
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

349 | P a g e

www.ijacsa.thesai.org

Efficient Software Testing Technique based on

Hybrid Database Approach

Humma Nargis Aleem1, Prof. Dr. Mirza Mahmood Baig2, Dr. Muhammad Mubashir Khan3

NED University of Engineering and Technology, Karachi, Pakistan

Abstract—In the field of computer science, software testing is

referred as a critical process which is executed in order to assess

and analyze the performance and risks existing in software

applications. There is an emphasis on integrating specific

approaches to carry out testing activities in an effective mode;

the efficient strategy being explored recently is adopting hybrid

database approach. For this purpose, a hybrid algorithm will be

proposed to ensure the functionality and outcomes of testing

procedure. The technical processes and its impact on current

methodology would help to evaluate its effectiveness in software

testing through which specific conclusions could be drawn. The

findings of the research will elaborate effectiveness of the

proposed algorithm that would be used in software testing. It

would be suggested that new technology is easier and simple to

assess and analyze the reliability of the software. Basically,

hybrid database approach comprises of traditional and modern

techniques that are deployed in order to achieve testing

outcomes. It is explored from various testing methods that

challenges have been identified related to focusing on traditional

techniques due to which hybrid approach is now being developed

in most of the areas. In the light of addressing these concepts, the

paper aims to investigate the complexity and efficiency of hybrid

database approach in software testing, as well as its scope in the

IT industry.

Keywords—Software testing; database testing; hypothetical

database testing; traditional database testing; test case(s); grey box

testing; software quality assurance

I. INTRODUCTION

Computer science is a vast field which is distributed across
innumerable sections in order to address different
technicalities. Software testing is one of the fields in Computer
Science which is referred as incorporating critical processes for
assessing and analyzing possible risks and performance of a
software [1]. A number of professional software testers across
the world have explored variety of mechanisms that are
performed to test vulnerabilities, as well as the efficiency
which are the core areas of software testing. In the recent IT
industry, the major concern that software developers and
testers have reflected is the incompetent approaches being
applied in the field of testing that hinders functionalities while
business needs are not appropriately catered as they should be
[2].

The IT industry has always performed strategically in
providing utmost facilities to the business so that no technical
issues could affect their performance and productivity [3]. In
every day technical activities, a number of software techniques
are adopted and used according to the specifications so that
significant outcomes could be met. However, difficulty is faced

when appropriate methods are not satisfying technical needs
due to which businesses are affected at large [4]. All of these
professional ensure that developed software are bug-free
because they follow specific software development life cycle in
order to make sure that each component of the software is
developed under full consideration. Among these phases,
software testing is also applied which is actually performed to
assure quality and necessary fixes that are done to improve its
functions [5].

Nowadays, reliable software development needs are not
properly reviewed due to which businesses, as well as
consumers, are facing difficulty in taking benefits from its use
[6, 7]. Software testing has been given more attention in every
aspect but due to outdated methods and techniques, certain
technical needs are not properly fixed. In this regard, concerns
have been placed to improve traditional methods by integrating
modern approaches in order to improve software testing
approaches. In the current methods, database approach is
getting more attention due to its reliability and efficiency to
fulfill testing needs thus, hybrid approaches have become
research’s focus recently. The following study is developed to
address the need to overcome the problem(s) and introduce
hybrid approach in software database testing [8, 9].

A. Paper Structure

Section II presents a brief description of utilization of
software testing methodologies along with their key research
contributors under the umbrella of literature review. Section III
put forward the proposed software testing methodology based
on hybrid database approach. Section IV emphasizes more
specifically on the algorithm and execution of proposed
software testing approach in an illustrative manner with a brief
on limitations of the study. Section V and Section VI compares
the performance of proposed methodology with the
methodology based on traditional database testing approach by
considering various parameters for testing goals and its
accomplishment. Section VII concludes the proposed
methodology better than the traditional approaches in terms of
performance and foresees more refined methodologies even
better. It also foresees future aspects of this research in terms of
quantum computing and machine learning perspectives.

II. LITERATURE REVIEW

A. Software Testing

According to Bajaj, Kamini Simi [2], the process of
software testing is not complicated but its approaches have
increased its complexity to the greatest extent. The author
further sheds light on the definition of software testing in terms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

350 | P a g e

www.ijacsa.thesai.org

of evaluation process in which the software is tested to ensure
whether it is developed to meet system originality or not.
Furthermore, the author also adds that the process of software
testing comprises of validation and verification aspects that
checks if the developed software is meeting certain criteria
defined by the user [10]. The analysis of the study determines
another important part of software testing which include results
that defines the major difference between actual and expected
result.

B. Existing Testing Methods

In software testing, the pre-defined traditional methods are
recognized in almost every technical area and thus, their
functionalities and approaches varies with the level of testing
method. Based on the study of Arnicans, Guntis, and Vineta
Arnicane [5], fundamental software testing methods
incorporated in every aspect are black box testing, white box
testing, and grey box texting. Different forms of database
testing types and techniques have already been developed that
are being preferably used according to the suitability and
applicability of the specific type of database on a specific
platform. The generally discussed types of database testing
techniques are in the form of structural (internal) database
testing, non-functional (external) database testing and
functional (logical / conceptual) database testing [11, 12].

C. Black Box Testing

The paper proposed by Jamil, Muhammad Abid,
Muhammad Arif, Normi Sham Awang Abubakar, and Akhlaq
Ahmad [1] describes that black box testing only performs
testing measures in evaluating software’s functionalities rather
than focusing on its implementation in detail. It is identified
that black box software testing is appropriate at every level of
SDLC in order to examine the bugs and errors within major
functionalities. The basic function of the testing method is to
assess the required functions and compares it with user
requirements to verify if the application is developed according
to desired needs [13, 14]. The following existing method is
efficient in finding adequate functionalities by testing each
phase at their minimum and maximum case value. Jamil,
Muhammad Abid, Muhammad Arif, Normi Sham Awang
Abubakar, and Akhlaq Ahmad [1] also explain that black box
testing is one of the simplest and widespread methods which
are mainly carried out by professionals across the globe.

D. White Box Testing

Muşlu, Kıvanç, YuriyBrun, and Alexandra Meliou [3]
define the significance of white box testing in terms of its
effectiveness and important functions. Basically, white box
testing is one of the approaches that are famous for testing
internal structure of the developed software. It is also evident
that to perform white box testing, IT industry requires specific
programming skills and knowledge as a pre-requisite in order
to develop test cases. Another study provides more information
regarding white box testing [15]. In the study, the method is
also illustrated as clear box or glass box testing due to the fact
that it validates and verifies internal mechanism to satisfy
development process. In addition, white box testing is also

known to be applied to different levels, such as unit,
integration, and even system testing. It is also explained that
among all other testing methodologies, white box testing is
excellent due to its nature and complexity [16].

E. Grey Box Testing

With respect to grey box testing, Arnicans, Guntis, and
Vineta Arnicane [5] define that it is hybrid in nature because it
accompanies all the basic requirements and functions that are
performed by black box and white box testing. As the approach
carries advantages of both black box and white box testing,
grey box testing is vitally used across different areas in order to
evaluate vulnerabilities and security of the developed software.
Inputs are provided from the front interface of the application
in order to verify back-end data structure through debugging
process which reveals internal culpabilities of database schema
[17].

III. PROPOSED METHODOLOGY

To display the functions and phases of testing, following
research proposes an algorithm for hybrid software testing
database approach which can be used to develop an efficient
and effective testing methodology for software developers
[18]. Secondary sources are used to collect specific information
regarding testing methods and emergence of new technology.
For this purpose, different scholarly articles and tech blogs
were reviewed. The research is designed on the basis of
addressing technical processes and its impact on software
development to ensure the effectiveness and efficiency of
designed procedure. Illustrated “Fig. 1” beneath depicts the
proposed methodology [19].

Fig. 1. Proposed Methodology.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

351 | P a g e

www.ijacsa.thesai.org

IV. HYBRID DATABASE APPROACH

It is evident from recent studies that mode of testing
practices are changing due to the software preferences, as well
as concerns regarding quality. A new way of to test software
applications have been proposed but limited information and
significance is available to prove its efficiency. As illustrated in
the study by MM Baig [20, 21, 22], database approach is one
of the effective ways that provides new features to current
testing methods in order to evaluate the performance and risks
of the software by building effective test cases. It is also
examined that by using hybrid technology, the upgraded
features enable developers to assess improved quality of the
application while it reduces amount of critical bugs in the
application. Moreover, the proposed methods are also effective
in terms of providing early information regarding issues that
might affect performance of software while deviate its results
from the expected outcomes [23].

An algorithm to execute hybrid testing method is proposed
which is said to be more efficient and reliable as compared to
traditional and hypothetical database testing method. In the
process, when a request is generated by the initiator the
algorithm analyzes it and based on the evaluation different
states are maintained prior loading it into the original database
[24, 25]. Treatment of initiated request(s) is as follows:

1) Request initiated by end user / customer / online order:

Requests generated by Customer(s) and Online Order(s) are

by default approved and original database are updated as per

traditional way on reaching timestamps defined for the

system.

2) Request initiated by Developer(s): Requests generated

by developer(s) are treated through hypothetical database

testing method in which a new database state would be

generated, known as hypothetical database while it is ensured

that the originality of the previously generated database is

intact. This is due to the association established between the

original database and differential table subject to approval

from developer(s) side. Changes in the schema made by the

developer can easily be implemented on the primary database

at day end after stoppage of daily transactions.

3) Request initiated by Tester(s): When a tester executes a

test case(s), the results will be displayed in the grid and will be

viewed to tester only. If required these can be saved in

differential files related to testing for future correspondence

else they will be rolled back when the tester exits the system.

This would be done in order to facilitate different anomalies

that could be performed through differential file on

hypothetical database states. The traditional approaches were

using these anomalies on original databases which are

inappropriate as its originality would be affected due to which

tester face problems in analyzing actual requirements.

By referring to “Fig. 2”, it can be viewed that tester
implements first test case which is being analyzed by the
hybrid algorithm which contains an instance of the primary
database state. When the test case is successfully completed at
this level, the updated results will be stored in differential file
containing differential table ensuring that the originality of the

primary database is not intact. When the second test case is
run, same procedure will be followed. After execution of entire
test suite if the desired results need to be stored in the original
database with tester’s login for future referencing it is possible
only after approval. All the unapproved request(s) will be
rolled back automatically [26, 27, 28].

In “Fig. 3” below, state transition diagram is illustrated
which is based on different states. From the illustration, it can
be viewed a transition will occur on the fulfillment of
requirements by the hybrid database instead of original or
hypothetically generated database. From the analysis of the
following method, it is suggested that hypothetical rollback can
be performed to any state rather than executing the action on
the original database [29]. However, the time complexity of the
roll back is quite efficient as it quickly reaches to the
destination state as compared to traditional ways. With the fast
and efficient approach, processing time is minimized, while
costing and budgeting of the whole method is also reduced.
Based on the proposed plan, the algorithm of testing includes
number of test cases while test case generates number of
differential tables in differential files. In the next step, software
tester would be required some time to prepare more test cases
as the previously generated cases are not appropriate by current
database states in the hypothetical chain [30, 31].

Fig. 2. Hybrid Database Approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

352 | P a g e

www.ijacsa.thesai.org

Fig. 3. State Transition Diagram.

State transition illustrated above completely elaborates the
mechanism that a tester would be following in order to achieve
desired results. In the following situation, another concept
would be proposed in order to fix the state while new generated
databases would comply with the established standards. The
concept of database rollback will also be used in the following
situation in order to let generated databases fulfill conditions of
developed test cases. The main purpose for using the option in
current testing methodology is that it increases efficiency of the
database generation while the preparation time of current state
is improved [32, 33].

A. Hybrid Database Testing Algorithm

HYBRID DATABASE TESTING ALGORITHM
1 to propose

hybrid plan is detailed in “Fig. 4” beneath.

Fig. 4. Hybrid Database Approach Algorithm.

B. Roadmap towards Hybrid Database Testing

The strategy to propose hybrid database testing plan is
elaborated in Table I below.

C. Limitations of the Proposed Study

Different challenges are associated with database testing
due to nature of databases which is complex both structural-
wise and magnitude-wise. Testers skill set ascends a handful of
challenges related to designing of test cases and the tactics to
execute them with proper exploration. Core challenges were
related to database schema structure, cleansing /
synchronization / reliability of quality data and under-testing /
incomplete testing of colossal database. However, efforts were
made to overcome these issues in the proposed plan so that
more effective method could be developed.

TABLE I. HYBRID DATABASE TESTING ROADMAP

 Description

OBJECTIVE

To perform database testing in order to uncover

incomplete schema, malfunctioned

functionalities, data corruption, deadlocks, data

mapping issues and exceptions.

TESTING CRITERIA

Testing of all key database schema tables,

methods, processes, sequences, functions,

indices, views, cursors, triggers and stored

procedures.

PRE-REQUISITES

Testing requirements are well communicated /

well documented to testers. Test cases covering

all aspects of database testing are designed.

Success criteria have been established prior

testing phase. Test environment is setup and

freeze with latest database schema.

EXCEPTIONAL

CONTEMPLATION

Testing conducted with real time data on actual

environment. Automatic invocation of stored

procedures and processes. For large databases

DBMS Development Environment is required to

populate data directly into the database from

backend in order to monitor its frontend

adaptation. For small sized databases limited

records are generated to test non-acceptable

events / triggers / exceptions.

TESTING

TECHNIQUE

Selection of testing technique / strategy is based

on the fact it must support the testing of all key

use-case scenarios and complete business flows

i.e. main features.

REQUIRED TOOLS

 Test Management Tools

 Test Script Automation Tool

 SQL Query Analyzer

 Test Data Generator

 Bug Tracking tool

 Backup and Recovery tools

PROCEDURAL

STEPS

Testers will work according to the database

testing checklist and guidelines to inspect the

database ensuring proper data for correct reasons

is inserted and stored in the database.

POST-REQUISITES

Execute each test case separately but sequential

using valid and invalid data should reveal

expected results for valid data and timely error

messages to refrain insertion of invalid data in

the database.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

353 | P a g e

www.ijacsa.thesai.org

From the above algorithm, proposed strategy and
limitations it is deduced that existing methods are inefficient
and provides limited access to basic software testing which is
why appropriate results are not achieved. By using hybrid
software testing database approach, software developers and
testers would gain more assistance in testing phase while there
will be the exceptions for increased bugs and incidents.
Moreover, it is considered as efficient while performance is
also adequate because of less time consumption, cost-effective
and limited resource utilization. This algorithm is not only
convenient but also gives easy access to acknowledge basic
requirements that must be present in developed software [34].

V. RESULTS WITH DISCUSSION

To check the efficacy of the algorithm it multiple queries
and test case(s) were designed and run on the schemas
separately in order to monitor their performance. Results of
both queries and test case(s) are discussed below.

A. Query Processing Time

Multiple queries as illustrated in “Fig. 5”were designed as
per the following types: Aggregate Queries (Q1 – Q50), Join
Queries (Q51 – Q100) and Nested Queries (Q101 – Q150) where
“Q#” is used to represent “Query number”. These queries were
run on a sample database of following size(s): 400 MB, 4 GB,
40 GB and 400 GB. Due to classified database architecture
and complex confidential queries only general queries related
to student database are being shared in “Fig. 5”for assistance.

To analyze the processing time in seconds these queries
were first executed through the traditional database testing
approach, secondly through hypothetical database testing
approach and lastly through hybrid database approach.
According to the results shown in Table II below, it can be
concluded that the processing time of the queries illustrated in
“Fig. 6”, “Fig. 7” and “Fig. 8” has greatly reduced
approximately 70% with the use of hybrid database approach
as opposed to accessing the data directly.

Fig. 5. Sample Query Architecture.

TABLE II. QUERY PROCESSING TIME RECORDED ON DIFFERENT SCHEMAS

Query Processing Time

Query Types
Database

Size

Processing Time Recorded

Direct

Schema

Hypothetical

Schema

Hybrid

Schema

Aggregate Queries

(Q1 – Q50)

400 MB ≈ 300 s ≈ 180 s ≈ 60 s

4 GB ≈ 720 s ≈ 420 s ≈ 90 s

40 GB ≈ 900 s ≈ 720 s ≈ 120 s

400 GB ≈ 1320 s ≈ 1140 s ≈ 300 s

Join Queries

(Q51 – Q100)

400 MB ≈ 420 s ≈ 300 s ≈ 120 s

4 GB ≈ 900 s ≈ 600 s ≈ 240 s

40 GB ≈ 1080 s ≈ 840 s ≈ 300 s

400 GB ≈ 1500 s ≈ 1200 s ≈ 480 s

Nested Queries

(Q101 – Q150)

400 MB ≈ 480 s ≈ 240 s ≈ 180 s

4 GB ≈ 1020 s ≈ 720 s ≈ 360 s

40 GB ≈ 1200 s ≈ 900 s ≈ 540 s

400 GB ≈ 1620 s ≈ 1200 s ≈ 600 s

Fig. 6. Aggregate Queries Processing Time.

Fig. 7. Join Queries Processing Time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

354 | P a g e

www.ijacsa.thesai.org

Fig. 8. Nested Queries Processing Time.

B. Test Case(s) Execution Time

Test Case(s) Matrix as per “Fig. 9” was designed and
executed on the database schema designed hypothetically and
hybrid in addition to direct database schema. To check the
functional aspects of database “Functional Test Case(s): TC1 –
TC50

” and for non-functional aspects “Non-Functional Test
Case(s): TC51 – TC100” were designed where “TC#” is used to
represent “Test Case number

”. These test cases were run on the
same sample database of size(s): 400 MB, 4 GB, 40 GB and
400 GB used for query execution.

Fig. 9. Test Case Matrix.

To analyze the execution time in minutes these test case(s)
were first executed through the traditional database testing
approach, secondly through hypothetical database testing
approach and lastly through hybrid database approach.
According to the results illustrated in Table III below, it can be
concluded that the overall execution time of test case(s) as
shown in “Fig. 10” and “Fig. 11” almost reduced to 60% of the
actual processing time required to execute the test case(s)
directly on the primary database.

TABLE III. TEST CASE(S) EXECUTION TIME RECORDED ON DIFFERENT

SCHEMAS

Test Case(s) Execution Time

Test Suites
Database

Size

Execution Time Recorded

Direct

Schema

Hypothetical

Schema

Hybrid

Schema

Functional

Test Cases

(TC1 – TC50)

400 MB ≈ 15min ≈ 11min ≈ 5min

4 GB ≈ 20min ≈ 16min ≈ 8min

40 GB ≈ 33min ≈ 25min ≈ 18min

400 GB ≈ 45min ≈ 31min ≈ 23min

Non-Functional

Test Cases

(TC51 – TC100)

400 MB ≈ 18min ≈ 10min ≈ 4min

4 GB ≈ 22min ≈ 11min ≈ 7min

40 GB ≈ 38min ≈ 27min ≈ 15min

400 GB ≈ 56min ≈ 35min ≈ 21min

Fig. 10. Functional Test Case(s) Execution Time.

Fig. 11. Non - Functional Test Case(s) Execution Time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

355 | P a g e

www.ijacsa.thesai.org

VI. TESTING GOALS ACHIEVED

Testing goals which were achieved are listed as:

1) Normalization rules: No data was repetitive in the

database and all columns were logically connected.

2) Data types: As the systems are taking data in dynamic

nature, deciding the type of data columns is very crucial. In

some scenarios, you can expect some extremely weird inputs

which are important. Make sure the data is going into the right

columns and cells. This thing is taken care very seriously as a

mismatch of the columns can cause huge issues in the stability

of the database.

3) Retrieval of data and number of joins: Usually,

developers avoid adding multiple joins or making query

complex mainly because of the system's speed and its

response time.

4) Data endpoints: It always checks the data populating

the database from the system v/s data generating by the

database for the database (triggers or metadata).

5) Usage of the flag: For the system to work properly,

mainly columns worked as a flag for a different thing. e.g.

0=admin user, 1= Developer, 2 = Tester etc. This is also tested

seriously to control the access level permissions.

6) In some big systems: we also test the write speed.

Sometimes, the data coming to the database is huge, and the

database is not keeping up the phase. So the threshold was

also tested. Mainly it happens in ecommerce website where

user actions and activities are also recorded against their

profile.

7) Database security and password encryption issues.

8) Online testing of software application in parallel with

order processing or daily transactional operations without the

use of separate test environment was possible with add-on

functionality of roll back.

VII. CONCLUSION AND FUTURE WORK

During software development, it becomes quite difficult for
the developers and testers to identify the bugs and required test
case(s) that are needed to be executed to achieve actual results.
Hybrid Database testing approach was formulated and tested
with execution of queries and test case(s) on sample
database(s) of sufficient sizes reflecting the achievement of
testing goals in an efficient manner. Using the proposed hybrid
plan, businesses would improve in terms of using effective
software testing methods without creating separate
environments that would cause them to invest little while
productive results are achieved. It is also acknowledged that
complexity and time-consuming activities in recognizing errors
in the software testing phase can be easily managed due to the
flexibility it provides in searching and updating records in the
primary database without keeping it intact during the whole
course of time. Assessments of requests generated from
different initiators can also be processed simultaneously with
segregation as per requirement.

Moreover, in future, it is anticipated and expected to
witness software testing tools being developed with build-in
features of hybrid state transition between databases with
integration of quantum technology and machine learning
techniques. In software testing that would include different
processes in order to provide accurate and unambiguous results
in even lesser time. As the new technology is becoming famous
in IT industry, it is expected to see more transformations in the
field of software testing due to which traditional approaches
would be diminished while integration of hybrid technologies
would be seen.

ACKNOWLEDGEMENT

NED University of Engineering & Technology is highly
acknowledged for providing research support required to carry
out this research.

REFERENCES

[1] Jamil, Muhammad Abid, Muhammad Arif, Normi Sham Awang
Abubakar, and Akhlaq Ahmad. "Software Testing Techniques: A
Literature Review." In 2016 6th International Conference on
Information and Communication Technology for The Muslim World
(ICT4M), pp. 177-182. IEEE, 2016.

[2] Bajaj, Kamini Simi. "Hybrid Test Automation Framework for managing
Test Data." International Journal of Pure and Applied Mathematics 118,
no. 9 (2018): 265-276.

[3] Muşlu, Kıvanç, Yuriy Brun, and Alexandra Meliou. "Data debugging
with continuous testing." In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pp. 631-634. ACM, 2013.

[4] Barr, Earl T., Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. "The oracle problem in software testing: A survey." IEEE
transactions on software engineering 41, no. 5 (2015): 507-525.

[5] Arnicans, Guntis, and Vineta Arnicane. "Opportunities to Improve
Software Testing Processes on the Basis of Multi-Agent Modeling."
In Databases and Information Systems V: Selected Papers from the
Eighth International Baltic Conference, DB&IS 2008, vol. 187, pp. 143-
156. IOS Press, 2009.

[6] Felderer, Michael, Matthias Büchler, Martin Johns, Achim D. Brucker,
Ruth Breu, and Alexander Pretschner. "Security testing: A survey."
In Advances in Computers, vol. 101, pp. 1-51. Elsevier, 2016.

[7] Takanen, A., Demott, J. D., Miller, C., & Kettunen, A. (2018). Fuzzing
for software security testing and quality assurance. Artech House.

[8] Hogan, R. (2018). A practical guide to database design. Chapman and
Hall/CRC.

[9] Felderer, M., Russo, B., & Auer, F. (2019). On Testing of Data-
Intensive Software Systems. arXiv preprint arXiv:1903.09413.

[10] R. V. Binder. Testing Object-Oriented Systems Models, Pat- terns, and
Tools. Addison Wesley Longman, Inc., Reading, MA, 2000.

[11] S. Berner, R. Weber, and R. Keller. Observations and lessons learned
from automated testing. In Proc. 27th Int. Conf. on Sw. Eng., pages
571–579. ACM, 2005.

[12] Bertolino, A. (2007, May). Software testing research: Achievements,
challenges, dreams. In 2007 Future of Software Engineering (pp. 85-
103). IEEE Computer Society.

[13] Belinfante, Axel, Lars Frantzen, and Christian Schallhart. "14 tools for
test case generation." Model-Based Testing of Reactive Systems.
Springer, Berlin, Heidelberg, 2005. 391-438.

[14] G. Bernot, M. C. Gaudel, and B. Marre. Database testing based on
formal specifications: a theory and a tool. Softw. Eng. J., 6(6):387–405,
1991.

[15] A. Bertolino and E. Marchetti. Software testing (chapt.5). In P. Bourque
and R. Dupuis, editors, Guide to the Soft- ware Engineering Body of
Knowledge SWEBOK, 2004 Version, pages 5–1–5–16. IEEE Computer
Society, 2004. http://www.swebok.org.

http://www.swebok.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

356 | P a g e

www.ijacsa.thesai.org

[16] Bertolino, Antonia, Eda Marchetti, and Henry Muccini. "Introducing a
reasonably complete and coherent approach for model-based
testing." Electronic Notes in Theoretical Computer Science 116 (2005):
85-97.

[17] Bertolino, Antonia, and Andrea Polini. "The audition framework for
testing web services interoperability." In 31st EUROMICRO
Conference on Software Engineering and Advanced Applications, pp.
134-142. IEEE, 2005.

[18] A. Bertolino, A. Polini, P. Inverardi, and H. Muccini. To- wards anti-
model-based testing. In Proc. DSN 2004 (Ext. abstract), pages 124–125,
2004.

[19] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P.
(Eds.). (2006). Value-based software engineering. Springer Science &
Business Media.

[20] M. M. Baig, A. Shaheen and A. A. Khan, “Efficient Execution Plan for
Hypothetical Database Testing”, International Journal of Latest Trends
in Computing(IJLTC), 2011 (Peer reviewed).

[21] M. M. Baig and A. A. Khan, “Efficient Testing of Database
Applications”, IJCSNS International Journal of Computer Science and
Network Security, Vol.9 No. 4, 2009. (Peer reviewed).

[22] M. M. Baig, and A. A. Khan, “Database Testing Application for
Modifying Tuples Hypothetically”, NED Journal of Research, 2012.
(HEC recognised).

[23] Aleem, H., Anwar, S., Shariff, I., & Abdul Aziz, S. (2014). Six sigma
application: an order management system. IOSR Journal of Humanities
and Social Science, 19(1), 95-100.

[24] Hao, D., Zhang, L., & Mei, H. (2016). Test-case prioritization:
achievements and challenges. Frontiers of Computer Science, 10(5),
769-777.

[25] Ramler, Rudolf, Stefan Biffl, and Paul Grünbacher. "Value-based
management of software testing." Value-based software engineering.
Springer, Berlin, Heidelberg, 2006. 225-244.

[26] Li, C., & Gu, J. (2019). An integration approach of hybrid databases
based on SQL in cloud computing environment. Software: Practice and
Experience, 49(3), 401-422.

[27] Ahmad, J., ul Hassan, A., Naqv, T., & Mubeen, T. (2019). A Review on
Software Testing and its Methodology. i-Manager's Journal on Software
Engineering, 13(3), 32.

[28] Vyawahare, H. R., Karde, P. P., & Thakare, V. M. (2019). Hybrid
Database Model For Efficient Performance. Procedia Computer
Science, 152, 172-178.

[29] H. R. Vyawahare, P. P. Karde and V. M. Thakare (2018), “A Hybrid
Database Approach Using Graph and Relational Database”,
International Conference on Research in Intelligent and Computing in
Engineering (RICE), San Salvador,doi: 10.1109/RICE.2018.8509057 1-
4.

[30] Wood, L. Y. N. N., Elsethagen, T. O. D. D., Schram, M. A. L. A. C. H.
I., & Stephan, E. R. I. C. (2017, November). Conditions database for the
Belle II experiment. In J. Phys. Conf. Ser.(Vol. 898, p. 042060).

[31] Lewis, W. E. (2017). Software testing and continuous quality
improvement. Auerbach publications.

[32] Kassab, M., DeFranco, J. F., & Laplante, P. A. (2017). Software testing:
The state of the practice. IEEE Software, 34(5), 46-52.

[33] James, B. E., & Asagba, P. O. (2017). Hybrid database system for big
data storage and management. International Journal of Computer
Science, Engineering and Applications (IJCSEA), 7(3/4), 15-27.

[34] Jonsson, P. (2019). Automated Testing of Database Schema Migrations.

