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Abstract—The imputation of time series is one of the most 

important tasks in the homogenization process, the quality and 

precision of this process will directly influence the accuracy of 

the time series predictions. This paper proposes two simple 

algorithms, but quite powerful for univariate time series 

imputation process, which are based on the means of the nearest 

neighbors for the imputation of missing data. The first of them 

Local Average of Neighbors Neighbors (LANN) calculates the 

missing value from the average of the previous neighbor and the 

following neighbor to the missing value. The second Local 

Average of Neighbors Neighbors+ (LANN+), considers a 

threshold parameter, which allows to differentiate the calculation 

of the missing values according to the difference between the 

neighbors: for the differences less than or equal to the threshold 

the missing value is calculated through of LANN and for major 

differences the missing value is calculated from the average of the 

four closest neighbors, two previous and two subsequent to the 

missing value. Imputation results on different time series are 

promising. 
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I. INTRODUCTION 

Time series data are used in a large variety of real-world 
applications, and they often encounter the missing value 
problem due to data transmisión errors, machine malfunction, 
or human errors [1]. While imputation in general is a well-
known problem and widely covered by different tools, finding 
algorithms or techniques able to fill missing values in 
univariate time series is more complicated [2]. The reason for 
this lies in fact is that the most imputation algorithms rely on 
inter-attribute correlations, while univariate time series 
imputation instead needs to employ time dependencies. 

For univariate time series, the techniques that can be 
applied range from univariate algorithms, univariate time 
series algorithms and multivariate algorithms on lagged data 
[3]. 

In time series, can be find different gap sizes for NA 
values, a quick classification could be: short-gaps from 1 to 2 
consecutive NAs; medium-gaps from 3 to 10 consecutive 
NAs; and big-gaps more than 10 consecutive NAs. In this 
paper we focus only on short-gaps. 

In meteorological time series we find the three types of 
gaps mentioned above, we could even add a new category 
very big-gaps, since in some time series, there are gaps of 
NAs that range between approximately 1 and 72 months. A 
72-month NA gap was found in the Punta de Coles time series 
between 1960/01/01 and 1965/12/31 (1978 consecutive NAs). 

In this paper, we propose two algorithms for short-gaps of 
NAs within the univariate time series algorithms category and 
these are based on local averages of numerical time series. 
The first Local Average of Nearest Neighbors (LANN) 
algorithm is based on the average of the two nearest neighbors 
to the missing value or NA, the previous neighbor and the 
neighbor after the missing data. The second Local Average of 
Neighbors Neighbors+ algorithm (LANN+) is based on the 
difference (d) between the previous value and the value close 
to the missing value, this difference is compared with a 
threshold parameter that allows determining the way in which 
the missing value is calculated. When the differences are less 
than or equal to the threshold value, the missing value is 
calculated with the LANN algorithm and when the difference 
is greater than the threshold value, the missing value is 
calculated from the 4 neighbors closest to the NA value, the 
two previous and the two next to the NA value or missing 
value. 

The paper is structured as follows: In Section II, a brief 
review of the state of the art regarding the proposals in this 
work is shown; in Section III, the fundamental theoretical 
bases for the better understanding of the paper content are 
shown; in Section IV, the proposed algorithms are described; 
in Section V, the results with different sizes of time series are 
described and discussed, likewise, they are compared with 
similar works; in Section VI, the conclusions reached at the 
end of the study are described and finally in the last 
Section VII, the future work is shown, which can be done to 
improve the proposals. 

II. RELATED WORK 

A review of the state of the art of imputation works in 
univariate time series has been carried out and the results are 
shown below. 

Commonly-used methods for univariate time series are 
relatively simple and include the arithmetic mean, 
interpolation, and last observation carried forward (LOCF) 
[4]. 

Last Observed Carried Forward LOCF [5] is a technique 
for replacing each NA with the most recent non-NA prior to it. 
For each individual missing value are replaced by the last 
observed value of that variable. In this work, zoo R package 
was used to implement LOCF imputation. 

Hot-deck [6] imputation dates back to the days when data 
sets were saved on punch cards, the hot-deck referring to the 
“hot” staple of cards (in opposite to the “cold” deck of cards 
from the previous period). Most of the time, hot-deck 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

46 | P a g e  

www.ijacsa.thesai.org 

imputation refers to sequential hot-deck imputation, meaning 
that the data set is sorted and missing values are imputed 
sequentially running through the data set line (observation) by 
line (observation). In this work VIM R package was used to 
implement hot-deck imputation. 

Missing Value Imputation by Weighted Moving Average 
[7], the mean in this implementation taken from an equal 
number of observations on either side of a central value. This 
means for an NA value at position i of a time series, the 
observations i-1,i+1 and i+1, i+2 (assuming a window size of 
k=2) are used to calculate the mean. We have three types of 
algorithms in this category: Simple Moving Average (SMA), 
Linear Weighted Moving Average (LWMA) and Exponential 
Weighted Moving Average (EWMA). 

Simple Moving Average (SMA) [2], all observations in the 
window are equally weighted for calculating the mean. For 
gap sizes equal to 1, and the parameter k equal to 1, SMA 
produces the same results as LANN in other cases results are 
different. 

Linear Weighted Moving Average (LWMA) [2], weights 
decrease in arithmetical progression. The observations directly 
next to a central value i, have weight 1/2, the observations one 
further away (i-2,i+2) have weight 1/3, the next (i-3,i+3) have 
weight 1/4. 

Exponential Weighted Moving Average (EWMA) [2] [8], 
is an approach that imputes the missing values by calculating 
the exponentially weighted moving average (EWMA). 
Initially, the value of the moving average window is set; the 
mean thereafter is calculated from equal number of 
observations on either side of a central missing value [8]. The 
observations directly next to a central value i, have weight 
(1/2)1, the observations one further away (i-2,i+2) have weight 
(1/2)2, the next (i-3,i+3) have weight (1/2)3,. 

In this work, imputeTS R package is used to implement 
SMA, LWMA y EWMA imputations. 

Kalman Smoothing [8] on the state space representation of 
an autoregressive integrated moving average (ARIMA) model, 
is usually a good approach for imputation of highly seasonal 
univariate data [9]. In this work, we use imputeTS R package 
to implement ARIMA Kalman imputation. 

Datawig1 is a Python library that learns Machine Learning 
models using Deep Neural Networks to impute missing values 
in a dataframe. This method works very well with categorical 
and non-numerical features, therefore, it was not considered in 
the comparisons made in this work. 

In order to compare the accuracy of the imputation 
techniques proposed with multivariable imputation techniques, 
two well-known multiple imputation algorithms were 
experimented, such as MICE [10]  (Multiple Imputation by 
Chained Equations) and KNN [11] [12] (K-Nearest Neighbor), 
results can be seen in Section V. 

                                                           
1 W. Badr, “6 different ways to compensate for missing values in a 

dataset (data imputation with examples),”, Towards Data Science, [Online]. 

Available: https://towardsdatascience.com/6-different-ways-to-compensate-

for-missing-values-data-imputation-with-examples-6022d9ca0779. [Accessed 

2019/07/15] 

III. THEORETICAL BACKGROUND 

A. Time Series 

A time series is a set of data points indexed in time order. 
Most commonly, a time series is a sequence taken at 
successive equally spaced points in time. Thus it is a sequence 
of discrete-time data. Some examples of time series are daily 
temperatures, weekly sales, customers per day, number of 
monthly visits, etc. 

Studying the past behavior of a series will help to identify 
patterns and make better forecasts. When plotted, many time 
series exhibit one or more of the following features: 

 Trends 

 Seasonal and nonseasonal cycles 

 Pulses and steps 

 Outliers 

B. Missing Data 

Depending on what causes missing data, the gaps will have 
a certain distribution. Understanding this distribution may be 
helpful in two ways [3]. First, it may be employed as 
background knowledge for selecting an appropriate imputation 
algorithm. Second, this knowledge may help to design a 
reasonable simulator that removes missing data from a test set; 
such a simulator will help to generate data where the true 
values are known. Hence, the quality of an imputation 
algorithm can be tested. 

Missing data mechanisms can be divided into three 
categories: Missing Completely at Random (MCAR), Missing 
at Random (MAR) and Not Missing at Random (NMAR). In 
practice, assigning data-gaps to a category can be blurry, 
because the underlying mechanisms are simply unknown [3]. 
While MAR and MNAR diagnosis needs manual analysis of 
the patterns in the data and application of domain knowledge, 
MCAR can be tested for with t-test [3] 

C. Univariate Time Series 

A univariate time series is a sequence of single 
observations o1,o2,o3,…, on at sucessive points t1,t2,t3,… tn in 
time. Although a univariate time series is usually considered 
as one column of observations, time is in fact an implicit 
variable [3]. 

D. Univariate Imputation Methods 

Techniques capable of doing imputation for univariate 
time series can be roughly divided into three categories [3]: 

 Univariate algorithms. These algorithms work with 
univariate inputs, but typically do not employ the time 
series characteristics of the dataset. Examples are: 
mean, mode, median, random simple. 

 Univariate time series algorithms. These algorithms are 
also able to work with univariate inputs, but make use 
of the time series characteristics. Examples of simple 
algorithms of this category are locf (last observation 
carried forward), nocb (next observation carried 
backward), arithmetic smoothing and 
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linearinterpolation. The more advanced algorithms are 
based on structural time series models and can handle 
seasonality. 

 Multivariate algorithms on lagged data. Usually, 
multivariate algorithms cannot be applied on univariate 
data. But since time is an implicit variable for time 
series, it is possible to add time information as 
covariates in order to make it possible to apply 
multivariate imputation algorithms. This process is all 
about making the time information available for 
multivariate algorithms. The usual way to do this is via 
lags and leads. Lags are variables that take the value of 
another variable in the previous time period, whereas 
leads take the value of another variable in the next time 
period. 

IV. PROPOSED ALGORITHMS 

A. Local Average of Nearest Neighbors (LANN) 

LANN is an imputation algorithm for a univariate time 
series, which is fundamentally based on the average of the two 
closest neighbors, this according to the analysis carried out in 
several meteorological time series, where, it was observed that 
the previous neighbor vi-1 and the next neighbor vi+1 usually 
have approximate values at a certain value vi. Where in an 
imputation problem vi would be the NA value or the value to 
be imputed. 

Table I shows the difference or distance between a time 
series value and the other values. The time series corresponds 
to meteorological data of maximum daily temperatures of 15 
days at a weather station in the Moquegua Region, Ilo 
province from 2016-01-01 to 2016-01-15. 

As mentioned earlier, this algorithm provides the same 
results as the SMA algorithm [2] when SMA is configured 
with the parameter k = 1 and the sizes of the gaps are equal to 
1. When the size of the gaps is greater than 1 the results are 
different. 

Then, from Table I, calculating the average of the diagonal 
elements that are exactly below the main diagonal or above, 
we will find the average difference between an element of the 
series and its first neighbor. Similarly, the following diagonal 
will give us the average difference between an element of the 
series and its second neighbor and so on. Table II shows the 
average differences for the 15-day time series. 

According to Table II for the time series analyzed, we find 
that the closest neighbors to some value are 1st, 3rd, 6th, 9th 
and 2nd. 

Next, we will experiment by generating random NA values 
in the previous time series and calculate the NA values by 
applying the average of the nearest neighbors (previous and 
next) with LANN algorithm according equation (1). 

NA= (vi-1  + vi+1)/2             (1) 

Table III shows the randomly generated NAs and their 
respective calculation using equation (1) with a percentage of 
missing data of 40%, 26.67%, 13.33%. The algorithm in Table 
IV was used in such a way that we make sure that we do not 
generate missing data at the beginning and at the end of the 
time series, likewise, the algorithm does not insert more than 
two NAs as gaps. 

The LANN algorithm implemented in Javascript Language 
can be seen in Table V. 

B. Local Average of Nearest Neighbors+ (LANN+) 

LANN+ is based on the LANN technique, but it 
conditionally considers the average of the 4 closest neighbors 
instead of just two as in the LANN case. This algorithm uses a 
threshold parameter, which the higher it is, the imputation 
results will be very similar to the LANN algorithm. This 
parameter must be set according to the nature of the time 
series. For a temperature time series, the most appropriate is 
probably 1.0, in the case of an air passenger time series, the 
most suitable is probably 110. 

TABLE. I. MATRIX OF DIFFERENCES BETWEEN THE  ELEMENTS OF A TIME SERIES 

 
23.4 22.8 22.6 23.4 24.4 24 23.6 25.2 24.4 23.6 23.8 24.2 23.8 24.8 24.8 

23.4 0 0.6 0.8 0 1 0.6 0.2 1.8 1 0.2 0.4 0.8 0.4 1.4 1.4 

22.8 0.6 0 0.2 0.6 1.6 1.2 0.8 2.4 1.6 0.8 1 1.4 1 2 2 

22.6 0.8 0.2 0 0.8 1.8 1.4 1 2.6 1.8 1 1.2 1.6 1.2 2.2 2.2 

23.4 0 0.6 0.8 0 1 0.6 0.2 1.8 1 0.2 0.4 0.8 0.4 1.4 1.4 

24.4 1 1.6 1.8 1 0 0.4 0.8 0.8 0 0.8 0.6 0.2 0.6 0.4 0.4 

24 0.6 1.2 1.4 0.6 0.4 0 0.4 1.2 0.4 0.4 0.2 0.2 0.2 0.8 0.8 

23.6 0.2 0.8 1 0.2 0.8 0.4 0 1.6 0.8 0 0.2 0.6 0.2 1.2 1.2 

25.2 1.8 2.4 2.6 1.8 0.8 1.2 1.6 0 0.8 1.6 1.4 1 1.4 0.4 0.4 

24.4 1 1.6 1.8 1 0 0.4 0.8 0.8 0 0.8 0.6 0.2 0.6 0.4 0.4 

23.6 0.2 0.8 1 0.2 0.8 0.4 0 1.6 0.8 0 0.2 0.6 0.2 1.2 1.2 

23.8 0.4 1 1.2 0.4 0.6 0.2 0.2 1.4 0.6 0.2 0 0.4 0 1 1 

24.2 0.8 1.4 1.6 0.8 0.2 0.2 0.6 1 0.2 0.6 0.4 0 0.4 0.6 0.6 

23.8 0.4 1 1.2 0.4 0.6 0.2 0.2 1.4 0.6 0.2 0 0.4 0 1 1 

24.8 1.4 2 2.2 1.4 0.4 0.8 1.2 0.4 0.4 1.2 1 0.6 1 0 0 

24.8 1.4 2 2.2 1.4 0.4 0.8 1.2 0.4 0.4 1.2 1 0.6 1 0 0 
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TABLE. II. AVERAGE DIFFERENCE BETWEEN A GIVEN VALUE AND ITS 

NEIGHBORS 

Neighbour Average Difference Ranking 

1st 0.6143 1st 

2nd 0.8462 5th 

3rd 0.6500 2nd 

4th 0.8545 7th 

5th 0.9600 9th 

6th 0.7111 3rd 

7th 0.8500 6th 

8th 0.9143 8th 

9th 0.7333 4th 

10th 0.9600 10th 

11th 1.3500 11th 

12th 1.5333 13th 

13th 1.7000 14th 

14th 1.4000 12th 

TABLE. III. RMSE OF THE LANN ALGORITHM (15 DAYS) 

Real 
NAs 

(40%) 
LANN 

NAs 

(26.67%) 
LANN 

NAs 

(13.33%) 
LANN 

23.4 23.4  23.4  23.4  

22.8 NA 23.00 22.8  22.8  

22.6 22.6  22.6  22.6  

23.4 23.4  NA 23.50 23.4  

24.4 NA 23.50 24.4  NA 23.70 

24 NA 23.55 NA 24.00 24  

23.6 23.6  23.6  23.6  

25.2 25.2  25.2  25.2  

24.4 NA 24.50 24.4  24.4 24.40 

23.6 NA 24.15 NA 24.10 23.6  

23.8 23.8  23.8  23.8  

24.2 NA 23.8 24.2  24.2  

23.8 23.8  NA 24.50 23.8  

24.8 24.8  24.8  24.8  

24.8 24.8  24.8  24.8  

RMSE 0.5041 RMSE 0.4330 RMSE 0.4950 

TABLE. IV. RANDOM INSERTION ALGORITHM OF MISSING VALUES 

function insertNAs(tso,k)  

{ nts=tso.length; 

 nn=(Math.floor(nts/k)-1); 

 inf=1;sup=k;pna=0; 

 for(j=0;j<nn;j++) 

 { pna=Math.floor(Math.random() * (sup - inf + 1)) + inf; 

  pos.push(pna); 

  tso[pna]="NA"; 

  inf+=k; 

  sup+=k; 

 } 

 return tso; 

} 

TABLE. V. LANN ALGORITHM 

function lann(tsna) 

{ npos=pos.length; 

 for(i=0;i<npos;i++) 

 { if(tsna[pos[i]-1]!='NA') 

   prior=parseFloat(tsna[pos[i]-1]); 

  else 

   prior=parseFloat(tsna[pos[i]-2]); 

  if(tsna2[pos[i]+1]!='NA') 

   next=parseFloat(tsna[pos[i]+1]); 

  else 

   next=parseFloat(tsna[pos[i]+2]); 

  base=(prior+next)/2; 

  tsna[pos[i]]=base.toFixed(2); 

 } 

 return tsna; 

} 

The consideration of having a threshold is based on the 
fact that missing values in time series should not be imputed 
with the same technique, since each missing value and its 
neighbors have their own characteristics so there should be a 
technique that suits these characteristics in such a way that the 
imputed value has these characteristics. In that sense, although 
there is no exhaustive extraction of characteristics of time 
series with missing data, with LANN+, an effort is made to 
consider at least one characteristic that becomes the difference 
(d) between the previous neighbor and the neighbor after the 
missing value or NA data. 

Regarding the alternation between two neighbors for 
differences less than or equal to the value of the threshold, and 
four neighbors for differences greater than the value of the 
threshold, it was considered so because when analyzing 
different time series of temperatures it was found that for 
small differences the average of the two closest neighbors (vi-

1, vi+1) in most cases produced good results, while for larger 
differences it was more appropriate to use the average of the 
four nearest neighbors (vi-2, vi-1, vi+1, vi+2), something that can 
be seen if we compare the RMSE of Table III with those of 
Table VI. 

TABLE. VI. RMSE OF THE LANN+ ALGORITHM (15 DAYS) 

Real 
NAs 

(40%) 

LANN+ 

* 

NAs 

(26.67%) 

LANN+ 

* 

NAs 

(13.33%) 

LANN+ 

* 

23.4 23.4  23.4  23.4  

22.8 NA 23.00 22.8  22.8  

22.6 22.6  22.6  22.6  

23.4 23.4  NA 23.35 23.4  

24.4 NA 23.50 24.4  NA 23.70 

24 NA 23.55 NA 24.00 24  

23.6 23.6  23.6  23.6  

25.2 25.2  25.2  25.2  

24.4 NA 24.10 24.4  NA 24.05 

23.6 NA 23.95 NA 24.10 23.6  

23.8 23.8  23.8  23.8  

24.2 NA 23.8 24.2  24.2  

23.8 23.8  NA 24.50 23.8  

24.8 24.8  24.8  24.8  

24.8 24.8  24.8  24.8  

RMSE 0.4873 RMSE 0.4308 RMSE 0.5534 

*threshold=1.0 
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Fig. 1. RMSE Comparison between LANN and LANN+. 

Fig. 1 shows a comparison between LANN and LANN+ 
for a time series of 15 days. 

Table VII, shows the LANN+ algorithm implemented in 
Javascript language. 

TABLE. VII. LANN+ ALGORITHM 

function lannp(tsna)  

{ npos=pos.length; 

 for(i=0;i<npos;i++) 

 { if(tsna[pos[i]-1]!='NA') 

   prior=parseFloat(tsna[pos[i]-1]); 

  else 

   prior=parseFloat(tsna[pos[i]-2]); 

  if(tsna[pos[i]+1]!='NA') 

   next=parseFloat(tsna[pos[i]+1]); 

  else 

   next=parseFloat(tsna[pos[i]+2]); 

  d=Math.abs(prior-next); 

  base=(prior+next)/2; 

  if(d<=threshold) 

   tsna[pos[i]]=base.toFixed(2); 

  else 

  { mean2nn=get2nn_mean(tsna,pos[i]); 

   tsna[pos[i]]=mean2nn.toFixed(2); 

  } 

 } 

 return tsna; 

} 

V. RESULTS AND DISCUSSION 

This section shows the results of comparing the proposed 
algorithms with other algorithms mentioned in section II. 
Likewise, the precision is compared with other time series 
with different characteristics to the temperature time series 
seen in Section IV. 

A. Comparison with other Univariate Imputation Techniques 

The LANN and LANN+ algorithms are compared with 
other imputation techniques in a maximum temperature time 
series of 15 days, Table VIII shows the results. 

According to Table VIII, it is appreciated that for the 
percentage of NAs equal to 40%, the algorithm that obtained 
the best precision was the LWMA (0.4572) followed by the 
EWMA algorithm (0.4692) and thirdly the proposed algorithm 
LANN+ (0.4873). For the percentage of NAs equal to 26.67%, 
the algorithm with the best performance was the proposed 
algorithm LANN+ (0.4308) followed by LANN, SMA and 

ARIMA Kalman with the same RMSE (0.4330). For a 
percentage of NAs equal to 13.33%, in the first place, we have 
matched the LANN, SMA and ARIMA-Kalman algorithms 
with the same RMSE (0.4950). 

Also, the performance of the same algorithms was 
evaluated with a time series with more data, in this case 
instead of 15 days, it is considered 90 days of maximum daily 
temperatures, from 2016-01-01 to 2016-03-30. Table IX 
shows the results. 

According to Table IX, it can be seen that for a percentage 
of NAs of 48.89%, the algorithm with better precision is 
LANN (0.6059), secondly, we have the LANN+ algorithm 
(0.6196) and thirdly the SMA algorithm (0.6211). For a 
percentage of NAs of 32.22%, again the best precision was 
obtained by the LANN algorithm (0.5099), followed by the 
LANN+ algorithm (0.5296) and thirdly by the SMA algorithm 
(0.5451). For a percentage of NAs of 23.33%, the best 
algorithm was EWMA (0.4765), followed by LWMA (0.4970) 
and thirdly we have two, LANN and SMA with a RMSE equal 
to 0.5085. 

The proposed algorithms were also compared with the 
precision of two well-known multiple imputation algorithms 
such as MICE and KNN and the results shown in Table X 
were obtained. In this case, it’s used the data from the same 
previous data range of the nearest meteorological station to the 
Punta de Coles station, which is the Ilo Station. Ilo station is 
located in the El Algarrobal district of the province of Ilo. 

TABLE. VIII. COMPARISON WITH OTHER UNIVARIATE IMPUTATION 

TECHNIQUES – 15 DAYS 

Technique 
RMSE (NAs 

40%) 

RMSE (NAs 

26.67%) 

RMSE (NAs 

13.33%) 

LANN  0.5041 0.4330 0.4950 

LANN+ 

(treshold=1.0) 
0.4873 0.4308 0.5534 

LOCF 0.8869 0.6324 0.9055 

Hotdeck 0.9201 1.0295 0.8000 

SMA 0.6448 0.4330 0.4950 

LWMA 0.4572 0.4721 0.6275 

EWMA 0.4692 0.4613 0.6170 

ARIMA Kalman 0.5482 0.4330 0.4950 

TABLE. IX. COMPARISON WITH OTHER UNIVARIATE IMPUTATION 

TECHNIQUES – 90 DAYS 

Technique 
RMSE  

(NAs 48.89%) 

RMSE  

(NAs 32.22%) 

RMSE  

(NAs 

23.33%) 

LANN 0.6059 0.5099 0.5085 

LANN+ (1.0)* 0.6196 0.5296 0.5210 

LOCF 0.8382 0.7485 0.7461 

Hotdeck 1.322 1.5349 0.5778 

SMA (k=1) 0.6211 0.5451 0.5085 

LWMA (k=4) 0.6428 0.6299 0.4970 

EWMA (k=4) 0.6266 0.5878 0.4765 

ARIMA Kalman 0.7447 0.5964 0.5191 

* threshold=1.0 

0.5041 
0.433 

0.495 

0.4873 
0.4308 

0.5534 

0

0.1

0.2

0.3

0.4

0.5

0.6

40% 26.67% 13.33%

R
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TABLE. X. COMPARING WITH MICE AND KNN 

Technique 
RMSE 

(NAs 48.89%) 

RMSE 

(NAs 32.22%) 

RMSE 

(NAs 23.33%) 

LANN 0.6059 0.5099 0.5084 

LANN+* 0.6196 0.5296 0.5210 

MICE 1.4208 1.0993 0.8632 

KNN 1.0842 0.9762 0.9646 

*Threshold: 1.0 

According to Table X, the accuracy of the proposed 
LANN and LANN+ algorithms greatly outperform MICE and 
KNN. 

The proposed algorithms were also evaluated with time 
series with other characteristics: 

 Airpass: Monthly total international airline passengers 
from 01/1960-12/1971 [13] Characteristics: trend, 
seasonality. 

 Beersales: Monthly beer sales in millions of barrels, 
01/1975-12/1990 [13] Characteristics: no trend, 
seasonality. 

Table XI shows the results achieved with the Airpass time 
series. 

Table XI shows that for time series with different 
characteristics than maximum temperatures, the proposed 
algorithms also offered good performance. 

Table XII shows the results with the Beersales time series, 
where the LANN algorithm showed the best accuracy in the 
imputation process of missing data. 

TABLE. XI. COMPARISON ON AIRPASS TIME SERIES 

Technique RMSE 

LANN 22.0368 

LANN+* 20.9122 

LOCF 43.6041 

Hotdeck 164.6075 

SMA 21.7995 

LWMA 28.9395 

EWMA 24.4703 

Kalman-ARIMA 20.8952 

*Threshold: 110 

TABLE. XII. COMPARISON ON BEERSALES TIME SERIES 

Technique RMSE 

LANN 0.8738 

LANN+ * 0.9738 

LOCF 1.6869 

Hotdeck 2.6295 

SMA 0.9246 

LWMA 1.1915 

EWMA 1.0772 

Kalman-ARIMA 0.9283 

*Threshold: 0.02 

VI. CONCLUSIONS 

The proposed algorithms showed a very good performance 
in the imputation process of NAs short-gaps in different time 
series in which they were analyzed. They outperformed many 
well-known imputation algorithms such as ARIMA-Kalman, 
Hotdeck, LOCF, MICE, KNN in different percentages of 
missing data. 

For meteorological time series such as maximum 
temperature series, LANN and LANN+ are highly 
recommended due to the good accuracy achieved. 

For the time series with high trend and seasonality, the use 
of the LANN+ algorithm is recommended and for time series 
with low trend and high seasonality, the use of LANN is 
recommended. 

VII. FUTURE WORK 

The algorithms proposed in the present work have been 
analysed and evaluated in short-gaps of NAs, it is important in 
future works to configure them for larger gaps, three or more 
data and evaluate the corresponding accuracy. 

The proposed algorithms can be improved by combining 
with forecast models such as Deep Learning, especially 
Recurrent Neural Networks [14] especially Long Short Term 
Memory (LSTM) or Gate Recurrent Unit (GRU) that allow 
improving the accuracy of the estimates reached. 
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