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Abstract—Smart irrigation is a specific application of the IoT, 

where devices composed of sensors and actuators, collect 

environmental data, like soil humidity, air temperature and 

brightness,  in order to lunch or plan irrigation cycles. These 

systems function according to a configuration that dictates the 

way in which every component should operate. Static 

configurations are limited, as they only represent a set of fixed 

requirements. However, in domains such as the IoT, technology is 

continuously evolving, and various users, sometimes with various 

needs, interact with the system. This leads to dynamic 

requirements, which are fulfilled by dynamic configurations. This 

purpose uses the case of an irrigation system to illustrate such 

requirements, and proposes a constrained-based approach to 

design self-adaptive smart irrigation systems. 

Keywords—IoT; irrigation systems; smart; constraint; product 

lines; self-adaptive systems 

I. INTRODUCTION 

Irrigation is the application of water to a farmed land, to 
accompany the growth of plants. Efficient irrigation is the main 
key enabler for durable and profitable agricultural production. 
Along with the composition of the soil and the temperature and 
brightness of the environment, the amount of water 
administered to a plant is crucial to its prosperity. The term 
“irrigation system” essentially refers to a device or a machine 
that (semi) automates the process of irrigation, like drip lines, 
sprinklers or center pivot irrigation systems. Aside from the 
ones that still require man force, these devices are programmed 
to water a surface with a specific amount of water, at a certain 
frequency, or when instructed to do so. These “traditional” 
irrigation methods have proved wasteful, and in some cases, 
ineffective. Thus, the need for a controlled alternative, which 
answers to real time needs. 

Smart irrigation systems (SIS) refer nowadays to all of the 
above, and they are concerned with various aspects of the 
agricultural process; soil fertility, temperature and brightness 
monitoring and adjusting, and humidity management, of both 
soil and air. This can be attainable by assembling a variety of 
smart devices, like humidity sensors, temperature sensors, 
brightness sensors, cooling systems, adjustable bulbs, 
humidifiers, various irrigators, etc. All of which have the 
ability to communicate, interact with the environment, and in 
some cases, modify it. Hence, smart irrigation systems became 
one of the leading applications of the Internet of Things (IoT) 
[1]; a paradigm that connects smart devices to enable services 

from the most basic ones to the most complex, innovative and 
sophisticated. Today’s irrigation systems can monitor real time 
indicators, like the humidity, temperature or brightness, and 
react accordingly. Depending on the planted plant, and its 
requirements in terms of moisture, heat and light, an irrigator 
can regulate the soil humidity, an air conditioner can maintain 
an optimal temperature, and shades or bulbs can correct the 
brightness, all in response to measures collected from various 
sensor types. Some of these actuators can also be connected to 
a weather based system, and use local weather data to adjust 
irrigation, heating and lightning schedules [2]. 

Typical SIS is programmed to collect data from specific 
devices, and react to a set of parameters in a predefined 
manner. Authors in [3], [4] and [5] implemented smart farming 
and irrigation systems using wireless sensor networks [6], to 
monitor moisture level, daylight intensity and other relevant 
information, and automatically plan irrigation cycles, water the 
farmland, or notify users with appropriate times to water.   So 
far, similar works have indeed brought major benefits when 
compared to manual irrigation. However, some limitations 
have arisen. First, real life circumstances are sometimes 
unpredictable, then, user’s needs are dynamic, and finally, the 
system itself, is prone to various evolutions (software and 
hardware). Therefore, static configuration of SIS becomes 
unsatisfactory. 

The goal of this paper is to approach these limitations by 
designing the SIS as a dynamic constraint satisfaction problem, 
where the system is described as variables that abstract the 
various component of the system. And the user requirements 
are translated as constraints that restrict that value of these 
variables in specific domains. To achieve this goal, the Action 
Research methodology is adopted, specifically, the cyclical 
process [7]. The first step in the process is the diagnosis. It 
consists of studying the paradigm in order to identify its main 
limitations from a distinct point of view. Then an action plan is 
elaborated, from the various existing forms of action, to 
approach the problems identified. Following this step, the 
action planned is realized and implemented, and its 
consequences are studied and discussed. Finally, the main 
lessons learned are documented in the form of conclusions. 

Following these steps, Section 2 investigates the problems 
related to current trends in designing SIS. Section 3 presents 
the action plan: an irrigation case is introduced in two 
scenarios, and the form of action endorsed in this paper is 
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described. Section 4 presents an implementation of the planned 
action and discusses the results. Section 5 presents the related 
work before conclusion in Section 6. 

II. RELATED WORK 

For several years, smart irrigation systems have been 
tailored to fulfill a specific set of fixed requirements. Authors 
like [4] and [5], propose SIS that monitor and act according the 
established use cases defined at design time. However, the only 
form of adaptation that is managed in their work is limited to 
manual parameterization of decisive parameters [8] (When to 
irrigate? How long? What temperatures can be harmful, etc). 

Designing smart systems in general and smart irrigation 
systems in particular, as self-adaptive systems, have attracted a 
lot of interest in the recent decade. Authors [9] like  propose an 
SIS that works hand in hand with a simulation system in a 
closed controlling loop, where data is continuously fed to the 
simulator from the perception layers of the system, analyzed 
then sent back to control the actions. While authors in [10] 
adopted a cognitive approach, by correlating past actions and 
results to identify good data delivery paths and recommend 
intelligent adaptations. 

The works of [11] and [12] propose self-adaptation 
mechanisms for the IoT in general, as they respectively built an 
intelligent gateway that learns users’ behavior and interactions, 
and  implemented a self-adaptive OS-based and reconfigurable 
embedded system according to objectives such as quality of 
service, performance, or power consumption. 

While these works improve the self-adaptation capabilities 
of SIS systems, to the best of our knowledge, they focus on 
execution variability management, related to various changes 
in the context of the SIS, rather than deal with dynamic 
requirements, related to variability in time and space. The first 
refers to various possible configurations of the SIS for various 
situations, and the second, refers to possible evolutions of the 
SIS, in time. 

III. PROBLEM INVESTIGATION 

A. Overview of Smart Irrigation Systems 

Global food demand is exponentially increasing [13], while 
the need to conserve resources, like electricity or water, is 
becoming significant too [14]. Therefore, the interest in smart 
irrigation systems expands. Consequently, several research 
efforts have been made in this domain for the last decade, 
along with various solutions that have penetrated the market as 
well. 

Authors in [15] for example use a GPS based remotely 
controlled robot to monitor real time field data, and perform 
irrigation tasks respectively, like watering, securing or 
fertilizing the field. Likewise, in [16], the irrigation system 
collects soil, moisture, temperature, humidity and light 
measures through sensors, and transfers them to a web server, 
which enables the corresponding actuators according to its 
preset optimal measures. Various other works tackle the 

problem in similar fashion, with slightly different technologies. 
For example, some use thermal imaging instead of 
conventional sensors to schedule irrigation cycles [17], and 
other authors focus on mapping the gap between 
communication technologies by combining heterogeneous 
devices [18]. 

Leader industrial solutions, like GreenIQ [19] or Rachio 
[20] share similar core concepts. As a matter of fact, while they 
may differ in specificities, the combination of their features 
includes the monitoring of soil conditions (humidity and 
tension), weather, evaporation rates, and the use of water by 
the plants to plan appropriate watering schedules. Therefore, as 
illustrated in Fig. 1, the main capabilities of SIS can be 
summarized in an operational MAPE-K loop [21].  According 
to the knowledge base, the monitor calls specific sensors for 
data measure, which are analyzed by comparing them to the 
optimums required. Then a planner determines the action to 
take, which can vary from planning irrigation cycles, to 
launching air conditioners or light bulbs, to doing nothing, 
when all measure comply. 

From a technological point of view, as described in Fig. 2, 
context sensors and actuators usually operate with 
microcontroller(s), and are configured to transfer real time 
collected data at a specified frequency to a remote data 
collector and analyzer, through the Internet. A gateway 
interfaces devices that communicate with different 
communication protocols to the internet. A web, mobile or 
cloud-based collector, receives sensor data, and according to its 
configuration, requests the actuators to modify its context. 

The cornerstone of any smart application is the 
configuration of its composing devices, and the configuration 
of the controllers (if any) that manage the overall operations. 
For example, the configuration of sensors dictates the 
frequency at which they send data to the collector, the optimal 
measure under or above which they could enable embedded 
alarms, or the battery level required to uphold a Wi-Fi 
connection. The configuration of an irrigator can specify the 
pressure of the water to administer as well as the duration if 
this process. The rotation can also be specified in the case of 
sprinklers or the speed of wheels in the case of center pivot 
irrigation systems.   The configuration of an air conditioner can 
indicate the temperature to maintain in a greenhouse or the fan 
speed and direction. The configuration of the controller 
contains the parameters that trigger specific actions; like 
waking up a slave device, initiating a service, or transferring 
data between devices. 

 

Fig. 1. Implementation of an Operational MAPE-K loop for SIS. 
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Fig. 2. Overview of a SIS Communication Loop. 

While some SIS may offer dynamic parameterization 
options, to allow users to modify their optimal parameters, 
reset information about the plantation context, or be informed 
about the needs of their plants, the smart irrigation system host 
a static configuration. This configuration defines the pre-set 
mean of communication between various devices (e.g. the 
humidity sensors use a ZigBee based communication, the smart 
meter communicates through Wi-Fi, etc.), determines the 
devices responsible for achieving specific tasks (e.g. the 
sprinklers irrigate the field, the mains water provides water to 
the sprinkler), and may determine the reaction to specific 
changes in the environment (e.g. When the moisture of the soil 
is at a specific level, the system shall lunch the sprinkler). 

B. Limitations of Static Configurations 

A static configuration is defined during the development or 
implementation process, and remains unchanged over the 
lifetime of the SIS. However, the more these applications grow 
in size, complexity and users’ expectations, the more 
maintenance and supervision efforts are required. Surely, the 
dynamic context of agricultural fields, the dynamic market of 
irrigation devices, and the various stakeholders that interact 
with a SIS require a more flexible and autonomous behavioral 
management, as illustrated in Fig. 3. These characteristics of 
SIS introduce the following challenges. 

 

Fig. 3. Multiple Sources of Dynamic behaviour. 

1) Best-fit configurations: The context of a SIS refers to 

everything that surrounds it, and has an impact on it. Some of 

these indicators influence the fulfillment of core requirements, 

while other provides information about the overall 

performance. The measure of humidity, temperature and 

brightness for example has an impact on the prosperity of the 

plant. Some other context indicators provide insight over other 

factors that are just as important to users, like the amount of 

water applied, the remaining battery level of devices, or the 

level of security established for communications. Depending 

on the collected context data, which provides an overview of 

the environment in which a system is running at real-time, best 

fit requirements specify the configurations that provide the best 

results, under the current circumstances. 

2) Dynamic configurations: As time goes by, the final 

users and execution context of SIS evolve, in quality, and 

quantity. The first one refers to the evolutions/change of users’ 

needs. For instance, when Maria sit up a Greenhouse to farm 

Bio Angelicas, being financially efficient was her first concern. 

As her business turned more profitable, the speed and quality 

of the products became more relevant. The configurations that 

are related to both aspects are therefore modified. The second 

one refers to the evolution of users themselves, thus their 

respective configurations. For instance, after a lucrative launch, 

Maria decided to sell her business. The new owners’ approach 

and needs are slightly different from hers, which should be 

project on the configuration of the SIS too. 

3) New configurations: Connected devices (e.g. Internet of 

Thing devices or IoT) are growing technical and scientific 

fields with great potential for innovation and development. 

Communication protocols, identification mechanisms, 

operating systems, and even new devices are entering the 

market with an unprecedented frequency. Installation, 

enrollment and maintenance cost can thus expand. New 

requirements describe the positioning of new components 

within the SIS, how they can interface and interact with 

previous components, and how they are supposed to operate. 
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IV. ACTION PLANNING 

In order to tackle the problems introduced in the previous 
section, this paper proposes to design smart irrigation systems 
as self-adaptive systems (SAS) [22], that can automatically 
modify their behavior in the face of a changing context, to best 
answer a set of requirements. Thus, with respect to the MAPE-
K loop framework in Fig. 4, the SIS monitors the context and 
the state of devices. The collected measures are mapped with 
the knowledge base, which englobes information about the 
application domain (e.g., sunflower cultivation), information 
about available resources (e.g., water), the distribution and 
characteristics of the actuators (e.g., water sprinklers), the 
context optimums (e.g., temperature, wind and humidity), and 
the user requirements. The compliance of the active 
configuration is determined, and the resulting action is planned. 
It could lead to a reconfiguration of the SIS, or to nothing when 
all measures comply. In order to achieve this goal, a case of an 
irrigation system is presented in order to illustrate the various 
problematics discussed above. Then, the core concepts used to 
design the SIS as a SAS re introduced and defined. 

A. The Irrigation Case 

To demonstrate the specificities in terms of requirements 
and illustrate the desired scenarios expected from the SIS, 
scenarios of an irrigation case are introduced in the following. 
The first scenario describes the requirements of a new 
company that wishes to construct a SIS that answers various 
needs of users, depending on the current context situation of 
the SIS. The second scenario presents the case of Maria, a new 
entrepreneur who decides to use GreenLife Solutions, with her 
own specific requirements. 

1) Scenario 1: Best-fit requirements: GreenLife Solutions 

is a (fictive) company that wishes to build a SIS that monitors 

change in the environment, and maintains the required levels of 

moist, temperature and brightness, all while maintaining a 

good compromise between accuracy, and energy and water 

efficiency, to insure service durability. In their first prototype, 

they assume that a farm is rectangular, and needs up to 4 

sprinklers to cover the field area. Along with the sprinklers, a 

drip line and a rooftop are installed to insure hybrid irrigation. 

The drip line consumes the least water, and the sprinklers are 

more accurate. The sprinklers can vary in rotation (360°, 240°, 

180°, and 90°) and water pressure (20 to 40). 

The irrigation devices are connected to two sources of 
water. The rainwater tank collects rain water, and the mains 
water is distributed by the local water provider. A water meter 
measures the level of water remaining in the tank and the water 
consumption from the mains source. The two sources are 
enabled alternatively. A pump is only required to be functional 
when the rainwater mode is enabled. 

To collect information about the general state of the field, 
several sensors are to be installed on premise: Humidity 
sensors (HS) collect information about the humidity of the soil. 
Some humidity sensors have embedded alarms or lightbulbs, 
which can tinkle and twinkle. A HS can be slave (asleep until 
needed), or master (active). At least one master HS should be 
active in the fleet. A rain sensor (RS) is installed outside of the 
greenhouse. A light sensor (LS) detects the brightness inside 
the greenhouse. The rooftop can also alter the level of soil 
humidity and the brightness of the field. It can open partially to 
ventilate, open completely when raining, just enough to water 
the field, and it can close using the opaque roofing or the 
transparent one. These different configurations depend on the 
measures transmitted from the LS, the HS and the RS. 

2) Scenario 2: Dynamic and new requirements: Maria 

owns a small farm in the countryside. She has been trying to 

plant Bio Angelica for years, but her work schedule does not 

allow her to move back and forth from the city to the farm. 

Angelica is a plant that grows better in partial shade, and needs 

specific attention in terms of irrigation. Therefore, to help 

Maria supervise the process remotely, the GreenLife solution 

was recommended to her. 

From Maria’s perspective, the SIS must activate the 
sprinklers as long as the water consumption from the smart 
meter is below the maximum allowed. The first two sprinklers 
have a 180° rotation, while the second two have a 360° 
rotation. They all pump water in a 30 psi. When the 
consumption of water goes higher than the maximum, the SIS 
switches to the dripline. The rooftop is activated for irrigation 
when the RS detects rain. The rooftop uses the opaque roofing 
when the brightness in the field is above the normal measure, 
and switches to the transparent roofing when the brightness is 
lower. 

 

Fig. 4. Implementation of the SIS in the MAPE-K loop Framework. 
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By default, the water is distributed from the rainwater, as 
long as the water level in the tank is normal, and the power is 
on. If one of the two conditions is not fulfilled, the switch lever 
moves to the Mains water. The rain sensor broadcast 
information about rain instantly at summertime and with a time 
span during winter, due to air humidity. To avoid disturbance 
during the night time, all alarms are deactivated. In the 
morning, the bulbs are deactivated. All displays and alarms are 
disabled when there is no human presence detected around the 
field. When the electricity consumption is normal, all HS are in 
the master mode. This number is minimized when the 
electricity consumption becomes higher. 

After the period of a year, Maria was not fully satisfied of 
the outcome of the greenhouse. She decided to worry less 
about the water and energy efficiency, and concentrate more on 
accurate means. Her new specifications were the following: 
“The sprinklers are the only mean of irrigation. Respectively, 
the rotation and pressure of the first two sprinklers is 240° and 
30 psi and of the second two is 360° and 40spsi. Humidity 
sensors are all on master mode. The fertilizer shall be 
connected to the sprinklers to fortify the plants. The rooftop is 
always on opaque mode in the mornings, and is transparent in 
the evenings and at night. 

B. A Constraint-Based Smart Irrigation System 

1) Constraint programming: Constraint programming is a 

declarative paradigm used to solve real world problems, and 

can be used as a formalism to specify systems and processes, 

described in the form of variables. Instead of defining an 

algorithm that describes the instructions needed to solve a 

specific problem, a constraint program defines the properties 

that the solution is required to have, and delegates the decision-

making tasks to a solver. In this approach, the program is 

called a Constraint Satisfaction Problem (CSP), and is defined 

in terms of variables and dependencies that constraint the 

valuations of these variables in their respective domains. 

The SIS can be modeled as a CSP, where variables are 
abstractions of all the elements of the system, as illustrated in 
Fig. 5. They can represent a device, a component or a function 
of the system or its environment. The constraints defined over 
variables translate the user’s requirements. Thereupon, they 
can define a restriction on the value of a parameter, determine 
whether or not a component should be enabled, or 
communicate a preference or a choice of the user. Eventually, 
the solution derived from the SIS as a CSP specifies a 
configuration of the system, which fulfils the requirements of 
the users in an active context. 

2) Dynamic constraint satisfaction problems: Static 

constraint satisfaction problems can be proven efficient for the 

specification of systems such as SIS. However, as discussed 

above, these systems undergo continuous change, even after 

their initial specification. Reasoning about such dynamic 

environments is beyond CSP, as they stipulate that the set of 

variables and constraints is known and fixed beforehand. 

Dynamic Constraint Satisfaction Problems (DCSP) provide the 

necessary mechanisms to progressively analyze different sets 

of variables/constraints, for the same problem. In this paper, 

the DSCP is viewed as a sequence of CSP, where constraints 

are added/removed from the problem incrementally [23]. 

In the case of SIS, dynamic requirements are translated as 
new constraints that dynamically modify the problem. 
Furthermore, as the elements composing the SIS are prone to 
evolution, their abstractions as variables may or may not be 
actively part of a version of the problem. 

3) Flexible constraints: For the most part, typical CSPs 

deal with hard constraint that shall be satisfied to solve the 

overall problem. However, real world problems are more 

flexible in nature. therefore, flexible constraints were 

introduced to allow the specification of problems that are over-

constrained. With this approach, even when some of the 

flexible constraints cannot be satisfied, a useful solution can 

still be derived [24]. 

 

Fig. 5. Representation of a SIS as a CSP. 
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V. ACTION AND DISCUSSION 

The specification of the SIS, as described by GreenLife 
Solutions, then by Maria and her partner are implemented in 
Minizinc1, respectively in the form of CSP and DCSP. 

In this section, each scenario is described in the form of a 
constraints problem; a configuration is generated, and is 
analyzed to verify its compliance with the needed functionality 
and performance. 

A. Best-Fit Requirements as a CSP 

1) Representation: The scenario described in (1)) can be 

designed as a CSP. The various components of the SIS are 

abstracted into variables, and the rules that govern the nature of 

their relationship are defined as constraints over these 

variables. This approach was first proposed by [25] and [26] 

and applied to the IoT in cases like [27]. 

First, the elements of the SIS, along with the functional and 
nonfunctional requirements they are supposed to fulfill, are 
declared as variables. Functional requirements (FR) can be 
satisfied or not. Thus, the domain in which they are solved is 
Boolean. Nonfunctional requirements (NFR) are of a more 
relaxed nature. They can be defined over a wider domain. This 
helps define different priorities to the different NFRs 
depending on user preferences and expectations. 

Finally, components that realize completely the FR, or 
partially the NFR, are declared as Boolean or numeric 
variables; the variables that can be selected or omitted in a 
configuration are defined over a Boolean domain. Similarly, 
elements that define parameters that are instantiated depending 
on the runtime state are defined in their respective domains. 

%Declaration of the functional requirements 

var 0..1: Maintain_Plants; 

var 0..1: Irrigate; 

var 0..1: Monitor; 

%Declaration of nonfunctional requirements 

var int: EnergyEfficiency ; 

var int: WaterEfficiency ; 

var 0..4: HSAccuracy ; 

var 0..4: HSEnergyEffciency; … 

% Declaration of the  SIS components 

var bool: Dripline; 

var bool: Sprinkler1; 

var bool: Sprinkler2; ... 

%Declaration of integer variables 

var 20..60: Pressure1;  

var 90..360: Rotation1; ... 

According to the irrigation and monitoring rules defined in 
Section (1), the system elements are connected, thus 
constrained are presented in the following code snippet. 

                                                           
1 https://www.minizinc.org/ 

%FR constraints  

Cst1_1 : constraint Maintain_Plants = 1; 

Cst1_2 : constraint Maintain_Plants * 2 = Irrigate + Monitor; 

%Examples of irrigation constraints 

Cst1_5 : constraint Irrigate  >= FertilizerUnit; % A Fertilizer unit is 

optional 

Cst1_11 : constraint Irrigate>=Dripline /\ Irrigate>=Rooftop /\ 

Irrigate*4>=Sprinkler1+Sprinkler2+Sprinkler3+Sprinkler4 /\ ((Dripline 

+ Rooftop +(Sprinkler1+Sprinkler2+Sprinkler3+Sprinkler4))=1 \/ 

(Dripline + Rooftop + (Sprinkler1+Sprinkler2+Sprinkler3+ Sprinkler4) 

=4)) /\ Dripline * Rooftop * (Sprinkler1+ Sprinkler2+ Sprinkler3+ 

Sprinkler4)=0;  %Mutual exclusion between sprinklers, Dripline and 

Rooftop 

Cst1_15 : constraint Sprinkler1 >= 1 <-> (Rotation1 >= 1); %if the 

sprinklers are selected, the pressure shall be instantiated as well 

%Examples of monitoring constraints 

Cst1_27 : constraint Monitor = RS; % The rain sensor is mandatory 

Cst1_29 : constraint HS1 >= Master1 /\  HS1 >= Slave1 /\ HS1 = 

Master1 + Slave1 ; %A humidity sensor can either be Master or slave 

The impact that every component of the SIS has on its 
performance is defined by claims, which are maximized 
according to the preferences set by the users, towards an 
appropriate solution. 

%Example of the impact of components on performance 

Cst1_38 : constraint C1 > 0 <-> ((Sprinkler1 + Sprinkler2 + Sprinkler3 

+ Sprinkler4 > 0) -> IrrEnergyEfficiency <= 2) /\ (Dripline > 0 -> 

IrrEnergyEfficiency = 3) /\ (Rooftop >= 0 -> IrrEnergyEfficiency >= 

4); %The sprinklers use most of the water, then the dripline, and 

finally the rooftop is the least consuming 

%Maximization function 

Cst1_50 : constraint SIS_Config = Energy_Preference * 

EnergyEfficiency+ Accuracy_Preference * Accuracy + 

Water_Preference * WaterEfficiency; 

solve maximize (SIS_Config); 

2) Discussion: All the constraints defined above compose 

the CSP. Once run by the solver, a configuration of the SIS is 

supplied. Chart 1 illustrates two configurations derived from 

the same CSP, each corresponding to the preferences of Maria, 

then Sophia, her partner. Maria needs the system to run in an 

energy efficient (EE) manner, while Sophia requires accuracy 

(A). Theses preferences can be set respectively by instantiating 

the parameters Accuracy_Preference; Energy_Preference and 

Water_Preference, with their respective weights. Fig. 6 shows 

(in red), the configuration generated when accuracy (A) has the 

biggest weight. Similarly, the charts delineate (in blue) an 

energy efficient (EE) configuration. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

190 | P a g e  

www.ijacsa.thesai.org 

 

 

Fig. 6. The Configuration of the SIS (Scenario 1). 

As expressed by the constraints presented below, the 
configurations mainly differ in the use of Sprinklers and 
rooftop (Table I: Irrigation variables). The first being energy 
consuming but accurate as it receives data from the sensors and 
reacts accordingly. Then the second being energy efficient, but 
inaccurate as irrigation depends on an unpredicted element 
with is rainfall. Another variable between both configurations 
is the number and state of humidity sensors (Table I: sensing 
variables). Indeed, selecting multiple HS increases the 
accuracy of the collected data. The more master HS there are, 
the more data is representative of the field’s actual state. 
Similarly, the less active HS there are, and the more they are in 
the Slave state; the less energy is consumed, at the expense of 
accuracy. Other invariable are similar as they do not impact 
either accuracy not energy efficiency according to the CSP. 

B. Dynamic and New Requirements as a DCSP 

1) Representation: The way Maria intends to use the SIS is 

tightly related to fluctuations in the context. Thus, to maintain 

satisfying performance under various conditions, she specifies 

different requirements to achieve the same goal. Therefore, the 

constraints introduced to the CSP differ, depending on current 

context. 

The context can also be defined in constraint programming 
as a set of variables, which are abstractions over a part of the 
system’s environment that has an impact on the activity or 
quality of the SIS. They can be monitored at runtime by 
sensing or by reporting, and are thus dynamic. Context 
elements that are valuable to Maria’s case are declared below. 

For each context situation (an instantiation of context 
variables to specific values), a set of requirements shall be 
fulfilled (a set of constraints shall be validated). Vice versa, as 
a new context situation occurs, requirements that were once 
mandatory become obsolete (thus, the previous set of 
constraints becomes irrelevant, and the new one shall be 
validated instead). 

%Declaration of context variables 

0..1: Smartphone_Availability; 

0..1: Power_failure; 

0..1: Rain; 

int: Light; 

int: MaxLight; 

int: TankCapacity; 

0..TankCapacity: TankLevel; 

int:MinTankWater; 

int: MainsWaterConsumption; 

int: MaxMainsConsumption; 

1..12: Month; 

1..31: DayOfMonth; 

00..24:Time; 

1..10: int 

Adding requirements to an existing SIS is a two steps 
process. The first one lies in defining the new constraints 
(representative of the new requirements), and the second 
process consists of relaxing unrefined constraint, as to not 
contradict with new specifications. This is presented in the 
following, in the form of Reified and Flexible constraint. 

a) Reified constraints: The reification of a constraint c is 

the association of a Boolean variable B to a constraint C. When 

B is true/false, the reified constraint shall be 

satisfied/unsatisfied, respectively. Similarly, when C is 

satisfied/unsatisfied, B should be set to true/false, respectively. 

In some constraints, a simple implication is used instead of a 

full reification, to avoid inconsistency with previous 

constraints. 

%Constraints on global events 

Cst2_1 : constraint Year<=2 <-> GlobalRC1; 

Cst2_2 : constraint Year>2  <-> GlobalRC2; 

The requirements expressed during the first year, as 
described in (2)), are specified in the code bellow. The 
occurrence of an event (eg: rain), sets the value of the related 
reified constraint to True (eg: RC10=True), therefore enforcing 
the constraints reified by RC10, (e.g. Rooftop= 1;). Similarly, 
all the other requirements that shall be fulfilled under specific 
circumstances are translated into constraints that shall be 
satisfied when the related reified constraints are true. 
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%----------------First year requirements  

%Examples of constraints that express Events -- First Year 

Cst2_10 : constraint (GlobalRC1 /\ Month >=5  /\ Month <10) <-> 

RC2_3; %Summer 

Cst2_11 : constraint (GlobalRC1 /\ Smartphone_Availability = 1 )<-> 

RC3; %Humain presence 

Cst2_15 : constraint (GlobalRC1 /\ Power_failure = 1) <-> RC6; %No 

electricity 

Cst2_17 : constraint (GlobalRC1 /\ Light <= MaxLight) <-> RC8; 

%Normal bright 

Cst2_19 : constraint (GlobalRC1 /\ Rain = 1) <-> RC10; %Raining 

Cst2_20 : constraint (GlobalRC1 /\ (TankLevel >= MinTankWater /\ 

Power_failure = 0)) <-> RC11; %Water provided from Rainwater 

Cst2_22 : constraint (GlobalRC1 /\ (MainsWaterConsumption >= 

MaxMainsConsumption) /\ RC10=0)<-> RC13; %Water 

consumption is Hight 

%Examples of reified constraints and their respective actions -- first 

year 

Cst2_39 : constraint RC2_3 -> TimeSpan=1; 

Cst2_40 : constraint RC3 -> Treshold_Alarm >= 0 /\ HS_Alarm1 >= 

0 /\ HS_Alarm2 >= 0 /\ HS_Alarm3 >= 0 /\ HS_Bulb1 >= 0 /\ 

HS_Bulb2 >= 0 /\ HS_Bulb3 >= 0; 

Cst2_43 : constraint RC6 -> (Master1 + Master2 + Master3) <=2  /\ 

RC4=1 ; 

Cst2_47 : constraint RC8 -> Transparent = 1; 

Cst2_49 : constraint RC10 -> Rooftop= 1; 

Cst2_50 : constraint RC11 -> Rainwater=1; 

Similarly, the expectations of Maria for the second year are 
expressed as a new set of requirements, translated into new 
constraints. Therefore, a new CSP is to be solved, since the 
previous constraints are no longer relevant. 

%----------------Second year requirements  

%Examples of constraints that express Events-- Second year 

Cst2_25 : constraint GlobalRC2 /\  (Time >=10  /\ Time <16) <-> 

RC17; 

Cst2_27 : constraint GlobalRC2 <-> RC14; 

Cst2_31 : constraint GlobalRC2 <-> RC20; 

%Examples of reified constraints and their respective actions -- 

Second year 

Cst2_53 : constraint RC14 -> Sprinkler1+ Sprinkler2 + Sprinkler3 + 

Sprinkler4=4 /\ Pressure1=30 /\ Pressure2=30 /\ Pressure3=40 /\ 

Pressure4=40 /\ Rotation1=240 /\ Rotation2=240 /\ Rotation3=360 /\ 

Rotation4=360; 

Cst2_56 : constraint RC17 -> Opaque = 1; 

Cst2_59 : constraint RC20 -> RS + LS + Instant + TimeSpan = 0; 

b) Flexible constraints: As the SIS evolves, the 

constraints that were once mandatory may become irrelevant or 

reduced in priority. Therefore, constraints that once defined a 

static structure of the SIS can be subject to change. For 

example, a component that was mandatory (Rain sensor) may 

become undermined (RS=0). The irrigation and monitoring 

components, presented in 4.1. can be transformed into flexible 

constraints. The goal is to maximize their satisfiability rather 

than solve them. If no contradictory constraint is introduced in 

time, the problem is likely to be satisfied completely. However, 

if it is the case, some of the constraints are allowed to remain 

unsatisfied, without inconsistency warnings. Constraints 

(Cst1_10, Cst1_26, Cst1_27) are not satisfied in the light of 

new requirements. However, since they are now flexible, their 

unsatisfiability does not generate inconsistencies. 

%----------------Example of flexed requirements  

Cst2_8 : constraint Flex6 <-> Rooftop >= Opaque /\  Rooftop >= 

Transparent /\ Rooftop >= Opaque + Transparent /\ Opaque + 

Transparent <= Rooftop; 

Cst2_22 : constraint Flex19 <-> Monitor = LS; 

Cst2_25 : constraint Flex20 <-> Monitor = RS; 

C. Discussion 

According to these constraints, the configurations of the 
SIS, during the first, then the second year, which correspond to 
the context variables presented in Table I, are respectively 
represented by Red and Blue, in the Fig. 7. 

The configurations generated indeed in accordance with 
Maria’s requirements. For the first year, if it is raining 
(T1:rain=1), then the rooftop shall be selected (T2: Rooftop = 
1). Other irrigation means are momentary disabled (T2: 
Dripline=0 & Sprinklers=0), until another configuration 
specifies otherwise. Human presence is detected around the 
field (T1:Smartphone_Availability=1), therefore, display 
devices are enabled including humidity sensor’ alarms and 
bulbs, and the tank’s threshold alarm (T2: HS_Bulb(1,2,3)=1, 
HS_Alarm(1,2,3)=1, & Treshold_Alarm=1). However, since 
it’s the morning (Time=15), bulbs are inefficient 
(HS_Bulb(1,2,3)=0), as they consume energy without playing a 
crucial role, therefore, they are disabled 
(T2:HS_Bulb(1,2,3)=0). As the energy state is normal (T1: 
Power_Failure=0), all humidity sensors are active 
(HS(1,2,3)=1), and are on master mode to maximize data 
precision. The brightness level is higher than required for a 
healthy plant, therefore, the opaque shades are enabled (T2: 
Opaque=1). The level of water in the tank is above the 
minimum required, therefore, it will be responsible for 
providing irrigation water (T2:Rainwater=1), and will thus 
require a working pump (Rw_Pump=1) as well. Finally, as it is 
winter time (Month=11), and since air humidity is high, the RS 
is likely to mistake faug with rain, thus, the decision about rain 
is made with a timespan (T2:Timespan=1) to insure the 
righteousness if the information. During the second year, 
irrigation shall only be supplied using sprinklers (Sprinkler(1,2, 
3, 4)=1), with specific ratios. All humidity sensors are on 
master mode. And all display devices are disabled. 
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TABLE. I. INSTANCES OF CONTEXT VARIABLES 

Power 
Failure 

Rain Light 
Max 
Light 

Tank 
Capacity 

Tank 
Level 

0 1 51509 46332 20000 7681 

MinTank 
Water 

Mains Water 
Consumption 

MaxMains 
Consumption 

Smartphone 
Availability 

Month / 
DayOfMonth 

Time 

998 220977 200000 1 11/ 2 15 

 

 

Fig. 7. The Configuration of the SIS (Scenario 2). 

VI. CONCLUSION AND PERSPECTIVES 

The investigation of the domain of smart irrigation systems 
shows that contemporary ecological challenges on the one 
hand, and society’s constant need for sophisticated technology 
on the other hand are big factors that impact the state of the art 
of the internet of things in general, and smart irrigation systems 
in particular. Consequently, the generation of SIS, that simply 
consisted of reporting on environmental data, and reacting or 
planning irrigation cycles, is on the verge of becoming 
obsolete. This is mainly a result of user’s requirements that are 
perpetually changing, and technology that is constantly 
evolving. 

The action taken in this paper consists of representing SIS’s 
components as variables, and their relations as constraints, 
forming a dynamic constraint satisfaction problem. Through a 
solver, this paradigm finds a solution that (best) fits the 
(dynamic) requirements of users. Therefore, instead of 
enrolling a SIS that has a set configuration, designing it as a 
dynamic and flexible constraint satisfaction problem allows the 
specification of these dynamic requirements, and therefore, the 
generation of configurations that fully or partially satisfy them, 
on the go. Thanks to sensors and various types of data that can 
be provided to irrigation actuators, SIS can now be designed to 
accompany dynamic environments, but also, dynamic 
requirements in time and place. 

The snippets of constraint code introduced above are 
manually written in a Minizinc editor. Being that as it may, it is 
a fastidious, time consuming and illegible way of documenting 
constraints. Implementing the main concepts to build such 
programs proves essential. Therefore, as a perspective, a 
language that allows the specification of dynamic requirements 
in fleets of connected devices, and enables the generation of 
configurations that comply with real time contexts proves 
substantial. 
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