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Abstract—Chronic kidney disease (CKD) is one of the most 

critical health problems due to its increasing prevalence. In this 

paper, we aim to test the ability of machine learning algorithms 

for the prediction of chronic kidney disease using the smallest 

subset of features. Several statistical tests have been done to 

remove redundant features such as the ANOVA test, the 

Pearson’s correlation, and the Cramer’s V test. Logistic 

regression, support vector machines, random forest, and gradient 

boosting algorithms have been trained and tested using 10-fold 

cross-validation. We achieve an accuracy of 99.1 according to F1-

measure from Gradient Boosting classifier. Also, we found that 

hemoglobin has higher importance for both random forest and 

Gradient boosting in detecting CKD.  Finally, our results are 

among the highest compared to previous studies but with less 

number of features reached so far. Hence, we can detect CKD at 

only $26.65 by performing three simple tests. 
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I. INTRODUCTION 

Chronic kidney disease (CKD) is a significant public 
health problem worldwide, especially for low and medium-
income countries. Chronic kidney disease (CKD) means that 
the kidney does not work as expected and cannot correctly 
filter blood. About 10% of the population worldwide suffers 
from (CKD), and millions die each year because they cannot 
get affordable treatment, with the number increasing in the 
elderly. According to the Global Burden Disease 2010 study 
conducted by the International Society of Nephrology, chronic 
kidney disease (CKD) has been raised as an important cause 
of mortality worldwide with the number of deaths increasing 
by 82.3% in the last two decades [1, 2]. Also, the number of 
patients reaching end-stage renal disease (ESRD) is 
increasing, which requires kidney transplantation or dialysis to 
save patients' lives [1, 3, 4]. 

CKD, in its early stages, has no symptoms; testing may be 
the only way to find out if the patient has kidney disease. 
Early detection of CKD in its initial stages can help the patient 
get effective treatment and then prohibit the progression to 
ESRD [1]. It is argued that every year, a person that has one of 
the CKD risk factors, such as a family history of kidney 
failure, hypertension, or diabetes, get checked. The sooner 
they know about having this disease, the sooner they can get 
treatment. To raise awareness and to encourage those who are 

most susceptible to the disease to perform the tests 
periodically, we hope that the disease can be detected with the 
least possible tests and at low cost. So, the objective of this 
research is to provide an effective model to predict the CKD 
by least number of predictors. 

In this paper, Section II reviews various research works 
that target the diagnosis of CKD using different intelligent 
techniques. Section III presents the dataset source and 
description. Section IV presents the methodology used for the 
prediction, including the data preprocessing steps and the 
modeling stage. Section V shows the results of the experiment 
and discusses the performance of ML algorithms in detecting 
CKD. Finally, Section VI includes the conclusion and future 
work of this work. 

II. LITERATURE REVIEW 

A. Related Work 

In recent years, few studies have been done on the 
classification or diagnosis of chronic kidney disease. In 2013, 
T. Di Noia et al. [5], presented a software tool that used the 
artificial neural network ANN to classify patient status, which 
is likely to lead to end-stage renal disease (ESRD). The 
classifiers were trained using the data collected at the 
University of Bari over a 38-year period, and the evaluation 
was done based on precision, recall, and F-measure. The 
presented software tool has been made available as both an 
Android mobile application and online web application. 

Using data from Electronic Health Records (EHR) in 
2014,  H. S. Chase et al. [6] identified two groups of patients 
in stage 3: 117 progressor patients (eGFR declined >3 
ml/min/1.73m2/year) and 364 non-progressor patients (eGFR 
declined <1 ml/min/1.73m2) .Where GFR is a glomerular 
filtration rate that commonly used to detect CKD. Based on 
initial lab data recorded, the authors used Naïve Bayes and 
Logistic Regression classifiers to develop a predictive model 
for progression from stage 3 to stage 4. They compared the 
metabolic complications between the two groups and found 
that phosphate values were significantly higher, but 
bicarbonate, hemoglobin, calcium, and albumin values were 
significantly lower in progressors compared to non-
progressors, even if initial eGFR values were similar. Finally, 
they found that the probability of progression in patients 
classified as progressors was 81% (73% − 86%) and non-
progressors was 17% (13% − 23%). 
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Later in 2016, K. A. Padmanaban and G. Parthiban [7] 
aimed in their work to detect chronic kidney disease for 
diabetic patients using machine learning methods. In their 
research, they used 600 clinical records collected from a 
leading Chennai-based diabetes research center. The authors 
have tested the dataset using the decision tree and Naïve 
Bayes methods for classification using the WEKA tool. They 
concluded that the decision tree algorithm outweighs the 
Naïve Bayes with an accuracy of 91%. 

A. Salekin and J. Stankovic [8] evaluated three classifiers: 
random forest, K-nearest neighbors, and neural network to 
detect the CKD. They used a dataset with 400 patients form 
UCI with 24 attributes. By using the wrapper method, a 
feature reduction analysis has been performed to find the 
attributes that detect this disease with high accuracy. By 
considering: albumin, specific gravity, diabetes mellitus, 
hemoglobin, and hypertension as features, they can predict the 
CKD with .98 F1 and 0.11 RMSE. 

In the study carried out by W. Gunarathne, K. Perera, and 
K. Kahandawaarachchi [9], Microsoft Azore has been used to 
predict the patient status of CKD. By considering 14 attributes 
out of 25, they compared four different algorithms, which 
were Multiclass Decision Forest, Multiclass Decision Jungle, 
Multiclass Decision Regression, and Multiclass Neural 
Network. After comparison, they found that Multiclass 
Decision Forest performed the best with 99.1% accuracy. 

H. Polat, H. D. Mehr, and A. Cetin [10] in their research 
used SVM algorithm along with two feature selection 
methods: filter and wrapper to reduce the dimensionality of 
the CKD dataset with two different evaluations for each 
method. For the wrapper approach, the ClassifierSubsetEval 
with the Greedy Stepwise search engine and 
WrapperSubsetEval with the Best First search engine were 
used. For the Filter approach, CfsSubsetEval with the Greedy 
Stepwise search engine and FilterSubsetEval with the Best 
First search engine were used. However, the best accuracy 
was 98.5% with 13 features using FilterSubsetEval with the 
Best First search engine using the SVM algorithm without 
mentioning which features were used. 

P. Yildirim [11] studied the effect of sampling algorithms 
in predicting chronic kidney disease. The experiment was 
done by comparing the effect of the three sampling 
algorithms: Resample, SMOTE, and Spread Sup Sample on 
the prediction by multilayer perceptron classification 
algorithm. The study showed that sampling algorithms could 
improve the classification algorithm performance, and the 
resample method has a higher accuracy among the sampling 
algorithms. On the other hand, Spread Sub Sample was better 
in terms of execution time. 

A. J. Aljaaf et al. [12] examined in their study the ability 
of four machine learning (ML) models for early prediction of 
CKD, which were: support vector machine (SVM), 
classification and regression tree (CART), logistic regression 
(LR), and multilayer perceptron neural network (MLP). By 
using the CKD dataset from UCI and seven features out of 24, 
they compared the performance of these ML models. The 
results showed that the MLP model had the highest AUC and 
sensitivity. It was also noticeable that logistic regression 
almost had the same performance as MLP but with the 
advantage of the simplicity of the LR algorithm. Therefore, in 
our study, we can use the LR algorithm as a start or a 
benchmark and then use more complex algorithms. 

Lastly in 2019, J. Xiao et al. [13] in their study established 
and compared nine ML models, including LR, Elastic Net, 
ridge regression lasso regression SVM, RF, XGBoost, k-
nearest neighbor and neural network to predict the progression 
of CKD. They used available clinical features from 551 CKD 
follow-up patients. They conclude that linear models have the 
overall predictive power with an average AUC above 0.87 and 
precision above 0.8 and 0.8, respectively 

B. Dataset Concern 

The dataset used in this study is a small dataset with small 
imbalance issue as will be described in Dataset section. 
Therefore, there are some concerns related to this dataset, 
which are an overfitting or generalization problem, imbalance, 
and the noise of the data. P. Yang et al. [14] in their review 
concluded that ensemble technique has the advantage of 
alleviating the problem of small size data by incorporating and 
averaging over multiple classifiers to reduce the probability of 
overfitting. Also, Deng et al. [15] found in their prediction of 
protein-protein interaction sites that the ensemble method can 
handle the imbalance problem and improve the prediction 
performance. Another survey by M. Fatima and M. Pasha [16] 
found that SVM provided improved accuracy to predict heart 
disease with the advantage of overfitting and noise [17]. 

III. DATASET 

The dataset that supports this research is based on CKD 
patients collected from Apollo Hospital, India in 2015 taken 
over a two-month period. The data is available in the 
University of California, Irvine (UCI) data repository named 
Chronic_Kidney_Disease DataSet [18]. These data consisting 
of 400 observations suffer from missing and noisy value. The 
data includes 250 records of patients with CKD and 150 
records of persons without CKD. Therefore, the percentage of 
each class is 62.5% with CKD and 37.5% without CKD. The 
ages of these observations are varied from 2 to 90 years old. It 
can be seen from Table I that the CKD dataset has 24 features 
including 11 numeric features and 13 nominal features, and 
the 25th feature indicates the classification or state of CKD. 
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TABLE. I. DESCRIPTION OF CKD DATASET 

Name Description  Type: unit/ values 

Age (age) Patient’s age  Numeric: years 

Blood pressure (bp) Blood pressure of the patient Numeric: mm/Hg 

Specific gravity (sg) The ratio of the density of urine Nominal: 1.005, 1.010, 1.015, 1.020,1.025 

Albumin (al) Albumin level in the blood Nominal: 0,1,2,3,4,5 

Sugar (su) Sugar level of the patient Nominal: 0,1,2,3,4,5 

Red blood cells (rbc) Patients’ red blood cells count Nominal: normal, abnormal 

Pus cell (pc) pus cell count of patient Nominal: normal, abnormal 

Pus cell clumps (pcc) Presence of pus cell clumps in the blood Nominal: present, not present 

Bacteria (ba) Presence of bacteria in the blood Nominal: present, not present 

Blood glucose (bgr) blood glucose random count  Numeric: mgs/dl 

Blood urea (bu) blood urea level of the patient Numeric: mgs/dl 

Serum creatinine (sc) serum creatinine level in the blood  Numeric: mgs/dl 

Sodium (sod) sodium level in the blood  Numeric: mEq/L 

Potassium (pot) potassium level in the blood  Numeric: mEq/L 

Hemoglobin (hemo) hemoglobin level in the blood  Numeric: gms 

Packed cell volume (pcv) packed cell volume in the blood  Numeric 

White blood cell count (wc) white blood cell count of the patient  Numeric: cells/cumm 

Red blood cell count (rc) red blood cell count of the patient Numeric millions/cmm 

Hypertension (htn) Does the patient has hypertension on not  Nominal: yes, no 

Diabetes mellitus (dm) Does the patient has diabetes or not Nominal: yes, no 

Coronary artery disease (cad) Does the patient has coronary artery disease or not Nominal: yes, no 

Appetite (appet) Patient’s appetite  Nominal: good, poor 

Pedal Edema (pe) Does patient has pedal edema or not Nominal: yes, no 

Anemia (ane) Does patient has anemia or not Nominal: yes, no 

Class Does the patient has kidney disease or not  Nominal: CKD, not CKD 

IV. METHODOLOGY 

A. Data Preprocessing 

Today’s real-world datasets are susceptible to missing, 
noisy, redundant, and inconsistent data, especially clinical 
datasets. Working with low-quality data leads to low-quality 
results. Therefore, the first step in every machine learning 
application is to explore the dataset and understand its 
characteristics in order to make it ready for the modeling 
stage. This process is commonly known as data pre-
processing. 

1) Outliers: Outliers are extreme values located far away 

from the feature central tendency. Invalid outliers occur due to 

data entry errors, which are referred to as a noise in the data 

[19]. Medical data cannot be treated as other data in dealing 

with outliers since these outliers could be legitimate (valid) or 

important. For this reason, each outlier detected in the CKD 

dataset is checked to know if it is realistic or not. In this study, 

the extreme data points that go beyond the acceptable range 

medically have been treated as missing data and then modified 

as will be described in the missing data section. Box plots 

have been used to detect outliers in the CKD dataset, as Fig. 1 

shows, there are some outliers detected for blood glucose 

random that reached 500 mg/dl. However, as mentioned in 

[20], the highest blood glucose level recorded in 2008 for a 

surviving patient reached 2,656 mg/dl. So, these outliers are 

legitimate and we should not change them. 

In contrast, for potassium and sodium, three extreme data 
points are unacceptable. The highest potassium level observed 
was 7.6 mEq/L [21]. This means that a potassium level with 
39 and 47, as shown in Fig. 2 is impossible and usually due to 
a mistake. Similarly, with sodium, as Fig. 3 shows, one 
extreme data point was detected, which is 4.5. Normally, 
sodium level should be between 135 and 145 mEq/L, and if it 
is less than 135, then the patient suffers from hyponatremia 
[22]. For this reason, a value of 4.5 is unacceptable or 
impossible. 

 

Fig. 1. Box Plot for Blood Glucose Random. 
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Fig. 2. Box Plot for Potassium. 

 

Fig. 3. Box Plot for Sodium. 

2) Missing Values: In real-world datasets, missing data is 

a very common issue, especially in the medical area. Usually, 

every patient record and every attribute contains some missing 

values [23]. However, the chronic kidney disease dataset as 

shown in Fig. 4 has 96% of its variables having missing 

values; 60.75% (243) cases have at least one missing value, 

and 10% of all values are missing. There are different 

percentages of missing values for each variable, starting from 

0.3% and reaching 38%, as shown in Table II. 

Researchers in [9] used single imputation, such as mean 
and median, to impute the CKD dataset. However, according 
to Little’s test [24], the missing values in CKD dataset are not 
missing completely at random (MCAR) with p-value <0.005. 
Therefore, single imputation cannot be used for handling 
missing values. 

In this study, multiple imputations (MI) for replacing 
missing values in the CKD dataset. In multiple imputations 
(MI), missing values in the dataset are replaced m times, 
where m is usually a small number (from 3 to 10). We apply 
MI to produce five imputed datasets. The imputation process 
was based on linear regression for predicting continuous 
variables and logistic regression for categorical variables. 
Finally, we choose a dataset that has the nearest means and 
standard deviations for its variables to the original dataset. 

3) Data Reduction: Data reduction means to reduce the 

number of features while maintaining a good analytical result. 

For this purpose, feature selection and features associations or 

correlation have been studied to remove redundant 

information. 

a) Feature Associations: Pearson’s correlation, 

Cramer’s V, and ANOVA tests have been used to find 

relationships between variables. As shown in Fig. 5, and 

Fig. 6, there is a strong relationship between packed cell 

volume and hemoglobin and between hemoglobin and red cell 

count with the correlation coefficient of 0.89 and 0.79 

respectively. Moreover, according to the ANOVA test, as 

shown in Table III, anemia also associated with PCV with p-

value <0.001 (         . Another positive relationship was 

detected with a correlation coefficient of 0.68 between blood 

urea and serum creatinine. 

TABLE. II. MISSING VALUES INFORMATION FOR EACH VARIABLE 

Attribute Name  
Missing Valid 

Number Number Percent 

Red blood cells 152 38.0% 248 

Red blood cell count 131 32.8% 269 

White blood cell count 106 26.5% 294 

Potassium 90 22.5% 310 

Sodium 88 22.0% 312 

Packed cell volume 71 17.8% 329 

Pus cell 65 16.3% 335 

Hemoglobin 52 13.0% 348 

Sugar 49 12.3% 351 

Specific gravity 47 11.8% 353 

Albumin 46 11.5% 354 

Blood glucose 44 11.0% 356 

Blood urea 19 4.8% 381 

Serum creatinine 18 4.5% 382 

Blood pressure 12 3.0% 388 

Age 9 2.3% 391 

Bacteria 4 1.0% 396 

Pus cell clumps 4 1.0% 396 

Coronary artery disease 2 0.5% 398 

Diabetes mellitus 2 0.5% 398 

Hypertension 2 0.5% 398 

Anemia 1 0.3% 399 

Pedal Edema 1 0.3% 399 

Appetite 1 0.3% 399 

 

Fig. 4. Overall Summary of Missing Data in CKD Dataset. 
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Fig. 5. Scatter Plot between Hemoglobin and Red Blood Cell Count. 

 

Fig. 6. Scatter Plot of PCV and Hemoglobin. 

TABLE. III. ANOVA TEST RESULTS 

Feature 1 Categorical Feature 2 Numeric P- value 

Diabetes mellitus  Blood glucose random          

Sugar level  Blood glucose random          

Hypertension Blood pressure            

Anemia  Packed cell volume          

Red blood cell  Red blood cell count           

Pus cell White blood cell count          

Since hemoglobin and serum creatinine have a stronger 
influence on the class attribute than their associated attributes, 
we decide to maintain them and remove the others as 
redundant attributes. Table IV shows the correlation between 
both numeric and nominal attribute and the class attribute. 

TABLE. IV. CORRELATION BETWEEN ALL VARIABLES AND CLASS 

VARIABLE 

P
ea

rs
o

n
’s

 c
o
rr

el
a

ti
o
n

 

Numeric 

variable 

Correlation 

coefficient 

C
ra

m
er

’s
 V

 c
o
rr

e
la

ti
o
n

 

Nominal 

variable 

Correlation 

coefficient 

Age 0.220 Albumin 0.730 

Blood pressure 0.296 
Red blood 

cell 
0.540 

Blood glucose 

random 
0.399 Pus cell 0.420 

Blood urea 0.385 
Pus cell 

clumps 
0.214 

Serum 

creatinine 
0.361 Bacteria 0.120 

Sodium 0.432 Hypertension 0.590 

Potassium 0.070 
Diabetes 

Mellitus 
0.544 

Haemoglobin 0.75 
Coronary 

artery disease 
0.236 

Packed cell 

volume 
0.72 Appetite 0.393 

White blood 

cell count 
0.222 

Pedal edema 0.365 

Anemia 0.325 

Red blood cell 

count 
0.666 

Sugar level 0.432 

Specific 

gravity 
0.687 

Diabetes mellitus, sugar level, and blood glucose random 
almost measure the same thing, which is “sugar”.  The result 
proves the association by having p-value <0.001 (         ) 
when testing the correlation between them, and 0.55% 
coefficient between sugar level and diabetes according to 
Cramer’s V test. The same procedure was applied to other 
associated features. In the end, nine features have been 
removed as redundant features. These features are blood 
glucose random, blood pressure, packed cell volume, red 
blood cell count, red blood cell (nominal), anaemia, sugar 
level, pus cell, and blood urea. 

b) Feature Selection: The process of selecting the most 

discriminating features in a given dataset is known as feature 

selection. This process is enhancing the model’s performance, 

reducing overfitting, and reducing the cost of building a 

model. Filter feature selection methods [25] selects features 

that have a stronger relationship with the outcome variable 

independent to the learning model. Therefore, use a measure 

or test independent to the learning algorithm to assess a subset 

of features. In this study, mutual information measure has 

been used as a feature selection method. Mutual information 

[25] measures the dependence of any kind of relationships 

between random variables. 

4) Data transformation: In data transformation, data is 

transformed into appropriate forms for mining purposes [26]. 

Data transformation includes normalization, which is the 

process of scaling the attributes’ values to fall within a small 

specific range [26]. It is usually applied before feature 

selection and modeling stages because different scales of 

attributes complicate the comparison of attributes and 

influence the ability of algorithms to learn [23]. However, in 
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this study min-max normalization has been applied on 

numeric data types. Another data transformation has been 

done on categorical variables. This is because some ML 

algorithms cannot handle categorical variables, especially in 

regression problems. Therefore, categorical variables with n 

values are dummied in LR and SVM classifiers by converting 

each of them into n-1 dummy variables [27]. 

B. Modeling 

In the modeling stage, four machine learning algorithms 
have been applied to the dataset to assess their ability to detect 
CKD. These algorithms are logistic regression (LR), support 
vector machines (SVM), random forest (RF), and gradient 
boosting (GB). 

1)  Logistic regression: Logistic regression [28], also 

called logit model or logistic model, is a widely used model to 

analyze the relationship between multiple independent 

variables and one categorical dependent variable with the 

equation of the form: 

   [
 

   
]                                  (1) 

Where   is the probability of interest outcome,   is an 
intercept,    ,……,    are   coefficients associated with each 
variable  , and          are the values of the predictor 
variables. 

2) SVM: Support Vector Machines (SVM) [29] is a 

supervised learning model that is commonly used in 

classification problems. The idea of the SVM algorithm is to 

figure the optimal hyperplane that ideally separates all objects 

of one class from those objects of another class with the 

largest margins between these two classes. The objects that are 

far from the boundary are discarded from the calculation, 

while other data points that are located on the boundary will 

be maintained and determined as “support vectors” to get 

satisfactory computational efficiency [29]. The SVM 

algorithm has different kernel functions: radial basis function 

(RBF), linear, sigmoid, and polynomial. In this study, radial 

basis function has been chosen based on nested cross-

validation results. 

3) Ensemble method: Ensemble method [30] is a strategy 

for improving predictor or classifier accuracy. Ensemble 

method uses a combination of models to create an improved 

composite model to improve the performance. The main idea 

behind the ensemble technique is to group multiple “weak 

learners” to come up with a “strong learner”. Two popular 

techniques for constructing ensembles are bagging and 

boosting. Both boosting and bagging can be used for 

prediction as well as classification [26, 30]. Bagging is an 

ensemble technique where many independent predictors or 

learners are built and their results are combined using the 

majority vote, whereas in boosting, the predictors or learners 

are made sequentially not independently. This sequential 

method because each classifier “pays more attention” to the 

training tuples that were misclassified by the previous 

classifier through assigning weights for each of them [26]. 

Random forest algorithm is an example of the “bagging” 

technique, whereas the gradient boosting algorithm is an 

example of the “boosting” technique. Fig. 7 shows the 

bagging and boosting structure in selecting samples for 

training. 

a) Random Forest: Random forest (RF) is a bagging 

ensemble approach proposed by Breiman [31] that based on a 

machine learning mechanism called “decision tree”. In a 

random forest, the “weak learners” in ensemble terms are 

decision trees [8, 32, 33]. Random forest imposes the diversity 

of each tree separately by selecting a random feature. After 

generating a large number of trees, they vote for the most 

common class. The random forest algorithm can deal with 

unbalanced data, it is robust against overfitting, and its 

runtimes are quite a bit faster [8, 31]. 

b) Gradient Boosting: Gradient boosting (GB) is an 

ensemble boosting technique that starts with “regression tree” 

as “weak learners”. In general, the GB model adds an additive 

model to minimize the loss function by using a stage-wise 

sampling strategy. The loss function measures the amount at 

which the expected value deviates from the real value. Stage-

wise fashion put more emphasis on samples that are difficult 

to predict or misclassified. Unlike random forest, in GB, 

samples that are misclassified have a higher chance of being 

selected in training data [34]. GB reduces bias and variance 

and often provides higher accuracy, but the parameters should 

be tuned carefully to avoid overfitting. Therefore, nested 

cross-validation has been applied. 

 

Fig. 7. Bagging and Boosting Structure. 

V. RESULTS AND DISCUSSION 

The result of each classifier has been evaluated using 
different evaluation metrics and validated against overfitting 
using 10-fold cross-validation. The nested cross-validation 
approach also has been applied for the purpose of tuning the 
models’ parameters. The experiments are conducted using 
Python 3.3 programming language through the Jupyter 
Notebook web application. Several libraries from Sciket-learn 
[35] have been used, which is a free software for the machine 
learning library in Python. The evaluation measures 
considered in this study are accuracy using F1-measure, 
sensitivity, specificity, and area under the curve (AUC). 
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Each model generates different outputs depending on the 
different values of its parameters. By using nested cross-
validation, the best performance for LR was with C=1000 and 
penalty=L2 with an accuracy of 98.9% using F1 measure. For 
the SVM model different values of “C”, “gamma”, and 
“kernel” have been tested. The best performance for SVM was 
with C=1 and gamma=3, and kernel = “RBF” (radial basis 
function) with an accuracy of 97.9% using F1 measure. For 
both RF and GB, the best results were with a number of 
trees=50 and Max_depth=2, with an accuracy of 98.0% in RF 
and 99.1% in GB using F1 measure. 

The experimental results of each model in terms of 
accuracy, F1-measure, precision, sensitivity, specificity, AUC 
are listed in Table V whereas the training and testing 
accuracies based on 10-fold cross-validation are listed in 
Table VI. 

From the evaluation results, as Fig. 8 shows, all models 
have an excellent performance against detecting CKD with an 
accuracy > 97% using hemoglobin, specific gravity, and 
albumin features. By focusing on specificity and sensitivity, it 
is seen that all models also have the same specificity of 99.3% 
except RF (96.6), which means that all models were accurate 
in identifying the negative or healthy subjects. On the other 
hand, the highest sensitivity was obtained using the RF 
algorithm at 99.6%, which represents the percentage of 
correctly identified CKD patients. 

 

Fig. 8. Models Evaluation in Predicting CKD. 

TABLE. V. THE PREDICTIVE PERFORMANCE OF ML MODELS 

Classifier 
Accura

cy 
F1 

Precisi

on 

Sensiti

vity 

Specificit

y 
AUC 

Logistic 

regressio

n  

98.75% 98.9 % 99.5 % 98.4 % 99.33 % 99.7 % 

Support 

victor 

machines  

97.5% 97.9 % 99.5% 96.4 % 99.33% 99.9 % 

Random 

forest 
98.5% 98.7% 98.0% 99.6% 96.6% 99.5% 

Gradient 

boosting 
99.0% 99.1 % 99.5% 98.8 % 99.33% 99.9% 

TABLE. VI. THE TRAIN AND TEST ACCURACIES OF ML MODELS 

 
LR SVM RF GB 

Train  99.4 % 97.52% 98.5% 99.7% 

Test  98.75 % 97.5% 98.5% 99.0% 

Hence, we achieve the highest detection performance with 
the GB model. This performance is higher than the 
performance achieved by [12] using a multilayer perceptron 
algorithm (MLP), seven features, and single-point split with 
98.4% F1- measure. Also, higher performance Compared to 
study [8], were 98.0% F1-measure have been achieved using 
RF and five features. According to study [8], which also 
estimated the cost of each of 24 tests in the CKD dataset, 
performing these three features for detecting CKD would cost 
only $26.65 while using all features will cost around $451.36. 

Since the higher results were achieved using RF, and GB 
algorithm, we also investigate the importance of the features 
in each of them. As shown in Fig. 9, haemoglobin has the 
highest score, whereas Albumin has the lowest score in both 
RF and GB. Looking at RF, the degree of importance is 
convergent for all variables, approximately from 0.29 to 0.44. 
Whereas in GB, there is a significant difference between the 
degree of importance of haemoglobin (0.77) and other 
features. Then, according to our result, we conclude that 
haemoglobin has played an essential role in detecting CKD. 

However, this research is subject to some limitations 
related to the dataset used. First, the size of the dataset is 
considered to be small (400 instances), which may influence 
the reliability of the results. Second, difficulty finding is 
another dataset that has the same features in order to compare 
the results of the datasets. 

 

Fig. 9. Importance of Features in RF and GB Models. 

VI. CONCLUSION AND FUTURE WORK 

This work examines the ability to detect CKD using 
machine learning algorithms while considering the least 
number of tests or features. We approach this aim by applying 
four machine learning classifiers: logistic regression, SVM, 
random forest, and gradient boosting on a small dataset of 400 
records. In order to reduce the number of features and remove 
redundancy, the association between variables have been 
studied. A filter feature selection method has been applied to 
the remaining attributes and found that there are haemoglobin, 
albumin, and specific gravity have the most impact to predict 
the CKD. 
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The classifiers have been trained, tested, and validated 
using 10-fold cross-validation. Higher performance was 
achieved with the gradient boosting algorithm by F1-measure 
(99.1 %), sensitivity (98.8%), and specificity (99.3%). This 
result is the highest among previous studies with less number 
of features and hence less cost. Therefore, we conclude that 
CKD can be detected with only three features. Also, we found 
that hemoglobin has the highest contribution in detecting 
CKD, whereas albumin has the lowest using RF and GB 
models. 

Since the data used in this research is small, in the future, 
we aim to validate our results by using big dataset or compare 
the results using another dataset that contains the same 
features. Also, in order to help in reducing the prevalence of 
CKD, we plan to predict if a person with CKD risk factors 
such as diabetes, hypertension, and family history of kidney 
failure will have CKD in the future or not by using appropriate 
dataset. 
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