
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

NetMob: A Mobile Application Development
Framework with Enhanced Large Objects Access for

Mobile Cloud Storage Service

Yunus Parvej Faniband1, Iskandar Ishak2, Fatimah Sidi3, Marzanah A. Jabar4
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia
43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia

Abstract—Mobile enterprise applications are primarily devel-
oped for existing backend enterprise systems and some usage
scenarios require storing of large files on the mobile devices.These
files range from large PDFs to media files in various formats
(MPEG videos).These files needs to be used offline , sometimes
updated and shared among users. Present work studied different
Mobile Backend as a service (M)BaaS platforms to understand
techniques use to handle large file and found that many are either
missing the feature or does not handle performance issues for
large files. In this paper, we are proposing, NetMob, a mobile
synchronization platform that allows resource-limited mobile
devices to access large objects from the cloud. This framework
is mainly focused on large file handling and has support for
both table and objects data models that can be tuned for three
consistency semantics, resembling strong, causal and eventual
consistency. Experimental results conducted using representative
workloads showed that NetMob can handle large files access with
the size ranging from 100MB upto 1GB and is able to reduce
sync time with object chunking in our experiment settings.

Keywords—Mobile cloud computing; data consistency; mobile
back-end as a service; mobile apps; distributed systems

I. INTRODUCTION

In general, mobile cloud computing architecture has two
unique set of entities namely Fixed Hosts (FHs) and Mobile
hosts (MHs) [1]. FHs are machines (Works stations and
Servers) with efficient computation power and reliable storage
of data and run large databases. FHs that are connected through
fixed network. MHs with limited processing and storage power
(cellular phone, palmtops, laptops, notebooks) are not contin-
ually communicating with the fixed network. They may be
disconnected for various reasons.

Additional dedicated fixed hosts called mobile support
stations (MSSs) acts as the channel between the FH and MH
through wireless LAN (local area network) connections, cells
or connections to the network with standard modems.

When the network connectivity becomes unavailable or un-
acceptable, the MH enters the disconnected state. Disconnected
operation (see Fig. 1) is a three-stage changeover between the
following states [2].

1) Data hoarding : This is the process of preloading or
prefetching the data in anticipation of a foreseeable
disconnection. Before going to offline mode (discon-
nection), the data structures necessary for operation

Data Hoarding

Reintegration Disconnected

operation

Fig. 1. States of Disconnected Operation.

during disconnection are either replicated (catched)
or moved (partitioned) at the MH.

2) Disconnected operation: When the MH is offline (dis-
connected from the network), data might be changed,
added or even removed at either the MH or the FH.

3) Synchronization or Reintegration : When the con-
nection is reestablished, each operation executed at
the MH should be synchronized (reintegrated) with
appropriate updates executed at other sites in order
to attain seamless consistency.

For a given distributed system, the complexity of operations
in each of above the three states is determined by the interde-
pendence of data operated on. The execution of distributed
applications in local-area networks is significantly different
than in wireless, mobile systems. Wireless applications must
use different communication pattern in order to address the
high latency, low bandwidth, intermittent connections and
communication charges based on time and content.An applica-
tion operating on a LAN can manage good user interactions in
case queries to a non-local database, but the same application
operating on a wireless network may become unresponsive due
to the delay in response. Hence wireless applications chose
data replication, explicit or implicit (caching or data hoard-
ing), as the primary technique to address the Disconnected
operation.

The introduction of multi-user and collaborative features
for wireless application increase the complexity, as multiple
users have to share data objects and thus communicate and
collaborate with each other [3]. In such cases there must
be a sophisticated coordination mechanisms other than the
conventional mechanism of locks. Thus addressing the wireless
mobile systems constraints in the application development
becomes challenging for developers, since they have to retain
favorable user interaction and performance along with tackling

www.ijacsa.thesai.org 639 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

the data coordination issues.

Mobile services can be developed and deployed in various
cloud computing scenarios. The main service models of cloud
computing are [4] Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). With
the advent of new service model, Backend as a Service
(BaaS), sometimes also referred as Mobile Backend as a
Service (MBaaS), the native mobile applications can be easily
integrated with the cloud. MBaaS frameworks should:

• Facilitate non blocking, responsive (ensure high avail-
ability) and reliable mobile applications during dis-
connection.

• Support Cloud-connected multi-user, shared-data mo-
bile apps that require to handle the inter-dependent
data locally,and also across multiple devices with
cloud storage.

• Provide a synchronization model with tunable consis-
tency guarantees so that developers have the flexibility
to configure how data is synchronized and data conflict
are handled.

• Provide a synchronization-aware high-level APIs that
support applications for on demand and background
synchronization tasks.

• Enable support for large files (i.e. a couple of
megabytes or gigabytes) synchronization.

• Require to be efficient in power consumption and
bandwidth usage for mobile clients and carry out
efficient periodic/configured sync operations.

Each MBaaS system offers a distinctive set of functional-
ities through APIs (REST or wrapper libraries of the APIs)
and allows programs to be written specially to execute in the
cloud. Amazon Mobile SDKs provide the means to interact
with cloud services through REST APIs. Multi-platform SDKs
(iOS, Android, Fire OS, and Unity) are offered to interact
with the AWS services, including S3 (storage), DynamoDB
(database), Simple Notification Service (SNS) and Mobile
Analytics [5] . Apple provide iCloud service (CloudKit SDK)
to store and access data in iCloud [6]. Mobile applications are
broadly classified into two types such as offline applications
and online applications [7]. Unlike online apps,in offline
(native) application, the mobile device and back-end system are
not connected always. In order to support continuous mobile
services, offline applications will process the presentation and
business logic with the available local data on the device itself.
Periodically data is updated by synchronizing with back-end
systems.

Recently a large number of research efforts have been
conducted on enterprise cloud storage services and personal
cloud storage services. The investigations from [8] attempted
to find out mobile user access behavior in a large-scale mobile
cloud storage with a a dataset of 350 million HTTP request
logs. The study observed the trend of using the cloud storage
for large file sharing, with the average volume as large as about
70 MB, in multiple sessions for retrieving one file.

Another study from a cloud storage service provider
(Filestack [9]) analyzed a dataset of 100,000 applications.They

0% 50% 100% 150% 200%

> 100MB

10MB - 100MB

1MB - 10MB

100KB - 1MB

10KB - 100KB

1KB - 10KB

< 1KB

170

57

26

51

25

50

45

Increase (2015 to 2016)

Fi
le

Si
ze

Increase

Fig. 2. Increase in files uploaded by File size

provided the services of handling file uploads, transformations,
storage, and delivery.Their observation targeted the statistics of
uploaded trend of files ranging from different sizes and formats
from the year 2015 to 2016 as shown in Fig. 2.Their analysis
concluded that all file increased 50% year over year, but files
sized 100MB and above increased over 170% year over year.
This leads to the conclusion that file sizes are getting larger
and mobile users access or share large size of files (above
100MB).

Handling the task of uploading and retrieving large files
from and to a mobile app is a cumbersome process for
developers due to issues of latency, speed, timeouts and
interruptions. With the growing prevalence of sharing file
of larger sizes among mobile users, providing reliable and
efficient synchronization service for large files has become an
important feature.

The rest of this paper is organized as follows: Section
II discuss about the related work with details of support for
large files upload and retrieval in mobile data synchronization
frameworks with cloud storage services. Section III describes
in detail the proposed framework, NetMob, a cloud based
framework to support End-to-end data consistency for large
data object access. Section III deal with architecture and
design in detail along with details of NetMob data model
and supported APIs. Section IV deals with the technique
of handling the large objects with Segmentation and Object
Chunking for object storage in Open Stack Swift [10]. While
the Section V describes the NetMob handling of large object
support with Segmentation and Object Chunking both at the
client and server side, Section VI illustrate NetMob support for
the consistency schemes with Cassandra [11] and Open Stack
Swift [10]. Section VII discuss about the NetMob implementa-
tion followed by Evaluation (Section VIII & Section IX) with
comparison of NetMob with Dropbox, and Conclusion and
future work (Section X).

II. RELATED WORK

Supporting large file upload and retrieval is crucial for
the mobile cloud storage services, as file sizes are trending
larger and mobile users access or share files of large size [8],
[9]. Practical large object services are, however, only available
for PC clients and not for mobile apps. To understand the
support for large file objects, we analyzed both the commercial
and open source cloud storage services for mobile. Table IV
summarizes the large objects support and limitations in the
different reference implementations. Even though the commer-

www.ijacsa.thesai.org 640 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

cial cloud frameworks provide support for large objects, many
frameworks do not handle large files.

The key observation from the study is that many of the
systems do not support large objects and some have limitations.

Simba’s [12] sync protocol does not support streaming
APIs to handle big size objects (e.g. Media file like Videos).
SwiftCloud [13] is a middleware system that implements
a Key-CRDT on top of Riak [14]. The Riak designers do
not recommend storing objects over 50MB for performance
reasons. Izzy [15] is an initial version of Simba and do not
support large objects.

Mobius [16] does not handle large files but addresses
the messaging and data management challenges of mobile
application development. Special CRDT cloud types data in
TouchDevelop [17], [18] do not address large size.

Open Data Kit 2.0 [19] which is an Android based service
have a 1 MB size limit on remote-procedure calls.To address
1MB limit, ODK Kit implements a primitive transport-level
chunking interface using a client-side proxy to bring together
the chunks and only reveal a higher-level abstraction to the
tools.

QuickSync [20] framework is built using Dropbox and
Seafile APIs that supports large data size up to 180MB. The
chunked upload API supports uploading of larger files in
multiple chunks. It supports the interrupted uploaded to be
resumed later with chunk of any size up to 150 MB with a
default size of 4 MB.

The Parse Server [21] only supports files up to to 10MB.
The ParseFile data type allows the app to store application
files in the cloud in addition to a smaller data structure of
ParseObject. PareObject allows upto to 10MB data in bytes
array or in the Stream form and SaveAsync call saves the file
to Parse.

BaasBox [22] which is an open source MBaaS framework
does not support large files. It is based on Play framework
which is a lightweight, stateless, web-friendly architecture. In
order to support large files, the REST APIs in Play framework
can be configured for the maximum payload size in POST
operations. Body parsers in Play framework is a HTTP request
(at least for those using the POST and PUT operations) that
contains a body. The default size of POST request is 100KB
and can be configured according to the server configuration.

Dropbox [23] REST APIs supports large files up to 150MB.
The files put API has a maximum file size limit of 150
MB and does not support uploads with chunked encoding.
The chunked upload API support uploading of larger files in
multiple chunks. Chunks can be of any size up to 150 MB with
a default size of 4 MB. Dropbox supports resuming uploads
if interrupted due to network disconnections.

Google Drive [24] APIs supports resumable uploads for
files more than 5MB, with a single request or in multiple
chunks.The PUT request allows chunks in multiples of 256
KB (256 x 1024 bytes) in size, except for the final chunk that
completes the upload. Chunks size has to be kept as large as
possible so that the upload is efficient.

Amazon Dynamo [25] provides high availability allowing
updates even during the network partitions or server failures

and targets applications that require only key/value access.
Amazon DynamoDB enforce a maximum item size of 400KB
in a table, including both attribute name binary length and
attribute value lengths. If the application needs to store more
data in an item than the DynamoDB size limit permits, the app
can try compressing one or more large attributes, or it can store
them as an object in Amazon Simple Storage Service (Amazon
S3) and store the object identifier of S3 in the DynamoDB
item.

The documentation of iCloud supported by CloudKit [6]
neither specify a Document file size limit, nor a Core Data (iOS
local) storage limit, other than a user account icloud storage
allowance. But the uploads are dependent on the storage limit
of device/user iCloud account. When the app adopt iCloud
document management lifecycle, the operating system (iOS)
initiates and manages uploading and downloading of data for
the devices attached to an iCloud account. The app does not
directly communicate with iCloud servers and, in most cases,
does not invoke upload or download of data.

The commercial framework Kinvey [26] supports to store
and retrieve binary files of size up to 5TB with the help
of third-party service. Kinvey currently use Google Cloud
Storage, as a third-party service to provide short-lived links,
that can be used to upload or download files.

Kony [27] is another platform that supports Large Binary
Objects API to retrieve and delete large binary objects, sched-
ule a download, and get the location of the objects. While the
Sync Chunking Mechanism applies to all of sync, the Large
Binary Objects API supports the download of binary data
stored in a particular object in multiple chunks. The download
occurs in the background, allowing the user to perform tasks
simultaneously.Kony applies Byte Range Serving technique,
where a client can request a specific portion of Large Binary
file that is present on the backend. This technique efficiently
uses the network bandwidth by allowing user to download the
binary in chunks ranging over multiple requests to the server.

Prior work from the authors of this paper [28] presented
a review of data consistency and synchronization frameworks
in Mobile Cloud Computing for Mobile Apps. This work was
focused on client-centric data consistency and the offline data
synchronization feature of various frameworks. While previous
work from the same authors covers results from the selected
studies in areas such as data consistency, handling offline data,
data replication, synchronization strategy, this paper deals with
only large file handling support.

III. NETMOB

To meet mobile application development requirements and
with main purpose of supporting large files (i.e. hundreds of
megabytes or gigabytes or more), we have developed NetMob.
NetMob is an applications framework, implemented in C# and
centered around the main aspect of providing the support for
large files (from hundreds of MBs up to 5GBs) in mobile
cloud services and enable the programmers to create arbitrarily
complex, synchronized replicated large data objects.

A. NetMob Architecture and Design

NetMob architecture consists of mainly two modules. One
Client software executes on the mobile device and the other

www.ijacsa.thesai.org 641 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Data Chunker

NetMob API

Large Files

Streaming API Hepler

NetMob Client API

Ne
tM

ob
Da

ta
Sy

nc

Mobile Table Store

(Sqlite)

Mobile Object Store

(LevelDB)

NetMob Client Data Store

Google Protocol

Buffer

Large File

Transfer

Data

Compressor

Ne
tw

or
k M

an
ag

er

DotNetty (NIO) Framework

NetMob SDK

Mobile App 1

NetMob SDK

Mobile App 2

St
or

e N
od

e
St

or
e N

od
e

St
or

e N
od

e

Ne
tM

ob
 T

ab
le

DH
T

Cl
ou

d T
ab

le
St

or
e

(C
as

sa
nd

ra)
(O

pe
nS

tac
k S

wi
ft)

Cl
ou

d O
bje

ct
St

or
e

Ne
tM

ob
 C

lou
d S

to
re

NetMob Data Service

Ne
tM

ob
 S

yn
c P

ro
toc

ol

Fig. 3. Architecture of NetMob framework.

server for data storage in the cloud. The combination of these
two software assists the development of mobile application on
the device according to the NetMob SDK. Fig. 3 shows the
basic architecture of NetMob.

The NetMob System Data Control Service (Nm-SDCS)
is the client software which acts as a interface of device-to-
cloud communication, for the mobile apps and responsible for
exchanging data and messages with the with NetMob Cloud
Data Server through a custom sync protocol. Each NetMob
app communicates with the system-wide service of NetMob
System Data Control Service, through the NetMob Data API
(streaming and CRUD) provided by the NetMob SDK.Nm-
SDCS service also consists of NetMob Local database store
(Nm-LDBS) to save all the application data and metadata
inside tables or object store.The local database store (Nm-
LDBS) is managed by Nm-SDCS and is not directly accessible
to NetMob apps.

The cloud server consists of NetMob Cloud Data Server
(Nm-CDS) which store the data and interact with the data
control service via custom sync protocol.

To reduce network footprint,the Network Data Manager
(NMD) helps to transmit network data (from multiple rows,
across multiple objects/tables) and messages from multiple
apps with data compression and support for large file transfer.

The key design goals supported by NetMob architecture
are as follows:

1) NetMOB SDK provide programming model familiar
to mobile app developers with Data API consisting of
CRUD and sync systematic along with unique support
for streaming access to large objects.The complexities
of disconnected operations, data hoarding, conflict
detection and push notifications are hidden behind
this interface.

2) NetMob provide a high level abstraction for building
a fault-tolerant apps and assist apps to programati-
cally handle delay-tolerant data transfer between the
mobile device and the cloud.A non-zero period value
of delay tolerance (DT) can be set which determines
the frequent of change collection.

3) NetMob SDK provides apps with data granularity of
both tables and object data with a feature to specify
the distributed consistency for the data.

4) NetMob utilize efficient data reduction and bandwidth
reduction techniques to minimize both the number of
messages and bytes transferred over the network and
hence support efficient device battery usage.

B. Data Model

NetMob’s data model simplifies data storage for apps to
store all of their data and hiding the details of how data is
stored and synced.NetMob offers a data model called NetMob
Table (TableNM for short) supporting both tables and objects.
An individual row of an TableNM, called a RowNM. Each
RowNM can accommodate associated tabular and object data
with the tunable distributed consistency for the table as a whole
from available consistency options. Hence NetMob permit
consistency specification per table and treat a row as the unit
of atomicity preservation. Same consistency is applicable to
all tabular and object object data in TableNM. NetMob ensure
that all app and user data stored in the TableNM and provide
synchronization service with the cloud and on to other mobile
devices.

NetMob can also support apps that need either a tabular-
only or object-only schema.NetMob also frees the developer
from writing complicated transaction management and recov-
ery code by utilizing the RowNM, which offers a programmable
higher-level interface,for a unit of app data with consistency
guarantees under all scenarios.

C. API Interface

The design of NetMob API is similar to the well-known
CRUD interface and enable the apps to set the Table/Object
properties, access their data and push new data and perform
conflict resolution.NetMob a stream abstraction that allows
the objects to be written to, or read from, which is very
suitable to handle large object. NetMob also support local
reading or writing only a part of the large object , which is not
supported by typical BLOBs (binary large objects) in relational
databases [38]. Any app written adhering to this API interface
is considered as a NetMob-app.

API, described in Table I, provide following features:

1) CRUD (Create, Read, Update, and Delete) function-
ality on both tables and objects.

2) Methods to subscribe tables for synchronization.
3) Notifications for new data and conflicts.
4) Support for conflict detection and facility for resolu-

tion.

D. NetMob Design

1) NetMob Client (Clientnm): Clientnm allow the networked
NetMob-apps to have I/O data model even during the dis-
connected operations and enable partition tolerance. Clientnm
allows seamless data access for the apps by hiding the them
from server and network disconnections. It is designed to
run as static instance of device-wide service with following
functionalities:

1) Provides seamless access to table and object data for
all NetMob-apps through a well defined lightweight
Interface (sClientLib).

2) Support large objects with stream abstraction to read
and write objects.

3) Maintain appropriate local replication of data on the
mobile device to enable disconnected operations.

www.ijacsa.thesai.org 642 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

TABLE I. NetMob APIs.

Type API Purpose
PutObject[] Creating Objects
GetObject[] Retrieving Objects

CRUD Operations
on tables and ob-
jects

PutObject[] Updating Objects

DeleteObject[] Deleting Objects
PutObjectChunk[] Creating chunk
GetObjectRange[] Retrieving chunk

CRUD Operations
with Chunking

DeleteObjectChunk[] Deleting chunk

DeleteChunks(table, selection) Deleting multiple chunks
PutManifest[] Creating large objects us-

ing Chunk
Large Object Han-
dling

GetManifest[] Retrieving large objects us-
ing Chunk

DeleteObjects[] Deleting large objects
writeSyncSubscribe(table,
period, delayTolerance,
syncprefs)

Register for sync notifica-
tions

writeSyncUnSubscribe(table) Unregister for sync notifi-
cations

instantWriteSync(table) Invoke instant Write Sync
Object
Synchronization

readSyncSubscribe(table,
period, delayTolerance,
syncprefs)

unregisterReadSync(table)

instantReadSync(table) Invoke instant Read Sync
dataAvailableFresh(table, num-
Rows)

Notification for new data
availability

Notification APIs conflictData(table,
numConflictRows)

Notification for conflict in
data

beginCROperation(table) Start Conflict resolution
getConflictedDetails(table) Get conflicted Details

Conflict Resolution resolveConflict(table, row,
choice)

Resolve Conflict

endCROperation(table) End Conflict resolution

4) Guarantee fault-tolerance, high availability, data con-
sistency, and atomicity at row-level.

5) Execute all synchronization tasks over the network.
6) Provide notifications to the apps for events like new

data, conflict.
7) Monitors liveness of apps, and memory management

in case of app crashes.

2) NetMob Local Data Store (LDBSNM) : The NetMob
Local Data Store (LDBSNM) act as a local persistent storage
module to save both tabular data and objects of app in the
mobile device’s memory (typically the internal flash mem-
ory or the external SD card). The primary responsibility of
(LDBSNM) is to support atomic updates over the local data
and allow efficient CRUD operations support (on RowsNM). It
also support atomic sync of variable sized and possibly large
objects. It must respond quickly to the change detection queries
and inform about the sub object changes in the stored local
data. The data layout of LDBSNM is shown in Fig. 4. The
logical structure of the table and object storage is also depicted
in Fig. 4.

The primary goal design of LDBSNM is to enable storage of
large objects by dividing local data into fixed-size chunks and
store in a key–value store (KVS) that supports range queries.
LevelDB [29], a KVS based on a log-structured merge (LSM)
tree [30] is chosen, that has a good throughput for both appends
and overwrites.

3) NetMob Cloud Server (CloudNM) : The primary respon-
sibility of NetMob Cloud Server (called CloudNM) is to man-
age data across multiple ClientNM, TableNM, and NetMob-apps.
CloudNM facilitate tunable consistency storage mechanism

Object Store

Name ThumbnailType

videoVideo1 tmb_video1.jpg

tmb_berry.pngBerry image Berry.jpg

Data

Video1.mov

Object layout

Tabular layout

RowID Type

[d5096e5f, b2134878]

[770b7c33, 3f608148]

[42294768, 08c57348]

[87286a28, 06e91540]
b4439ec9 Berry image [5aff4e10, a680f57b]

41ecd6c3 Video1 video [76eb3826, dce2e449]

Name Thumbnail Data Media Data

Table Layout

Chk1 (4MB)

h1

SHA−256

Chk2 (4MB)

h2

SHA−256

Chk3 (4MB)

h3

SHA−256

(2 MB)
Chk4

h4

SHA−256

Video1.mov (14MB)

Chunk layout of a file

76eb3826 dce2e449 d5096e5f b2134878

770b7c33 3f608148 5aff4e10 a680f57b

42294768 08c57348 87286a28 06e91540

Fig. 4. NetMob Local Data Store.

with three different consistency plans and synchronization for
TableNM.

CloudNM is divided into two modules,client-facing Gate-
way and a data store, NetMob Cloud Store (for short, StoreNM),
based on independently scalable client management and data
storage, respectively. For data scalability,store is organized
into store nodes. At-most one Store node is assigned to each
TableNM to manage both its tabular and object data.In order
to ensure read-my-writes consistency [31] with scalability, the
data of TableNM is saved in two separate stores, each for tabular
and object data. The store nodes server the client requests by
serializing the synchronization operations and support three
different consistency plans on each table at the server.

The Gateway acts as an interface for the communication
between ClientNM and the CloudNM. The load balancer assign a
Gateway for the requested clients and handles authentication of
client through an authenticator. The Gateway handle the table
subscriptions, sending notifications, communication of the
clients and transfer sync data between ClientsNM and StoreNM.
Since the Gateway is subscribed to change notifications for all
StoreNM nodes and eventually gets notified on changes to a
subscribed TableNM.

E. Sync Protocol

The design goal of CloudNM is to communicate with
the clients both for storage as well as data synchroniza-
tion.Hence it interacts with the ClientNM in the terms of
change-sets.NetMob synchronization protocol is built on Netty
[32] framework that support better throughput and lower
latency. Netty has protocol support for transferring large files
using zlib/gzip compression and data transfer through Google
Protobuf [33].

Any client that require to communicate with each table of
interest , needs to register with the server by subscribing to
a write and/or read subscription. The design of sync proto-
col handle multiple independent writers using versioning to
provide multi-version concurrency control through CloudNM.
CloudNM use the technique of compact version numbers,
instead of full version vector [34] in order to support StrongS
and CausalS consistency schemes.

For efficient change identification, NetMob keeps a version
number per row and assign a unique row identifier. NetMob
follows the scheme is used in gossip protocols [35] to identify
that rows that needs to be synchronized.With each update

www.ijacsa.thesai.org 643 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Object

Server1

Container

Server1

Object

Server2

Container

Server2

Object

Server3

Container

Server3

PUT(B, location = 3)

Client−1

Client−2
Proxy Server

PUT(A, = true)chunk

O3

C1
O1

C2

O2
C3

HASH(A)

A

B

A1 A2 B

Fig. 5. NetMob cloud server Object Chunking in OpenStack Swift.

of the row,Row versions are incremented at the server. Net-
Mob set the largest incremented row version maintained in
a table, as the table version. Based on this table versioning
scheme NetMob immediately determine which rows need to
be synchronized and also select the list of RowsNM which are
modified, or the change-set.

For efficient network transfer, NetMob use the chunking
methods and objects are stored and synced as a collection
of fixed-size chunks.Client APIs expose chunking and apps
continue to locally read/write objects as streams.

NetMob design is derived from previous work of unified
table and object interface in the context of local systems [36]
as well as in a networked app ([15], [12], [37] and [38]).

IV. LARGE OBJECT SUPPORT WITH SEGMENTATION AND
OBJECT CHUNKING

The Chunking mechanism allows NetMob clients to trans-
parently split objects into smaller parts, when uploading data
to the object storage. In order to support upload of large
objects, in Object Storage, the Open Stack Swift [10] use
segmentation process. The process of Segmentation involves
dividing the object and accordingly generating a file that
delivers the segments together as a single object. Segmentation
allows a virtually unlimited size of single object upload with
faster and opportunity of parallel uploads of the segments.

OpenStack Object Storage allows single item of up to 5 GB
in size for uploading. Openstack Swift follow segmentation
process by fragmenting the object, and automatically creating
a special manifest file that sends the segments concatenated
as a single object. The technique of splitting objects into
smaller chunks not only increase the efficiency and facilitate
parallel uploads and also transparently support small, equal-
sized chunks.

Fig. 5 illustrates the process of segmentation. During the
upload, a client can request for object chunking and the proxy
server split the arriving data into several blocks. These different
blocks will be internally named based on the placement in the
cluster. A special manifest file is generated with the ordered
list of the names of all object blocks. During the GET request,
the proxy sends the parts in order to the client, by reading the
manifest file.

V. LARGE FILE HANDLING

The network manager implemented using the .Net DoT-
Netty uses zip (zlib/gzip) data compression with Google pro-
tobuf support and also provide support for large file transfer.

A. Large Object Support with Segmentation

In order to support upload of large objects, in Object
Storage, the Open Stack Swift [10] use segmentation process.
The process of Segmentation involves dividing the object
and accordingly generating a file that delivers the segments
together as a single object. Segmentation allows a virtually
unlimited size of single object upload with faster and oppor-
tunity of parallel uploads of the segments.

Each object is stored as a single file on disk unless its size
exceeds the maximum file size configured for the Swift cluster.
This maximum file size defaults to a rather small value, 5 GB,
in order to prevent a single object from filling up a disk while
most of the cluster is empty. If an object to be stored is very
large, it is divided into several segments and stored with a
manifest to allow reassembly later.

B. Client Side Large Objects Handling in LevelDB with LSM

At the client side, NetMob integrate SQLite for table
data and LevelDB for objects.NetMob embeds LevelDB at
the mobile side for handling the large files.LevelDB use the
concepts of Sorted String Table, Log Structured Merge (LSM)
to support processing large workload where the input is in
Gigabytes in size.

Sorted String Table (SSTable) [39] is popular data structure
for efficiently storing large numbers of key-value pairs and
support high throughput with sequential read/write workloads.
SSTable can process and exchanging datasets where the input
is in Gigabytes in size.

This Log Structured Merge (LSM) [30] architecture pro-
vides a number of interesting behaviors in combination with
the SSTable. Since the LSM allow all writes go directly to the
MemTable index, write operations are always fast regardless
of the size of dataset (append-only). Also the random reads
are either quickly retrieved from memory or served from disk
(search MemTable initially and then the SSTable indexes. The
MemTable is regularly flushed into disk as SSTable.

LevelDB architecture combines a set of processing con-
ventions applied to SSTable and a MemTable to create a
powerful embedded database engine. The other products that
follow similar architecture are Google’s Cassandra, BigTable,
and Hadoop’s HBase.

LevelDB supports fast write operations regardless of the
size of dataset, as the all writes go directly to the log and a
MemTable. The log is periodically flushed into disk as sorted
string table files (SST) of size upto 2MB. Each SST file is
internally split into single readable block of size 4K. These
blocks are structured such that end block is an index that points
to the beginning of each data block and it is the key of the
entry at the beginning of the block. A Bloom filter accelerate
the lookup process and facilitate fast search of an index to
determine the block that may have the desired entry. LevelDB
in addition minimize the read costs by partitioning SST into
sets, or levels. Levels are numbered starting from 0, and each
levels beyond Level 1 is 10 times the size of the previous level.

VI. CONSISTENCY LEVELS IN CASSANDRA AND SWIFT

NetMob supports three most commonly used consistency
schemes Strong, Causal and Eventual, identical to the ones in

www.ijacsa.thesai.org 644 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Pileus [40] as illustrated in Table II.

TABLE II. CONSISTENCY SCHEMES IN NETMOB

Operation Strong Causal Eventual
Offline write permission No Yes Yes
Offline read permission Yes Yes Yes
Need Conflict resolution No Yes No

NetMob support a tunable Cloud Table store through Cas-
sandra [11], [41] that allows consistency levels to be controlled
from the client while performing an operation. Cassandra
supports both the eventual and strong consistency models.
In order to ensure high-availability, Cassandra is configured
to make use of three-way replication. For supporting strong
consistency during reading, Casandra will be configured for
ReadConsistency=ONE, that indicates the immediate response
from the closest replica. Similarly for supporting strong consis-
tency during writing, Casandra will be configured for Write-
Consistency=ALL. This configuration make sure that for all
replica nodes in the cluster for that partition, a write operation
is written not only to commit log and also to memtable.

Since OpenStack Swift supports Eventual consistency by
default, in order to enforce the strong consistency, StoreNM
initially creates a new object and consequently deletes the old
one after the updated RowNM is committed. StoreNM attach
a read/write lock to each TableNM, in order to guarantee
exclusive write access for update with additional concurrent
access to multiple threads for reading.

VII. IMPLEMENTATION

A. Client

The prototype of ClientNM is implemented as system wide
service to provide data services to multiple apps with reduces
network usage with compression techniques. ClientNM is devel-
oped as a system wide service, which is connected by NetMob-
apps through local remote procedure calls (RPC). ClientNM
integrate SQLite for table data and LevelDB for objects. Both
data and push notifications between ClientNM and CloudNM
are served with a single persistent TCP connection.This single
TCP connection will avoid insignificant connection establish-
ment and teardown [[42]] from NetMob apps. ClientNM also
implements the client APIs for OpenStack Swift that covers
most of the Swift APIs, and handles authentication and large
object streaming.

B. Server

StoreNM prototype integrate Cassandra [41] to provide the
tabular data support and utilize OpenStack Swift [10] APIs for
Object storage.

Cassandra supports both the eventual and strong consis-
tency models. In order to ensure high-availability, Cassan-
dra is configured to make use of three-way replication. For
supporting strong consistency during reading, Casandra will
be configured for ReadConsistency=ONE, that indicates the
immediate response from the closest replica. Similarly for
supporting strong consistency during writing, Casandra will
be configured for WriteConsistency=ALL. This configuration
make sure that for all replica nodes in the cluster for that

partition, a write operation is written not only to commit log
and also to memtable.

Since OpenStack Swift supports Eventual consistency by
default, in order to enforce the strong consistency, StoreNM
initially creates a new object and consequently deletes the old
one after the updated RowNM is committed. StoreNM attach
a read/write lock to each TableNM, in order to guarantee
exclusive write access for update with additional concurrent
access to multiple threads for reading.

VIII. EVALUATION

For application frameworks the latency is a benchmarking
factor to study the effect of high-level abstraction for efficient
sync of mobile application data [43], [44], [45], [46]. Based
on the literature [47] consistency models suitable for mobile
environments are classified based on three deviation metrics.
This classification is termed as 3D Design Framework [48],
[49]. Three metric parameters form the three axes of the 3D
Design Framework:

1) Numerical deviation: difference in number of updates
applied to replicas.

2) Order deviation: difference in order of operations
between replicas.

3) Staleness: delay until replicas see an update.

The actual deviations may differ depending on the level
of inconsistency tolerated by the system. The 3D Design
Framework classification resulted after applying the metrics
to various consistency models [48]. A suitable consistency
model can be devised based on the acceptable amount of
inconsistencies. The axes do not contain concrete values, as
these depend on the system. The nature of the system also
determines the acceptable amount of inconsistencies.

The empirical evaluation and comparison of the NetMob
framework is performed in three main categories:

• The efficiency of NetMob Sync Protocol.

• The performance of CloudNM Data API consisting of
CRUD and chunking operations.

• Effect of consistency and latency.

A. Experimental Setup

The evaluation environment of NetMob included a set
of virtual machines and mobile device client. A virtual ma-
chine (VM) setup with OpenStack Swift (Version 1.12.0.37)
deployment with one proxy node and 4 storage nodes. The
proxy node with Ubuntu 14.04 was equipped with Intel Xeon
CPU and 4 GB RAM and storage nodes (Ubuntu 14.04) had
Intel Xeon E5-2403 processors and 1 GB RAM. Another VM
with Cassandra (Version 1.2.5) setup with Ubuntu 14.04 was
equipped with Intel Xeon CPU and 2 GB RAM.The system
was tested with Xiaomi RedMi 5 Plus Device, 4GB RAM
running Android Oreo. Evaluation was done using a WPA-
secured WiFi network, instead of 4G network.

www.ijacsa.thesai.org 645 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

TABLE III. NETMOB SYNC PROTOCOL OVERHEAD

No of
Rows

Size of ob-
ject

Size of
payload

Size of Message (%
Overhead)

Size of Network
Transfer (%
Overhead)

None 1 B 101 B (99.009%) 132 B (99.242%)
200 KiB 200 KiB 210.098 KiB

(99.905%)
235 KiB (99.149%)

1 100 MB 106.34 MB 106.59 MB (0.235%) 106.89 MB (0.515%)
None 100 B 2.41 KiB (96%) 694 B (85.6%)
200 KiB 2048 MB 2210 MB (99%) 2510 MB (99%)

10 100 MB 1034.34
MB

1035.85 MB (0.15%) 1037.65 MB (0.318%)

B. Sync Protocol Overhead

NetMob is designed with a primary requirement to support
programmers with an interface that can assist in efficient sync
of mobile application data, with special focus on large file ob-
jects.It must be ensured that NetMob must not add significant
overhead during the sync process. NetMob promise an efficient
sync protocol with limited overhead and is lightweight.

To test the efficiency of NetMob Sync protocol we mea-
sured the message size and network transfer size for varied
payload sizes with combinations of tabular and object data.
Table III depicts the cumulative sync protocol overhead with
varied payload sizes. The empirical evaluation calculate over-
head for a single synchronization request comprising of a
single row and a group of 10 rows with different sizes of
payload.

The test results revealed NetMob produces an overhead of
100 bytes for a baseline message. This request is composed of
no object data, but a single row consisting of tabular data of 1
byte. However it is observed that due to data compression in
NetMob, the overhead in the case of per-row baseline request is
reduced by 76%, for batch operations of 10 rows into a single
sync request. Moreover, the data transfer overhead eventually
becomes negligible when the payload (tabular or object) size
increases. This shows that NetMob sync protocol is lightweight
and efficient especially with group/batched row operations.

C. Performance of NetMob Data Retrieval and Chunking APIs

The NetMob API interface was tested by the mobile client
application to issue requests of writing (uploading), reading
(downloading) and deleting large files of various size. The
ability of NetMob to support large files through fixed-size
object chunking was also evaluated through test cases that
configure the chunk size while calling the NetMob APIs.

1) Create-Read-Delete API performance:
NetMob framework is tested for both combination and individ-
ual tests of create-update-delete queries for data. For the write
benchmark, with files of varying sizes from 1MB to 1GB.
File read tests are conducted to analyze the ability of NetMob
to handle large data from 1MB to 1GB. Tests for deleting
individual files are also carried out. The create-read tests are
initially carried out with a default chunk size of 8MB. Fig. 6
(A) depicts the results of create-read-delete APIs of NetMob.

The graph shows a gradual variation of the latency with
respect to increase in the size of the file. Also the upload APIs
took more time than the download APIs since the time spent
is acknowledgment and processing data during the upload
operation. The upload time variation was less for the upload

1 5 20 100 300 500 700 900

0

10

20

30

40

50

60

70

80

90

100

File Size (MB)
(A)

Ti
m

e
Se

co
nd

s
(s

)

Put
Get
Delete

1 5 20 100 300 500 700 900

0

10

20

30

40

50

60

File Size (MB)
(B)

Ti
m

e
Se

co
nd

s
(s

)

2MB
4MB
8MB
16MB

Fig. 6. (A)- Latency for Put, Get and Delete queries and (B) Put query
latency for different chunk sizes (2, 4, 8 and 16 MB) in NetMob

file operations of size greater then 500MB, since the NetMob
sync protocol effectively archive the data during network data
transfer.

Delete operation for NetMob Clients is relatively fast, since
lazy deletion marks objects as deleted. Overall, experimental
evaluation of NetMob Data APIs showed that NetMob is
efficient in handling the writing (uploading), reading (down-
loading) and deleting of large files.

2) Effectiveness of Object Chunking:
Next, we evaluated the performance of object chunking. To
modify the object-to-node ratio, we use files of different sizes
and change the object chunk size. A large file size produces
a low number of objects with large chunk size and hence, a
low object-to- node ratio or read-writes are faster. Fig. 6 (B)
depicts NetMob performance of upload (Put query) operation
with varying Object Chunk size.

Large chunk size proved to be more efficient as per the
graph, since the large chunks produce fewer number of parti-
tions of files hence can transmit faster. The authors recommend
a chunk size of 16MB for NetMob for efficient large file
handling, depending on the processing memory available in
the mobile device.

D. Consistency vs. Performance

Cassandra supports both the eventual and strong consis-
tency models. In order to ensure high-availability, Cassan-
dra is configured to make use of three-way replication. For
supporting strong consistency during reading, Casandra will
be configured for ReadConsistency=ONE, that indicates the
immediate response from the closest replica. Similarly for
supporting strong consistency during writing, Casandra will
be configured for WriteConsistency=ALL. This configuration
make sure that all the writes must be written to both commit
log and memtable on all replica nodes in the cluster, for that
partition under consideration.

Since OpenStack Swift supports Eventual consistency by
default, in order to enforce the strong consistency, StoreNM
initially creates a new object and consequently deletes the old
one after the updated RowNM is committed. StoreNM attach
a read/write lock to each TableNM, in order to guarantee

www.ijacsa.thesai.org 646 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Write Sync Read
100

101

102

6
.7

2
s

5
.3

4
s

1
.7

8
s

5
.2

6
s 8
.0

1
s

1
.5

2
s

4
.8

2
s

1
9
.1

3
s

1
.5

2
s

(A)

Ti
m

e
(S

ec
on

ds
)

Strong Eventual Causal

Eventual Causal Strong
0

100

200

300

400

(B)

D
at

a
Tr

an
sf

er
(M

B
)

Tw Tr

Fig. 7. (A) End-to-end latency for 100MB object and (B) Data transfer in
different consistency schemes in NetMob

exclusive write access for update with additional concurrent
access to multiple threads for reading.

To measure the consistency parameters, the NetMob is
tested with three types of mobile test clients Reader (Tr),
Writer (Tw) and CausalTester (Tc). Prior to Tw’s write op-
eration, the client Tc have to make sure that it writes to a
row which has the same row-key as Tw. This setup is tested
with two Xiaomi RedMi 5 Plus Device, 4GB RAM running
Android Oreo.The write payload is a 100MB file to measure
the latency for reads, writes that is perceived by the NetMob
client applications and latency of data sync with CloudNM.
For evaluating the eventual and Causal consistency we used
the notification time of one second. It must be ensured that all
updates must happen prior to this time window.

Wi-Fi latency and associated data transfer are depicted in
Fig. 7(A) and Fig. 7(B) respectively.

The “Write” latency is the app perceived latency of update
at Writer (Tw). The sync-update latency from Writer (Tw)
to Reader (Tr) is referred as “Sync”. The “Read” latency is
referred to the time taken by the app for reading updated data
at Reader (Tr). Fig. 7(B) shows the total data transferred by
Writer (Tw) and Reader (Tr) clients and for each consistency
scheme.

Since EventualS consistency requires to read only the latest
version, it turns out into a single sync process resulting in
less data transfer according to the rule of last write. StrongS
consistency require all updates to propagate immediately, there
is a higher data transfer, but has lowest sync latency as
data is synced immediately.In case of conflicts,Sync latency
for CausalS is greater than EventualS , since the former
requires more RTTs to resolve conflicts. Conflict resolution
With CausalS increase the data transfer amount, since for the
first sync attempt by Writer (Tw) fails, so Writer (Tw) must
read CausalTester’s (Tc) conflicting data, and retry its update.
Sync latency and data transfer for CausalS and EventualS are
similar in case of absence of conflicts (not depicted).

IX. PERFORMANCE COMPARISON WITH OTHER SYNC
FRAMEWORK

The NetMob local performance is compared with the
popular Data Syncing product Dropbox with chunk size of
16MB chunking. The test application invoke the writes, reads,
and deletes for data containing one 100MB object for Dropbox
(Core API) and NetMobClient. Fig. 8 shows standard deviation
and average times and over three trials for the upload data (Put
query). The Dropbox performance is affected by the location

1 5 20 100 300 500 700 900

0

100

File Size (MB)

Ti
m

e
(S

ec
on

ds
)

NetMob
DropBox

Fig. 8. NetMob comparison with Dropbox framework for Upload data.

of the Dropbox server and the upload bandwidth at the time
of testing. NetMob performs 15% faster than the Dropbox for
the writes. The reason for the low performance of Dropbox
may be due to server location (US) and the upload bandwidth
at the time of testing. Delete performance for NetMob Client
and Dropbox is almost same, since lazy deletion marks objects
as deleted and but physically deleted only after sync operation
is completed.

X. CONCLUSION AND FUTURE WORK

Handling the task of uploading/retrieving large files from/to
a mobile app is a cumbersome process for developers due to
issues of latency, speed, timeouts and interruptions. In this
paper, we investigated the large objects (from hundreds of MBs
up-to 5GBs) support and limitations in the different reference
implementations for cloud storage services for mobile. To
address the large files, we propose NetMob, a framework with
tunable chunking support and for large objects both at the
mobile and the cloud storage. This work further contributed
by implementing NetMob framework, that allows the large
objects to be written to, or read from the cloud storage and
also support local reading or writing only for a part of the
large object, with tunable consistency option. The extensive
evaluations demonstrate that NetMob can effectively store and
sync large files with the reduced synchronization time and
minimize significant traffic overhead for representative large
file workloads. As a future work we would like to support
additional consistency schemes (like Sequential consistency
and others) in NetMob framework.

ACKNOWLEDGMENT

Authors thank the Faculty of Computer Science and Infor-
mation Technology, Universiti Putra Malaysia for its financial
support.

REFERENCES

[1] E. Pitoura and G. Samaras, Data management for mobile computing.
Springer Science & Business Media, 2012, vol. 10.

[2] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the
coda file system,” ACM Transactions on Computer Systems (TOCS),
vol. 10, no. 1, pp. 3–25, 1992, doi:https://doi.org/10.1145/146941.
146942.

www.ijacsa.thesai.org 647 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

[3] J. P. Munson and P. Dewan, “Sync: a java framework for mobile
collaborative applications,” Computer, vol. 30, no. 6, pp. 59–66, 1997.

[4] P. Mell and T. Grance, “The nist definition of cloud computing
recommendations of the national institute of standards and technology,”
Nist Special Publication, vol. 145, p. 7, 2011.

[5] A. W. S. Mobile, “Aws sdk,” 2016, https://aws.amazon.com/mobile/.
[6] A. Inc, “icloud for developers,” 2016, ”http://developer.apple.com/

icloud”.
[7] H. Wu, L. Hamdi, and N. Mahe, “TANGO: A flexible mobility-

enabled architecture for online and offline mobile enterprise applica-
tions,” Proceedings - IEEE International Conference on Mobile Data
Management, pp. 230–238, 2010.

[8] Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li, J. Zhou, G. Xie,
and P. Steenkiste, “An empirical analysis of a large-scale mobile cloud
storage service,” in Proceedings of the 2016 Internet Measurement
Conference. ACM, 2016, pp. 287–301.

[9] F. Shanon Montelongo, “How to upload large files,” https://blog.
filestack.com/thoughts-and-knowledge/how-to-upload-large-files/.

[10] “Openstack swift object storage service,” 2018, http.//swift.openstack.
org.

[11] A. Lakshman and P. Malik, “Cassandra: structured storage system on a
p2p network,” in Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, 2009, pp. 5–5, doi:https://doi.org/10.
1145/1582716.1582722.

[12] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V.
Madhyastha, and C. Ungureanu, “Simba: Tunable end-to-end data
consistency for mobile apps,” in Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015, p. 7, doi:https:
//doi.org/10.1145/2741948.2741974. [Online]. Available: https://github.
com/SimbaService/Simba

[13] N. Preguiça, M. Zawirski, A. Bieniusa, S. Duarte, V. Balegas, C. Ba-
quero, and M. Shapiro, “Swiftcloud: Fault-tolerant geo-replication
integrated all the way to the client machine,” in 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems Workshops
(SRDSW). IEEE, 2014, pp. 30–33.

[14] R. Klophaus, “Riak core: Building distributed applications without
shared state,” in ACM SIGPLAN Commercial Users of Functional
Programming. ACM, 2010, p. 14, doi:https://doi.org/10.1145/1900160.
1900176.

[15] S. Hao, N. Agrawal, A. Aranya, and C. Ungureanu, “Building a
delay-tolerant cloud for mobile data,” in 2013 IEEE 14th International
Conference on Mobile Data Management, vol. 1. IEEE, 2013, pp.
293–300, doi:https://doi.org/10.1109/MDM.2013.43.

[16] B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Madden, and R. Ra-
makrishnan, “Mobius: unified messaging and data serving for mobile
apps,” in Proceedings of the 10th international conference on Mobile
systems, applications, and services. ACM, 2012, pp. 141–154,
doi:https://doi.org/10.1145/2307636.2307650.

[17] S. Burckhardt, “Bringing touchdevelop to the cloud,”
2013, https://www.microsoft.com/en-us/research/blog/
bringing-touchdevelop-to-the-cloud/.

[18] S. Burckhardt, M. Fahndrich, D. Leijen, and B. P. Wood, “Cloud types
for eventual consistency,” in European Conference on Object-Oriented
Programming. Springer, 2012, pp. 283–307, doi:https://doi.org/10.
1007/978-3-642-31057-7 14.

[19] W. Brunette, S. Sudar, M. Sundt, C. Larson, J. Beorse, and R. An-
derson, “Open data kit 2.0: A services-based application framework
for disconnected data management,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 2017, pp. 440–452, doi:https://doi.org/10.1145/3081333.
3081365.

[20] Y. Cui, Z. Lai, X. Wang, and N. Dai, “Quicksync: Improving syn-
chronization efficiency for mobile cloud storage services,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 12, pp. 3513–3526, 2017,
doi:https://doi.org/10.1109/TMC.2017.2693370.

[21] P. Platform, “Parse platform,” 2016, https://parseplatform.github.io/.
[22] “The baasbox server,” https://github.com/baasbox/baasbox/, accessed:

2019-01-26.

[23] Dropbox, “Build your app on the dropbox platform,” 2016, https://www.
dropbox.com/developers.

[24] G. Drive, “Google drive,” 2016, https://developers.google.com/drive/.
[25] “Amazon dynamodb - best practices for storing large items

and attributes,” https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/bp-use-s3-too.html, accessed: 2019-01-26.

[26] Kinvey, “Kinvey baas,” 2016, https://www.kinvey.com/.
[27] “Kony mobilefabric,” http://docs.kony.com/7 0 PDFs/sync/kony sync

orm api guide.pdf, accessed: 2019-01-26.
[28] Y. P. Faniband, I. Ishak, F. Sidi, and M. A. Jabar, “A review of data

synchronization and consistency frameworks for mobile cloud appli-
cations,” INTERNATIONAL JOURNAL OF ADVANCED COMPUTER
SCIENCE AND APPLICATIONS, vol. 9, no. 12, pp. 601–611, 2018.

[29] LevelDB, “A fast and lightweight key/value database library,” code.
google.com/p/leveldb.

[30] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[31] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser, “Managing update conflicts in bayou,
a weakly connected replicated storage system,” in ACM SIGOPS
Operating Systems Review, vol. 29. ACM, 1995, pp. 172–182,
doi:https://doi.org/10.1145/224056.224070.

[32] “Netty - nio client server framework,” https://netty.io/, accessed: 2019-
01-26.

[33] “Protocol buffers,” https://developers.google.com/protocol-buffers/, ac-
cessed: 2019-01-26.

[34] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection
of mutual inconsistency in distributed systems,” IEEE transactions on
Software Engineering, no. 3, pp. 240–247, 1983.

[35] R. Van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient
reconciliation and flow control for anti-entropy protocols,” in proceed-
ings of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware. Citeseer, 2008, p. 6.

[36] K. Ren and G. Gibson, “Tablefs: Embedding a nosql database inside
the local file system,” in APMRC, 2012 Digest. IEEE, 2012, pp. 1–6.

[37] A. Shraer, A. Aybes, B. Davis, C. Chrysafis, D. Browning, E. Krugler,
E. Stone, H. Chandler, J. Farkas, J. Quinn et al., “Cloudkit: structured
storage for mobile applications,” Proceedings of the VLDB Endowment,
vol. 11, no. 5, pp. 540–552, 2018.

[38] T. T. Chekam, E. Zhai, Z. Li, Y. Cui, and K. Ren, “On the synchroniza-
tion bottleneck of openstack swift-like cloud storage systems,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[39] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[40] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. ACM, 2013, pp. 309–324, doi:https:
//doi.org/10.1145/2517349.2522731.

[41] Apache, “Apache cassandra database,” http://cassandra.apache.org.
[42] J. C. Mogul, The case for persistent-connection HTTP. ACM, 1995,

vol. 25, no. 4.
[43] M. Klems, D. Bermbach, and R. Weinert, “A runtime quality mea-

surement framework for cloud database service systems,” in Quality of
Information and Communications Technology (QUATIC), 2012 Eighth
International Conference on the. IEEE, 2012, pp. 38–46.

[44] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and S. Tai, “A
middleware guaranteeing client-centric consistency on top of eventually
consistent datastores.” in IC2E, 2013, pp. 114–123, doi:https://doi.org/
10.1109/IC2E.2013.32.

[45] D. Bermbach and S. Tai, “Eventual consistency: How soon is eventual?
an evaluation of amazon s3’s consistency behavior,” in Proceedings
of the 6th Workshop on Middleware for Service Oriented Computing.
ACM, 2011, p. 1.

www.ijacsa.thesai.org 648 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

[46] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency
properties and the trade-offs in commercial cloud storage: the con-
sumers’ perspective.” in CIDR, vol. 11, 2011, pp. 134–143.

[47] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles
and paradigms. Prentice-Hall, 2007.

[48] J. Cao, Y. Zhang, G. Cao, and L. Xie, “Data consistency for cooperative
caching in mobile environments,” Computer, 2007.

[49] Y. Huang, J. Cao, B. Jin, X. Tao, J. Lu, and Y. Feng, “Flexible
cache consistency maintenance over wireless ad hoc networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 8, pp.
1150–1161, 2010.

[50] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Na-
jafzadeh, and M. Shapiro, “Putting consistency back into eventual
consistency,” in Proceedings of the Tenth European Conference on

Computer Systems. ACM, 2015, p. 6, doi:https://doi.org/10.1145/
2741948.2741972.

[51] Y. Bai and Y. Zhang, “Stoarranger: Enabling efficient usage of cloud
storage services on mobile devices,” in Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on. IEEE, 2017,
pp. 1476–1487.

[52] “Evernote system limits,” https://help.evernote.com/hc/en-us/articles/
209005247, accessed: 2019-01-26.

[53] A. Gheith, R. Rajamony, P. Bohrer, K. Agarwal, M. Kistler, B. W. Eagle,
C. Hambridge, J. Carter, and T. Kaplinger, “Ibm bluemix mobile cloud
services,” IBM Journal of Research and Development, vol. 60, no. 2-3,
pp. 7–1, 2016, doi:https://doi.org/10.1147/JRD.2016.2515422.

APPENDIX

www.ijacsa.thesai.org 649 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

TA
B

L
E

IV
.S

U
M

M
A

R
Y

O
F

L
A

R
G

E
O

B
JE

C
T

S
U

P
P

O
R

T
IN

R
E

F
E

R
E

N
C

E
D

E
S

IG
N

S

Fr
am

ew
or

k
L

O
Su

pp
or

t
M

ax
fil

e
up

lo
ad

si
ze

C
hu

nk
in

g
L

O
H

an
dl

in
g

Te
ch

ni
qu

e
Si

m
ba

[1
2]

∗
7

-
7

D
oe

s
no

t
su

pp
or

t
la

rg
e

ob
je

ct
s.

Sw
if

tC
lo

ud
[1

3]
7

-
7

7
Sw

if
tC

lo
ud

is
a

m
id

dl
ew

ar
e

sy
st

em
th

at
im

pl
em

en
ts

a
K

ey
-C

R
D

T
on

to
p

of
R

ia
k.

T
he

R
ia

k
de

si
gn

er
s

do
no

t
re

co
m

m
en

d
st

or
in

g
ob

je
ct

s
ov

er
50

M
B

fo
r

pe
rf

or
m

an
ce

re
as

on
s

In
di

go
[5

0]
7

-
7

7
In

di
go

is
ba

se
d

on
Sw

if
tC

lo
ud

..T
he

R
ia

k
de

si
gn

er
s

do
no

tr
ec

om
m

en
d

st
or

in
g

ob
je

ct
s

ov
er

50
M

B
fo

r
pe

rf
or

m
an

ce
re

as
on

s.
Iz

zy
[1

5]
7

-
7

Iz
zy

is
an

in
iti

al
ve

rs
io

n
of

Si
m

ba
an

d
do

no
t

su
pp

or
t

la
rg

e
ob

je
ct

s
M

ob
iu

s
[1

6]
7

-
7

.
D

oe
s

no
th

an
dl

e
la

rg
e

fil
es

bu
ta

dd
re

ss
es

th
e

m
es

sa
gi

ng
an

d
da

ta
m

an
ag

em
en

tc
ha

lle
ng

es
of

m
ob

ile
ap

pl
ic

at
io

n
de

ve
lo

pm
en

t.
To

uc
hD

ev
el

op
[1

7]
∗

[1
8]

7
-

7
Sp

ec
ia

l
cl

ou
d

ty
pe

s
da

ta
do

no
t

ad
dr

es
s

la
rg

e
si

ze
.

O
pe

n
D

at
a

K
it

2.
0

[1
9]

*
7

-
X

A
nd

ro
id

Se
rv

ic
es

ha
ve

a
1

M
B

si
ze

lim
it

on
re

m
ot

e-
pr

oc
ed

ur
e

ca
lls

.T
o

ad
dr

es
s

1M
B

lim
it,

a
pr

im
iti

ve
tr

an
sp

or
t-

le
ve

lc
hu

nk
in

g
in

te
rf

ac
e

us
in

g
a

cl
ie

nt
-s

id
e

pr
ox

y
to

re
-a

ss
em

bl
e

ch
un

ks
an

d
on

ly
ex

po
se

a
hi

gh
er

-l
ev

el
ab

st
ra

ct
io

n
to

th
e

to
ol

s.
St

oA
rr

an
ge

r
[5

1]
7

-
-

D
oe

s
no

t
ad

dr
es

s
la

rg
e

ob
je

ct
s

Q
ui

ck
Sy

nc
[2

0]
∗

17
9M

B
X

X
Q

ui
ck

Sy
nc

sy
st

em
is

bu
ilt

on
D

ro
pb

ox
an

d
Se

afi
le

,c
lo

ud
st

or
ag

e
sy

st
em

s.
Pe

rf
or

m
an

ce
te

st
in

cl
ud

ed
da

ta
si

ze
up

to
17

9M
B

.
D

ro
pb

ox
ch

un
ke

d
up

lo
ad

A
PI

su
pp

or
tu

pl
oa

di
ng

of
la

rg
er

fil
es

of
si

ze
15

0
M

B
or

m
or

e,
in

m
ul

tip
le

ch
un

ks
,w

ith
th

e
fe

at
ur

e
of

re
su

m
in

g
if

up
lo

ad
is

in
te

rr
up

te
d.

T
he

ch
un

k
si

ze
is

lim
ite

d
to

15
0M

B
an

d
by

de
fa

ul
t

4M
B

.
Pa

rs
e

Se
rv

er
[2

1]
∗

7
10

M
B

7
T

he
Pa

rs
eF

ile
da

ta
ty

pe
al

lo
w

s
th

e
ap

p
to

st
or

e
ap

pl
ic

at
io

n
fil

es
in

th
e

cl
ou

d
th

at
w

ou
ld

ot
he

rw
is

e
be

to
o

la
rg

e
or

cu
m

be
rs

om
e

to
fit

in
to

a
re

gu
la

r
Pa

rs
eO

bj
ec

t.
Pa

re
O

bj
ec

t
al

lo
w

s
da

ta
in

by
te

s
ar

ra
y

or
in

th
e

St
re

am
fo

rm
an

d
Sa

ve
A

sy
nc

ca
ll

sa
ve

s
th

e
fil

e
to

Pa
rs

e.
B

aa
sB

ox
[2

2]
∗

7
10

0
K

B
7

B
aa

sB
ox

is
ba

se
d

on
ja

va
Pl

ay
fr

am
ew

or
k.

B
aa

sB
ox

us
es

Pl
ay

fr
am

ew
or

k
to

m
an

ag
e

R
E

ST
.T

he
Pl

ay
fr

am
ew

or
k

B
od

y
pa

rs
er

s
ca

n
be

co
nfi

gu
re

d
fo

r
th

e
m

ax
im

um
pa

yl
oa

d
si

ze
in

PO
ST

op
er

at
io

ns
.

B
od

y
pa

rs
er

s
is

a
H

T
T

P
re

qu
es

t
(f

or
th

e
PO

ST
an

d
PU

T
op

er
at

io
ns

)
th

at
co

nt
ai

ns
a

bo
dy

.T
hi

s
bo

dy
ca

n
be

co
m

po
se

d
w

ith
an

y
fo

rm
at

sp
ec

ifi
ed

in
th

e
C

on
te

nt
-T

yp
e

he
ad

er
.

D
ro

pb
ox

[2
3]

X
15

0M
B

(R
E

ST
A

PI
)

X
D

ro
pb

ox
ch

un
ke

d
up

lo
ad

A
PI

su
pp

or
tu

pl
oa

di
ng

of
la

rg
er

fil
es

of
si

ze
15

0
M

B
or

m
or

e,
in

m
ul

tip
le

ch
un

ks
,w

ith
th

e
fe

at
ur

e
of

re
su

m
in

g
if

up
lo

ad
is

in
te

rr
up

te
d.

T
he

ch
un

k
si

ze
is

lim
ite

d
to

15
0M

B
an

d
by

de
fa

ul
t

4M
B

.
E

ve
rn

ot
e

[5
2]

X
5

M
B

-2
00

M
B

-
A

llo
w

ed
up

lo
ad

si
ze

va
ri

es
de

pe
nd

in
g

on
th

e
us

er
ty

pe
.

In
ad

di
tio

n
to

te
xt

,
no

te
s

ca
n

al
so

co
nt

ai
n

at
ta

ch
m

en
ts

(c
al

le
d

“R
es

ou
rc

es
”

in
th

e
E

ve
rn

ot
e

A
PI

).
T

he
se

fil
es

ca
n

be
of

an
y

fil
e

ty
pe

.T
he

at
ta

ch
m

en
t

fil
e

is
cr

at
ed

as
a

R
es

ou
rc

e
ob

je
ct

an
d

ad
de

d
to

th
e

no
te

.T
he

do
cu

m
en

ta
tio

n
do

es
no

t
m

en
tio

n
ab

ou
t

ch
un

ki
ng

or
up

lo
ad

of
la

rg
e

ob
je

ct
s.

G
oo

gl
e

D
riv

e
[2

4]
X

R
es

um
ab

le
up

lo
ad

fo
r

fil
es

m
or

e
th

an
5

M
B

X
Fo

r
la

rg
er

fil
es

(m
or

e
th

an
5

M
B

)
or

le
ss

re
lia

bl
e

ne
tw

or
k

co
nn

ec
tio

ns
,G

oo
gl

e
D

riv
e

su
pp

or
tr

es
um

ab
le

up
lo

ad
w

ith
a

si
ng

le
re

qu
es

t
or

in
m

ul
tip

le
ch

un
ks

.T
he

PU
T

re
qu

es
t

al
lo

w
s

ch
un

ks
in

m
ul

tip
le

s
of

25
6

K
B

(2
56

x
10

24
by

te
s)

in
si

ze
,e

xc
ep

t
fo

r
th

e
fin

al
ch

un
k

th
at

co
m

pl
et

es
th

e
up

lo
ad

.C
hu

nk
s

si
ze

ha
s

to
be

ke
pt

as
la

rg
e

as
po

ss
ib

le
so

th
at

th
e

up
lo

ad
is

ef
fic

ie
nt

.
iC

lo
ud

w
ith

C
lo

ud
K

it
[6

]
X

D
oc

um
en

ta
tio

n
do

es
n’

t
sp

ec
if

y
a

fil
e

si
ze

X
W

he
n

th
e

ap
p

ad
op

t
iC

lo
ud

do
cu

m
en

t
m

an
ag

em
en

t
lif

ec
yc

le
,

th
e

op
er

at
in

g
sy

st
em

(i
O

S)
in

iti
at

es
an

d
m

an
ag

es
up

lo
ad

in
g

an
d

do
w

nl
oa

di
ng

of
da

ta
fo

r
th

e
de

vi
ce

s
at

ta
ch

ed
to

an
iC

lo
ud

ac
co

un
t.

T
he

ap
p

do
es

no
t

di
re

ct
ly

co
m

m
un

ic
at

e
w

ith
iC

lo
ud

se
rv

er
s

an
d,

in
m

os
t

ca
se

s,
do

es
no

t
in

vo
ke

up
lo

ad
or

do
w

nl
oa

d
of

da
ta

.
A

m
az

on
D

yn
am

oD
B

[2
5]

X
40

0
K

B
7

A
m

az
on

D
yn

am
oD

B
en

fo
rc

e
a

m
ax

im
um

ite
m

si
ze

of
40

0K
B

in
a

ta
bl

e,
in

cl
ud

in
g

bo
th

at
tr

ib
ut

e
na

m
e

bi
na

ry
le

ng
th

an
d

at
tr

ib
ut

e
va

lu
e

le
ng

th
s.

If
th

e
ap

pl
ic

at
io

n
ne

ed
s

to
st

or
e

m
or

e
da

ta
in

an
ite

m
th

an
th

e
D

yn
am

oD
B

si
ze

lim
it

pe
rm

its
,

th
e

ap
p

ca
n

tr
y

co
m

pr
es

si
ng

on
e

or
m

or
e

la
rg

e
at

tr
ib

ut
es

,
or

it
ca

n
st

or
e

th
em

as
an

ob
je

ct
in

A
m

az
on

Si
m

pl
e

St
or

ag
e

Se
rv

ic
e

(A
m

az
on

S3
)

an
d

st
or

e
th

e
A

m
az

on
S3

ob
je

ct
id

en
tifi

er
in

th
e

D
yn

am
oD

B
ite

m
.

B
lu

em
ix

M
ob

ile
C

lo
ud

Se
rv

ic
e

[5
3]

X
-

X
W

he
n

ha
nd

lin
g

tr
an

sf
er

s
of

la
rg

e
fil

es
co

nt
en

t
is

st
re

am
ed

an
d

se
nt

in
ch

un
ks

.W
L

R
es

ou
rc

eR
eq

ue
st

A
PI

fo
r

iO
S

ha
s

a
he

lp
er

W
L

R
es

ou
rc

eR
eq

ue
st

.s
en

dW
ith

D
el

eg
at

e
A

PI
th

at
al

lo
w

s
do

w
nl

oa
di

ng
of

la
rg

e
fil

es
.T

he
up

lo
ad

en
dp

oi
nt

re
ad

s
th

e
cl

ie
nt

ap
p

up
lo

ad
ed

la
rg

e
fil

e
in

ch
un

ks
an

d
se

qu
en

tia
lly

w
ri

te
s

to
a

lo
ca

l
fil

e
in

th
e

fil
es

ys
te

m
.T

he
do

w
nl

oa
d

en
dp

oi
nt

co
nn

ec
ts

to
a

ba
ck

en
d

se
rv

er
an

d
do

w
nl

oa
ds

a
la

rg
e

fil
e

in
ch

un
ks

.
E

ac
h

ch
un

k
is

w
ri

tte
n

to
th

e
en

dp
oi

nt
ou

tp
ut

st
re

am
to

be
re

ad
se

qu
en

tia
lly

by
th

e
cl

ie
nt

ap
p.

K
in

ve
y

[2
6]

X
U

pt
o

5T
B

us
in

g
G

oo
gl

e
C

lo
ud

St
or

ag
e

-
K

in
ve

y
su

pp
or

t
to

st
or

e
an

d
re

tr
ie

ve
bi

na
ry

fil
es

of
si

ze
up

to
5T

B
w

ith
th

e
he

lp
of

th
ir

d-
pa

rt
y

se
rv

ic
e.

K
in

ve
y

do
es

no
t

di
re

ct
ly

se
rv

e
or

ac
ce

pt
fil

es
.

In
st

ea
d,

th
e

K
in

ve
y

Fi
le

s
A

PI
w

or
ks

by
pr

ov
id

in
g

a
sh

or
t-

liv
ed

U
R

L
to

a
th

ir
d-

pa
rt

y
cl

ou
d

st
or

ag
e

se
rv

ic
e

fr
om

w
hi

ch
fil

e(
s)

ca
n

be
up

lo
ad

ed
or

do
w

nl
oa

de
d.

C
ur

re
nt

ly
,

th
e

th
ir

d-
pa

rt
y

se
rv

ic
e

us
ed

is
G

oo
gl

e
C

lo
ud

St
or

ag
e.

K
on

y
[2

7]
X

20
M

B
X

T
he

L
ar

ge
B

in
ar

y
O

bj
ec

ts
A

PI
al

lo
w

s
yo

u
to

re
tr

ie
ve

an
d

de
le

te
la

rg
e

bi
na

ry
ob

je
ct

s,
sc

he
du

le
a

do
w

nl
oa

d,
an

d
ge

t
th

e
lo

ca
tio

n
of

th
e

ob
je

ct
s.

W
hi

le
th

e
Sy

nc
C

hu
nk

in
g

M
ec

ha
ni

sm
ap

pl
ie

s
to

al
l

of
sy

nc
,t

he
L

ar
ge

B
in

ar
y

O
bj

ec
ts

A
PI

su
pp

or
ts

th
e

do
w

nl
oa

d
of

bi
na

ry
da

ta
st

or
ed

in
a

pa
rt

ic
ul

ar
ob

je
ct

in
m

ul
tip

le
ch

un
ks

.T
he

do
w

nl
oa

d
oc

cu
rs

in
th

e
ba

ck
gr

ou
nd

,a
llo

w
in

g
th

e
us

er
to

pe
rf

or
m

ta
sk

s
si

m
ul

ta
ne

ou
sl

y.
D

ef
au

lt
ch

un
k

si
ze

is
4M

B
an

d
co

nfi
gu

ra
bl

e
to

se
t

tr
an

sf
er

bu
ff

er
si

ze
.

N
ot

e:
*:

op
en

-s
ou

rc
e

www.ijacsa.thesai.org 650 | P a g e

