static configuration of SIS becomes
unsatisfactory.

The goal of this paper is to approach these limitations by
designing the SIS as a dynamic constraint satisfaction problem,
where the system is described as variables that abstract the
various component of the system. And the user requirements
are translated as constraints that restrict that value of these
variables in specific domains. To achieve this goal, the Action
Research methodology is adopted, specifically, the cyclical
process [7]. The first step in the process is the diagnosis. It
consists of studying the paradigm in order to identify its main
limitations from a distinct point of view. Then an action plan is
elaborated, from the various existing forms of action, to
approach the problems identified. Following this step, the
action planned is realized and implemented, and its
consequences are studied and discussed. Finally, the main
lessons learned are documented in the form of conclusions.

Following these steps, Section 2 investigates the problems
related to current trends in designing SIS. Section 3 presents
the action plan: an irrigation case is introduced in two
scenarios, and the form of action endorsed in this paper is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

185 | P a g e

www.ijacsa.thesai.org

described. Section 4 presents an implementation of the planned
action and discusses the results. Section 5 presents the related
work before conclusion in Section 6.

II. RELATED WORK

For several years, smart irrigation systems have been
tailored to fulfill a specific set of fixed requirements. Authors
like [4] and [5], propose SIS that monitor and act according the
established use cases defined at design time. However, the only
form of adaptation that is managed in their work is limited to
manual parameterization of decisive parameters [8] (When to
irrigate? How long? What temperatures can be harmful, etc).

Designing smart systems in general and smart irrigation
systems in particular, as self-adaptive systems, have attracted a
lot of interest in the recent decade. Authors [9] like propose an
SIS that works hand in hand with a simulation system in a
closed controlling loop, where data is continuously fed to the
simulator from the perception layers of the system, analyzed
then sent back to control the actions. While authors in [10]
adopted a cognitive approach, by correlating past actions and
results to identify good data delivery paths and recommend
intelligent adaptations.

The works of [11] and [12] propose self-adaptation
mechanisms for the IoT in general, as they respectively built an
intelligent gateway that learns users’ behavior and interactions,
and implemented a self-adaptive OS-based and reconfigurable
embedded system according to objectives such as quality of
service, performance, or power consumption.

While these works improve the self-adaptation capabilities
of SIS systems, to the best of our knowledge, they focus on
execution variability management, related to various changes
in the context of the SIS, rather than deal with dynamic
requirements, related to variability in time and space. The first
refers to various possible configurations of the SIS for various
situations, and the second, refers to possible evolutions of the
SIS, in time.

III. PROBLEM INVESTIGATION

A. Overview of Smart Irrigation Systems

Global food demand is exponentially increasing [13], while
the need to conserve resources, like electricity or water, is
becoming significant too [14]. Therefore, the interest in smart
irrigation systems expands. Consequently, several research
efforts have been made in this domain for the last decade,
along with various solutions that have penetrated the market as
well.

Authors in [15] for example use a GPS based remotely
controlled robot to monitor real time field data, and perform
irrigation tasks respectively, like watering, securing or
fertilizing the field. Likewise, in [16], the irrigation system
collects soil, moisture, temperature, humidity and light
measures through sensors, and transfers them to a web server,
which enables the corresponding actuators according to its
preset optimal measures. Various other works tackle the

problem in similar fashion, with slightly different technologies.
For example, some use thermal imaging instead of
conventional sensors to schedule irrigation cycles [17], and
other authors focus on mapping the gap between
communication technologies by combining heterogeneous
devices [18].

Leader industrial solutions, like GreenIQ [19] or Rachio
[20] share similar core concepts. As a matter of fact, while they
may differ in specificities, the combination of their features
includes the monitoring of soil conditions (humidity and
tension), weather, evaporation rates, and the use of water by
the plants to plan appropriate watering schedules. Therefore, as
illustrated in Fig. 1, the main capabilities of SIS can be
summarized in an operational MAPE-K loop [21]. According
to the knowledge base, the monitor calls specific sensors for
data measure, which are analyzed by comparing them to the
optimums required. Then a planner determines the action to
take, which can vary from planning irrigation cycles, to
launching air conditioners or light bulbs, to doing nothing,
when all measure comply.

From a technological point of view, as described in Fig. 2,
context sensors and actuators usually operate with
microcontroller(s), and are configured to transfer real time
collected data at a specified frequency to a remote data
collector and analyzer, through the Internet. A gateway
interfaces devices that communicate with different
communication protocols to the internet. A web, mobile or
cloud-based collector, receives sensor data, and according to its
configuration, requests the actuators to modify its context.

The cornerstone of any smart application is the
configuration of its composing devices, and the configuration
of the controllers (if any) that manage the overall operations.
For example, the configuration of sensors dictates the
frequency at which they send data to the collector, the optimal
measure under or above which they could enable embedded
alarms, or the battery level required to uphold a Wi-Fi
connection. The configuration of an irrigator can specify the
pressure of the water to administer as well as the duration if
this process. The rotation can also be specified in the case of
sprinklers or the speed of wheels in the case of center pivot
irrigation systems. The configuration of an air conditioner can
indicate the temperature to maintain in a greenhouse or the fan
speed and direction. The configuration of the controller
contains the parameters that trigger specific actions; like
waking up a slave device, initiating a service, or transferring
data between devices.

Fig. 1. Implementation of an Operational MAPE-K loop for SIS.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

186 | P a g e

www.ijacsa.thesai.org

Fig. 2. Overview of a SIS Communication Loop.

While some SIS may offer dynamic parameterization
options, to allow users to modify their optimal parameters,
reset information about the plantation context, or be informed
about the needs of their plants, the smart irrigation system host
a static configuration. This configuration defines the pre-set
mean of communication between various devices (e.g. the
humidity sensors use a ZigBee based communication, the smart
meter communicates through Wi-Fi, etc.), determines the
devices responsible for achieving specific tasks (e.g. the
sprinklers irrigate the field, the mains water provides water to
the sprinkler), and may determine the reaction to specific
changes in the environment (e.g. When the moisture of the soil
is at a specific level, the system shall lunch the sprinkler).

B. Limitations of Static Configurations

A static configuration is defined during the development or
implementation process, and remains unchanged over the
lifetime of the SIS. However, the more these applications grow
in size, complexity and users’ expectations, the more
maintenance and supervision efforts are required. Surely, the
dynamic context of agricultural fields, the dynamic market of
irrigation devices, and the various stakeholders that interact
with a SIS require a more flexible and autonomous behavioral
management, as illustrated in Fig. 3. These characteristics of
SIS introduce the following challenges.

Fig. 3. Multiple Sources of Dynamic behaviour.

1) Best-fit configurations: The context of a SIS refers to

everything that surrounds it, and has an impact on it. Some of

these indicators influence the fulfillment of core requirements,

while other provides information about the overall

performance. The measure of humidity, temperature and

brightness for example has an impact on the prosperity of the

plant. Some other context indicators provide insight over other

factors that are just as important to users, like the amount of

water applied, the remaining battery level of devices, or the

level of security established for communications. Depending

on the collected context data, which provides an overview of

the environment in which a system is running at real-time, best

fit requirements specify the configurations that provide the best

results, under the current circumstances.

2) Dynamic configurations: As time goes by, the final

users and execution context of SIS evolve, in quality, and

quantity. The first one refers to the evolutions/change of users’

needs. For instance, when Maria sit up a Greenhouse to farm

Bio Angelicas, being financially efficient was her first concern.

As her business turned more profitable, the speed and quality

of the products became more relevant. The configurations that

are related to both aspects are therefore modified. The second

one refers to the evolution of users themselves, thus their

respective configurations. For instance, after a lucrative launch,

Maria decided to sell her business. The new owners’ approach

and needs are slightly different from hers, which should be

project on the configuration of the SIS too.

3) New configurations: Connected devices (e.g. Internet of

Thing devices or IoT) are growing technical and scientific

fields with great potential for innovation and development.

Communication protocols, identification mechanisms,

operating systems, and even new devices are entering the

market with an unprecedented frequency. Installation,

enrollment and maintenance cost can thus expand. New

requirements describe the positioning of new components

within the SIS, how they can interface and interact with

previous components, and how they are supposed to operate.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

187 | P a g e

www.ijacsa.thesai.org

IV. ACTION PLANNING

In order to tackle the problems introduced in the previous
section, this paper proposes to design smart irrigation systems
as self-adaptive systems (SAS) [22], that can automatically
modify their behavior in the face of a changing context, to best
answer a set of requirements. Thus, with respect to the MAPE-
K loop framework in Fig. 4, the SIS monitors the context and
the state of devices. The collected measures are mapped with
the knowledge base, which englobes information about the
application domain (e.g., sunflower cultivation), information
about available resources (e.g., water), the distribution and
characteristics of the actuators (e.g., water sprinklers), the
context optimums (e.g., temperature, wind and humidity), and
the user requirements. The compliance of the active
configuration is determined, and the resulting action is planned.
It could lead to a reconfiguration of the SIS, or to nothing when
all measures comply. In order to achieve this goal, a case of an
irrigation system is presented in order to illustrate the various
problematics discussed above. Then, the core concepts used to
design the SIS as a SAS re introduced and defined.

A. The Irrigation Case

To demonstrate the specificities in terms of requirements
and illustrate the desired scenarios expected from the SIS,
scenarios of an irrigation case are introduced in the following.
The first scenario describes the requirements of a new
company that wishes to construct a SIS that answers various
needs of users, depending on the current context situation of
the SIS. The second scenario presents the case of Maria, a new
entrepreneur who decides to use GreenLife Solutions, with her
own specific requirements.

1) Scenario 1: Best-fit requirements: GreenLife Solutions

is a (fictive) company that wishes to build a SIS that monitors

change in the environment, and maintains the required levels of

moist, temperature and brightness, all while maintaining a

good compromise between accuracy, and energy and water

efficiency, to insure service durability. In their first prototype,

they assume that a farm is rectangular, and needs up to 4

sprinklers to cover the field area. Along with the sprinklers, a

drip line and a rooftop are installed to insure hybrid irrigation.

The drip line consumes the least water, and the sprinklers are

more accurate. The sprinklers can vary in rotation (360°, 240°,

180°, and 90°) and water pressure (20 to 40).

The irrigation devices are connected to two sources of
water. The rainwater tank collects rain water, and the mains
water is distributed by the local water provider. A water meter
measures the level of water remaining in the tank and the water
consumption from the mains source. The two sources are
enabled alternatively. A pump is only required to be functional
when the rainwater mode is enabled.

To collect information about the general state of the field,
several sensors are to be installed on premise: Humidity
sensors (HS) collect information about the humidity of the soil.
Some humidity sensors have embedded alarms or lightbulbs,
which can tinkle and twinkle. A HS can be slave (asleep until
needed), or master (active). At least one master HS should be
active in the fleet. A rain sensor (RS) is installed outside of the
greenhouse. A light sensor (LS) detects the brightness inside
the greenhouse. The rooftop can also alter the level of soil
humidity and the brightness of the field. It can open partially to
ventilate, open completely when raining, just enough to water
the field, and it can close using the opaque roofing or the
transparent one. These different configurations depend on the
measures transmitted from the LS, the HS and the RS.

2) Scenario 2: Dynamic and new requirements: Maria

owns a small farm in the countryside. She has been trying to

plant Bio Angelica for years, but her work schedule does not

allow her to move back and forth from the city to the farm.

Angelica is a plant that grows better in partial shade, and needs

specific attention in terms of irrigation. Therefore, to help

Maria supervise the process remotely, the GreenLife solution

was recommended to her.

From Maria’s perspective, the SIS must activate the
sprinklers as long as the water consumption from the smart
meter is below the maximum allowed. The first two sprinklers
have a 180° rotation, while the second two have a 360°
rotation. They all pump water in a 30 psi. When the
consumption of water goes higher than the maximum, the SIS
switches to the dripline. The rooftop is activated for irrigation
when the RS detects rain. The rooftop uses the opaque roofing
when the brightness in the field is above the normal measure,
and switches to the transparent roofing when the brightness is
lower.

Fig. 4. Implementation of the SIS in the MAPE-K loop Framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

188 | P a g e

www.ijacsa.thesai.org

By default, the water is distributed from the rainwater, as
long as the water level in the tank is normal, and the power is
on. If one of the two conditions is not fulfilled, the switch lever
moves to the Mains water. The rain sensor broadcast
information about rain instantly at summertime and with a time
span during winter, due to air humidity. To avoid disturbance
during the night time, all alarms are deactivated. In the
morning, the bulbs are deactivated. All displays and alarms are
disabled when there is no human presence detected around the
field. When the electricity consumption is normal, all HS are in
the master mode. This number is minimized when the
electricity consumption becomes higher.

After the period of a year, Maria was not fully satisfied of
the outcome of the greenhouse. She decided to worry less
about the water and energy efficiency, and concentrate more on
accurate means. Her new specifications were the following:
“The sprinklers are the only mean of irrigation. Respectively,
the rotation and pressure of the first two sprinklers is 240° and
30 psi and of the second two is 360° and 40spsi. Humidity
sensors are all on master mode. The fertilizer shall be
connected to the sprinklers to fortify the plants. The rooftop is
always on opaque mode in the mornings, and is transparent in
the evenings and at night.

B. A Constraint-Based Smart Irrigation System

1) Constraint programming: Constraint programming is a

declarative paradigm used to solve real world problems, and

can be used as a formalism to specify systems and processes,

described in the form of variables. Instead of defining an

algorithm that describes the instructions needed to solve a

specific problem, a constraint program defines the properties

that the solution is required to have, and delegates the decision-

making tasks to a solver. In this approach, the program is

called a Constraint Satisfaction Problem (CSP), and is defined

in terms of variables and dependencies that constraint the

valuations of these variables in their respective domains.

The SIS can be modeled as a CSP, where variables are
abstractions of all the elements of the system, as illustrated in
Fig. 5. They can represent a device, a component or a function
of the system or its environment. The constraints defined over
variables translate the user’s requirements. Thereupon, they
can define a restriction on the value of a parameter, determine
whether or not a component should be enabled, or
communicate a preference or a choice of the user. Eventually,
the solution derived from the SIS as a CSP specifies a
configuration of the system, which fulfils the requirements of
the users in an active context.

2) Dynamic constraint satisfaction problems: Static

constraint satisfaction problems can be proven efficient for the

specification of systems such as SIS. However, as discussed

above, these systems undergo continuous change, even after

their initial specification. Reasoning about such dynamic

environments is beyond CSP, as they stipulate that the set of

variables and constraints is known and fixed beforehand.

Dynamic Constraint Satisfaction Problems (DCSP) provide the

necessary mechanisms to progressively analyze different sets

of variables/constraints, for the same problem. In this paper,

the DSCP is viewed as a sequence of CSP, where constraints

are added/removed from the problem incrementally [23].

In the case of SIS, dynamic requirements are translated as
new constraints that dynamically modify the problem.
Furthermore, as the elements composing the SIS are prone to
evolution, their abstractions as variables may or may not be
actively part of a version of the problem.

3) Flexible constraints: For the most part, typical CSPs

deal with hard constraint that shall be satisfied to solve the

overall problem. However, real world problems are more

flexible in nature. therefore, flexible constraints were

introduced to allow the specification of problems that are over-

constrained. With this approach, even when some of the

flexible constraints cannot be satisfied, a useful solution can

still be derived [24].

Fig. 5. Representation of a SIS as a CSP.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

189 | P a g e

www.ijacsa.thesai.org

V. ACTION AND DISCUSSION

The specification of the SIS, as described by GreenLife
Solutions, then by Maria and her partner are implemented in
Minizinc1, respectively in the form of CSP and DCSP.

In this section, each scenario is described in the form of a
constraints problem; a configuration is generated, and is
analyzed to verify its compliance with the needed functionality
and performance.

A. Best-Fit Requirements as a CSP

1) Representation: The scenario described in (1)) can be

designed as a CSP. The various components of the SIS are

abstracted into variables, and the rules that govern the nature of

their relationship are defined as constraints over these

variables. This approach was first proposed by [25] and [26]

and applied to the IoT in cases like [27].

First, the elements of the SIS, along with the functional and
nonfunctional requirements they are supposed to fulfill, are
declared as variables. Functional requirements (FR) can be
satisfied or not. Thus, the domain in which they are solved is
Boolean. Nonfunctional requirements (NFR) are of a more
relaxed nature. They can be defined over a wider domain. This
helps define different priorities to the different NFRs
depending on user preferences and expectations.

Finally, components that realize completely the FR, or
partially the NFR, are declared as Boolean or numeric
variables; the variables that can be selected or omitted in a
configuration are defined over a Boolean domain. Similarly,
elements that define parameters that are instantiated depending
on the runtime state are defined in their respective domains.

%Declaration of the functional requirements

var 0..1: Maintain_Plants;

var 0..1: Irrigate;

var 0..1: Monitor;

%Declaration of nonfunctional requirements

var int: EnergyEfficiency ;

var int: WaterEfficiency ;

var 0..4: HSAccuracy ;

var 0..4: HSEnergyEffciency; …

% Declaration of the SIS components

var bool: Dripline;

var bool: Sprinkler1;

var bool: Sprinkler2; ...

%Declaration of integer variables

var 20..60: Pressure1;

var 90..360: Rotation1; ...

According to the irrigation and monitoring rules defined in
Section (1), the system elements are connected, thus
constrained are presented in the following code snippet.

1 https://www.minizinc.org/

%FR constraints

Cst1_1 : constraint Maintain_Plants = 1;

Cst1_2 : constraint Maintain_Plants * 2 = Irrigate + Monitor;

%Examples of irrigation constraints

Cst1_5 : constraint Irrigate >= FertilizerUnit; % A Fertilizer unit is

optional

Cst1_11 : constraint Irrigate>=Dripline /\ Irrigate>=Rooftop /\

Irrigate*4>=Sprinkler1+Sprinkler2+Sprinkler3+Sprinkler4 /\ ((Dripline

+ Rooftop +(Sprinkler1+Sprinkler2+Sprinkler3+Sprinkler4))=1 \/

(Dripline + Rooftop + (Sprinkler1+Sprinkler2+Sprinkler3+ Sprinkler4)

=4)) /\ Dripline * Rooftop * (Sprinkler1+ Sprinkler2+ Sprinkler3+

Sprinkler4)=0; %Mutual exclusion between sprinklers, Dripline and

Rooftop

Cst1_15 : constraint Sprinkler1 >= 1 <-> (Rotation1 >= 1); %if the

sprinklers are selected, the pressure shall be instantiated as well

%Examples of monitoring constraints

Cst1_27 : constraint Monitor = RS; % The rain sensor is mandatory

Cst1_29 : constraint HS1 >= Master1 /\ HS1 >= Slave1 /\ HS1 =

Master1 + Slave1 ; %A humidity sensor can either be Master or slave

The impact that every component of the SIS has on its
performance is defined by claims, which are maximized
according to the preferences set by the users, towards an
appropriate solution.

%Example of the impact of components on performance

Cst1_38 : constraint C1 > 0 <-> ((Sprinkler1 + Sprinkler2 + Sprinkler3

+ Sprinkler4 > 0) -> IrrEnergyEfficiency <= 2) /\ (Dripline > 0 ->

IrrEnergyEfficiency = 3) /\ (Rooftop >= 0 -> IrrEnergyEfficiency >=

4); %The sprinklers use most of the water, then the dripline, and

finally the rooftop is the least consuming

%Maximization function

Cst1_50 : constraint SIS_Config = Energy_Preference *

EnergyEfficiency+ Accuracy_Preference * Accuracy +

Water_Preference * WaterEfficiency;

solve maximize (SIS_Config);

2) Discussion: All the constraints defined above compose

the CSP. Once run by the solver, a configuration of the SIS is

supplied. Chart 1 illustrates two configurations derived from

the same CSP, each corresponding to the preferences of Maria,

then Sophia, her partner. Maria needs the system to run in an

energy efficient (EE) manner, while Sophia requires accuracy

(A). Theses preferences can be set respectively by instantiating

the parameters Accuracy_Preference; Energy_Preference and

Water_Preference, with their respective weights. Fig. 6 shows

(in red), the configuration generated when accuracy (A) has the

biggest weight. Similarly, the charts delineate (in blue) an

energy efficient (EE) configuration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

190 | P a g e

www.ijacsa.thesai.org

Fig. 6. The Configuration of the SIS (Scenario 1).

As expressed by the constraints presented below, the
configurations mainly differ in the use of Sprinklers and
rooftop (Table I: Irrigation variables). The first being energy
consuming but accurate as it receives data from the sensors and
reacts accordingly. Then the second being energy efficient, but
inaccurate as irrigation depends on an unpredicted element
with is rainfall. Another variable between both configurations
is the number and state of humidity sensors (Table I: sensing
variables). Indeed, selecting multiple HS increases the
accuracy of the collected data. The more master HS there are,
the more data is representative of the field’s actual state.
Similarly, the less active HS there are, and the more they are in
the Slave state; the less energy is consumed, at the expense of
accuracy. Other invariable are similar as they do not impact
either accuracy not energy efficiency according to the CSP.

B. Dynamic and New Requirements as a DCSP

1) Representation: The way Maria intends to use the SIS is

tightly related to fluctuations in the context. Thus, to maintain

satisfying performance under various conditions, she specifies

different requirements to achieve the same goal. Therefore, the

constraints introduced to the CSP differ, depending on current

context.

The context can also be defined in constraint programming
as a set of variables, which are abstractions over a part of the
system’s environment that has an impact on the activity or
quality of the SIS. They can be monitored at runtime by
sensing or by reporting, and are thus dynamic. Context
elements that are valuable to Maria’s case are declared below.

For each context situation (an instantiation of context
variables to specific values), a set of requirements shall be
fulfilled (a set of constraints shall be validated). Vice versa, as
a new context situation occurs, requirements that were once
mandatory become obsolete (thus, the previous set of
constraints becomes irrelevant, and the new one shall be
validated instead).

%Declaration of context variables

0..1: Smartphone_Availability;

0..1: Power_failure;

0..1: Rain;

int: Light;

int: MaxLight;

int: TankCapacity;

0..TankCapacity: TankLevel;

int:MinTankWater;

int: MainsWaterConsumption;

int: MaxMainsConsumption;

1..12: Month;

1..31: DayOfMonth;

00..24:Time;

1..10: int

Adding requirements to an existing SIS is a two steps
process. The first one lies in defining the new constraints
(representative of the new requirements), and the second
process consists of relaxing unrefined constraint, as to not
contradict with new specifications. This is presented in the
following, in the form of Reified and Flexible constraint.

a) Reified constraints: The reification of a constraint c is

the association of a Boolean variable B to a constraint C. When

B is true/false, the reified constraint shall be

satisfied/unsatisfied, respectively. Similarly, when C is

satisfied/unsatisfied, B should be set to true/false, respectively.

In some constraints, a simple implication is used instead of a

full reification, to avoid inconsistency with previous

constraints.

%Constraints on global events

Cst2_1 : constraint Year<=2 <-> GlobalRC1;

Cst2_2 : constraint Year>2 <-> GlobalRC2;

The requirements expressed during the first year, as
described in (2)), are specified in the code bellow. The
occurrence of an event (eg: rain), sets the value of the related
reified constraint to True (eg: RC10=True), therefore enforcing
the constraints reified by RC10, (e.g. Rooftop= 1;). Similarly,
all the other requirements that shall be fulfilled under specific
circumstances are translated into constraints that shall be
satisfied when the related reified constraints are true.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

191 | P a g e

www.ijacsa.thesai.org

%----------------First year requirements

%Examples of constraints that express Events -- First Year

Cst2_10 : constraint (GlobalRC1 /\ Month >=5 /\ Month <10) <->

RC2_3; %Summer

Cst2_11 : constraint (GlobalRC1 /\ Smartphone_Availability = 1)<->

RC3; %Humain presence

Cst2_15 : constraint (GlobalRC1 /\ Power_failure = 1) <-> RC6; %No

electricity

Cst2_17 : constraint (GlobalRC1 /\ Light <= MaxLight) <-> RC8;

%Normal bright

Cst2_19 : constraint (GlobalRC1 /\ Rain = 1) <-> RC10; %Raining

Cst2_20 : constraint (GlobalRC1 /\ (TankLevel >= MinTankWater /\

Power_failure = 0)) <-> RC11; %Water provided from Rainwater

Cst2_22 : constraint (GlobalRC1 /\ (MainsWaterConsumption >=

MaxMainsConsumption) /\ RC10=0)<-> RC13; %Water

consumption is Hight

%Examples of reified constraints and their respective actions -- first

year

Cst2_39 : constraint RC2_3 -> TimeSpan=1;

Cst2_40 : constraint RC3 -> Treshold_Alarm >= 0 /\ HS_Alarm1 >=

0 /\ HS_Alarm2 >= 0 /\ HS_Alarm3 >= 0 /\ HS_Bulb1 >= 0 /\

HS_Bulb2 >= 0 /\ HS_Bulb3 >= 0;

Cst2_43 : constraint RC6 -> (Master1 + Master2 + Master3) <=2 /\

RC4=1 ;

Cst2_47 : constraint RC8 -> Transparent = 1;

Cst2_49 : constraint RC10 -> Rooftop= 1;

Cst2_50 : constraint RC11 -> Rainwater=1;

Similarly, the expectations of Maria for the second year are
expressed as a new set of requirements, translated into new
constraints. Therefore, a new CSP is to be solved, since the
previous constraints are no longer relevant.

%----------------Second year requirements

%Examples of constraints that express Events-- Second year

Cst2_25 : constraint GlobalRC2 /\ (Time >=10 /\ Time <16) <->

RC17;

Cst2_27 : constraint GlobalRC2 <-> RC14;

Cst2_31 : constraint GlobalRC2 <-> RC20;

%Examples of reified constraints and their respective actions --

Second year

Cst2_53 : constraint RC14 -> Sprinkler1+ Sprinkler2 + Sprinkler3 +

Sprinkler4=4 /\ Pressure1=30 /\ Pressure2=30 /\ Pressure3=40 /\

Pressure4=40 /\ Rotation1=240 /\ Rotation2=240 /\ Rotation3=360 /\

Rotation4=360;

Cst2_56 : constraint RC17 -> Opaque = 1;

Cst2_59 : constraint RC20 -> RS + LS + Instant + TimeSpan = 0;

b) Flexible constraints: As the SIS evolves, the

constraints that were once mandatory may become irrelevant or

reduced in priority. Therefore, constraints that once defined a

static structure of the SIS can be subject to change. For

example, a component that was mandatory (Rain sensor) may

become undermined (RS=0). The irrigation and monitoring

components, presented in 4.1. can be transformed into flexible

constraints. The goal is to maximize their satisfiability rather

than solve them. If no contradictory constraint is introduced in

time, the problem is likely to be satisfied completely. However,

if it is the case, some of the constraints are allowed to remain

unsatisfied, without inconsistency warnings. Constraints

(Cst1_10, Cst1_26, Cst1_27) are not satisfied in the light of

new requirements. However, since they are now flexible, their

unsatisfiability does not generate inconsistencies.

%----------------Example of flexed requirements

Cst2_8 : constraint Flex6 <-> Rooftop >= Opaque /\ Rooftop >=

Transparent /\ Rooftop >= Opaque + Transparent /\ Opaque +

Transparent <= Rooftop;

Cst2_22 : constraint Flex19 <-> Monitor = LS;

Cst2_25 : constraint Flex20 <-> Monitor = RS;

C. Discussion

According to these constraints, the configurations of the
SIS, during the first, then the second year, which correspond to
the context variables presented in Table I, are respectively
represented by Red and Blue, in the Fig. 7.

The configurations generated indeed in accordance with
Maria’s requirements. For the first year, if it is raining
(T1:rain=1), then the rooftop shall be selected (T2: Rooftop =
1). Other irrigation means are momentary disabled (T2:
Dripline=0 & Sprinklers=0), until another configuration
specifies otherwise. Human presence is detected around the
field (T1:Smartphone_Availability=1), therefore, display
devices are enabled including humidity sensor’ alarms and
bulbs, and the tank’s threshold alarm (T2: HS_Bulb(1,2,3)=1,
HS_Alarm(1,2,3)=1, & Treshold_Alarm=1). However, since
it’s the morning (Time=15), bulbs are inefficient
(HS_Bulb(1,2,3)=0), as they consume energy without playing a
crucial role, therefore, they are disabled
(T2:HS_Bulb(1,2,3)=0). As the energy state is normal (T1:
Power_Failure=0), all humidity sensors are active
(HS(1,2,3)=1), and are on master mode to maximize data
precision. The brightness level is higher than required for a
healthy plant, therefore, the opaque shades are enabled (T2:
Opaque=1). The level of water in the tank is above the
minimum required, therefore, it will be responsible for
providing irrigation water (T2:Rainwater=1), and will thus
require a working pump (Rw_Pump=1) as well. Finally, as it is
winter time (Month=11), and since air humidity is high, the RS
is likely to mistake faug with rain, thus, the decision about rain
is made with a timespan (T2:Timespan=1) to insure the
righteousness if the information. During the second year,
irrigation shall only be supplied using sprinklers (Sprinkler(1,2,
3, 4)=1), with specific ratios. All humidity sensors are on
master mode. And all display devices are disabled.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

192 | P a g e

www.ijacsa.thesai.org

TABLE. I. INSTANCES OF CONTEXT VARIABLES

Power
Failure

Rain Light
Max
Light

Tank
Capacity

Tank
Level

0 1 51509 46332 20000 7681

MinTank
Water

Mains Water
Consumption

MaxMains
Consumption

Smartphone
Availability

Month /
DayOfMonth

Time

998 220977 200000 1 11/ 2 15

Fig. 7. The Configuration of the SIS (Scenario 2).

VI. CONCLUSION AND PERSPECTIVES

The investigation of the domain of smart irrigation systems
shows that contemporary ecological challenges on the one
hand, and society’s constant need for sophisticated technology
on the other hand are big factors that impact the state of the art
of the internet of things in general, and smart irrigation systems
in particular. Consequently, the generation of SIS, that simply
consisted of reporting on environmental data, and reacting or
planning irrigation cycles, is on the verge of becoming
obsolete. This is mainly a result of user’s requirements that are
perpetually changing, and technology that is constantly
evolving.

The action taken in this paper consists of representing SIS’s
components as variables, and their relations as constraints,
forming a dynamic constraint satisfaction problem. Through a
solver, this paradigm finds a solution that (best) fits the
(dynamic) requirements of users. Therefore, instead of
enrolling a SIS that has a set configuration, designing it as a
dynamic and flexible constraint satisfaction problem allows the
specification of these dynamic requirements, and therefore, the
generation of configurations that fully or partially satisfy them,
on the go. Thanks to sensors and various types of data that can
be provided to irrigation actuators, SIS can now be designed to
accompany dynamic environments, but also, dynamic
requirements in time and place.

The snippets of constraint code introduced above are
manually written in a Minizinc editor. Being that as it may, it is
a fastidious, time consuming and illegible way of documenting
constraints. Implementing the main concepts to build such
programs proves essential. Therefore, as a perspective, a
language that allows the specification of dynamic requirements
in fleets of connected devices, and enables the generation of
configurations that comply with real time contexts proves
substantial.

ACKNOWLEDGMENTS

This work was supported by the Moroccan « Ministère de
l’Enseignement Supérieur, de la Recherche Scientifique et de
la Formation des Cadres », by the « French Embassy in
Morocco », and by the « Institut Français du Maroc ».

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Futur.
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[2] D. Delgoda, H. Malano, S. K. Saleem, and M. N. Halgamuge, “Irrigation
control based on model predictive control (MPC): Formulation of theory
and validation using weather forecast data and AQUACROP model,”
Environ. Model. Softw., vol. 78, pp. 40–53, Apr. 2016.

[3] T. C. Meyer and G. P. Hancke, “Design of a smart sprinkler system,” in
IEEE Region 10 Annual International Conference,
Proceedings/TENCON, 2016.

[4] N. Sales, O. Remedios, and A. Arsenio, “Wireless sensor and actuator
system for smart irrigation on the cloud,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), 2015, pp. 693–698.

[5] X. Zhang, J. Zhang, L. Li, Y. Zhang, and G. Yang, “Monitoring Citrus
Soil Moisture and Nutrients Using an IoT Based System,” Sensors, vol.
17, no. 3, p. 447, Feb. 2017.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Comput. Networks, vol. 38, no. 4, pp. 393–
422, Mar. 2002.

[7] R. L. Baskerville and A. T. Wood-Harper, “A critical perspective on
action research as a method for information systems research,” J. Inf.
Technol., vol. 11, no. 3, pp. 235–246, Sep. 1996.

[8] C. Kamienski et al., “Smart Water Management Platform: IoT-Based
Precision Irrigation for Agriculture.,” Sensors (Basel)., vol. 19, no. 2, p.
276, Jan. 2019.

[9] H. Luo, P. Yang, Y. Li, and F. Xu, “An Intelligent Controlling System for
Greenhouse Environment Based on the Architecture of the Internet of
Things,” Sens. Lett., vol. 10, no. 1, pp. 514–522, Jan. 2012.

[10] F. Al-Turjman, “Introduction to Cognition in IoT,” in Cognitive Sensors
and IoT, Routledge, 2017, pp. 1–4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

193 | P a g e

www.ijacsa.thesai.org

[11] B. M. Hasan Alhafidh and W. Allen, “Design and Simulation of a Smart
Home managed by an Intelligent Self-Adaptive System,” 2016.

[12] Y. Eustache and J.-P. Diguet, “Specification and OS-based
implementation of self-adaptive, hardware/software embedded systems,”
in Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis - CODES/ISSS ’08,
2008, p. 67.

[13] FAO, “Global agriculture towards 2050,” High Lev. Expert Forum-How
to Feed world 2050, pp. 1–4, 2009.

[14] Credence Research, “Global Precision Irrigation Systems Market-
Growth, Share, Opportunities and Competitive Analysis, 2016 – 2023,”
California, 2016.

[15] N. Gondchawar and P. R. S. Kawitkar, “IoT based Smart Agriculture,”
Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 6, pp. 838–842,
2016.

[16] P. Rajalakshmi and S. Devi Mahalakshmi, “IOT based crop-field
monitoring and irrigation automation,” Proc. 10th Int. Conf. Intell. Syst.
Control. ISCO 2016, 2016.

[17] M. Roopaei, P. Rad, and K. K. R. Choo, “Cloud of things in smart
agriculture: Intelligent irrigation monitoring by thermal imaging,” IEEE
Cloud Comput., vol. 4, no. 1, pp. 10–15, 2017.

[18] A. Gulati and S. Thakur, “Smart Irrigation Using Internet of Things,” in
2018 8th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), 2018, pp. 819–823.

[19] “GreenIQ Help Center.” [Online]. Available:
https://support.greeniq.com/hc/en-us.

[20] “Rachio 3 Smart Wi-Fi Sprinkler Controller - New Home Watering
Solution.” [Online]. Available: https://www.rachio.com/rachio-3/.

[21] IBM, “Autonomic Computing White Paper: An Architectural Blueprint
for Autonomic Computing,” IBM White Pap., no. June, p. 34, 2005.

[22] J. Andersson et al., “Software Engineering Processes for Self-Adaptive
Systems,” Softw. Eng. Self-Adaptive Syst. II, pp. 51–75, 2013.

[23] R. Dechter and J. Pearl, “Network-Based Heuristics for Constraint-
Satisfaction Problems,” in Search in Artificial Intelligence, New York,
NY: Springer New York, 1988, pp. 370–425.

[24] E. C. Freuder and R. J. Wallace, “Partial constraint satisfaction,” Artif.
Intell., vol. 58, no. 1–3, pp. 21–70, Dec. 1992.

[25] D. Hughes et al., “An experiment with reflective middleware to support
grid‐based flood monitoring,” Concurr. Comput. Pract. Exp., vol. 20,
no. 11, pp. 1303–1316, Aug. 2008.

[26] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Constraint
Programming as a Means to Manage Configurations in Self-Adaptive
Systems,” Spec. Issue IEEE Comput. J. “Dynamic Softw. Prod. Lines,”
vol. 45, no. October 2015, pp. 56–63, 2012.

[27] A. Achtaich, N. Souissi, R. Mazo, O. Roudies, and C. Salinesi, “A DSPL
Design Framework for SASs: A Smart Building Example,” EAI
Endorsed Trans. Smart Cities, vol. 2, no. 8, p. 154829, Jun. 2018.

