
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

6 | P a g e

www.ijacsa.thesai.org

FPGA Implementation of RISC-based

Memory-centric Processor Architecture

Danijela Efnusheva
1

Computer Science and Engineering Department

Faculty of Electrical Engineering and Information Technologies

Skopje, North Macedonia

Abstract—The development of the microprocessor industry in

terms of speed, area, and multi-processing has resulted with

increased data traffic between the processor and the memory in a

classical processor-centric Von Neumann computing system. In

order to alleviate the processor-memory bottleneck, in this paper

we are proposing a RISC-based memory-centric processor

architecture that provides a stronger merge between the

processor and the memory, by adjusting the standard memory

hierarchy model. Indeed, we are developing a RISC-based

processor that integrates the memory into the same chip die, and

thus provides direct access to the on-chip memory, without the

use of general-purpose registers (GPRs) and cache memory. The

proposed RISC-based memory-centric processor is described in

VHDL and then implemented in Virtex7 VC709 Field

Programmable Gate Array (FPGA) board, by means of Xilinx

VIVADO Design Suite. The simulation timing diagrams and

FPGA synthesis (implementation) reports are discussed and

analyzed in this paper.

Keywords—FPGA; memory-centric computing; processor in

memory; RISC architecture; VHDL

I. INTRODUCTION

The growing technological progress over the last several
decades has caused dramatic improvements in processor
performances, providing speed-up of processor's working
frequency, increased number of instructions that can be issued
and processed in parallel, [1], [2], multithreading, pre-fetching,
etc. According to Moore's law, [3], [4], the integrated circuits
production technology has enabled doubling of the number of
transistors on a chip every 18 months, which resulted with the
creation of multi-core processors over the last decade. This
trend of processor technology growth has brought performance
improvements on the computer systems, but not for all the
types of applications, [5]. The reason for such divergence is
due to the bottleneck problem in the communication between
the processor and the main memory (which is by default placed
out of the processor), caused by the growing disparity of
memory and processor speeds, [6]. Therefore, we can say that
not long ago, off-chip memory was able to supply the
processor with data at an adequate rate. Today, with processor
performances increasing at a rate of about 70 percent per year
and memory latency improving by just 7 percent per year, it
takes a dozens of cycles for data to travel between the
processor and the main memory, [7], [8], which is basically
placed outside of the processor chip.

The computer systems that are used today are mainly based
on the Von Neumann architecture, [9], which is characterized

by the strict separation of the processing and memory resources
in the computer system. In such processor-centric system the
memory is used for storing data and programs, while the
processor interprets and executes the program instructions in a
sequential manner, repeatedly moving data from the main
memory in the processor registers and vice versa, [1].
Assuming that there is no final solution for overcoming the
processor-memory bottleneck, modern computer systems
implement different types of techniques for "mitigating" the
occurrence of this problem, [10], (ex. branch prediction
algorithms, speculative and re-order instructions execution,
data and instruction pre-fetching, and multithreading, etc.). In
fact, the most applied method for approaching data closer to
the processor is the use of multi-level cache memory, as faster,
but smaller and more expensive data storage than the main
memory. Regarding that, the research stated in [11] discusses
that the capacity and the area of on-chip cache memory have
shown steady growth, as a result of the increased number of
on-chip processing cores, which have imposed even greater
requirements to the memory system. For example, up to 40%
of the chip area in Intel's 65nm processors is occupied by
caches, [12], used solely for hiding the memory latency.

Despite the grand popularity of cache memory used in the
modern computer systems, we should note that each cache
level presents a redundant copy of the main memory data that
would not be necessary if the main memory had kept up with
the processor speed. According to [13], cache memory causes
up to 40% increase of the system's energy consumption,
because it adds extra hardware resources and requires the
implementation of complex mechanisms, [14], for maintaining
memory consistency. Besides that, the misses in cache memory
bring unpredictability in the timing of the program, which is
not very suitable for real-time systems.

On the other hand, the development of some powerful
processor architectures, such as vector, [15], wide superscalar,
[16], VLIW (very long instruction word), [17], and EPIC
(explicitly parallel instruction computing), [18], did not
achieve the expected success, because of their inability to
provide fast and high throughput access to the memory system.
Considering the difference between the processor and the
memory speeds, we believe that the relatively small number of
fast GPRs in the processor is the major obstacle for achieving
high data throughput. This is mainly expected in the case of
executing a program that works with larger data set that needs
to be placed into the processor for a short time, but there are
not enough free registers. Examples for such applications are:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

7 | P a g e

www.ijacsa.thesai.org

processing of data flows, calculating vast logical-arithmetical
expressions or traversing complex data structures, etc. In such
cases, the high speed of access to GPRs doesn't bring many
advantages, because the complete set of required data cannot
be placed into the register set at the proper time. Therefore, the
author of [19] purposes a register-less processor which uses
only cache memory (inside and outside of the processor) to
communicate with the main memory. Additionally, the authors
of [20] and [21] suggest the use of Scratchpad memory as a
small software-managed on-chip memory that is separated of
the cache memory and can be accessed in a single proc. cycle.

A few decades ago, in the 1990ties, some researches
predicted that the memory behavior would be preponderant
over the global performances of the computer system. Their
proposals suggested the design of "smart memories" that will
include processing capabilities. Therefore, several memory-
centric approaches of integrating or approaching the memory
closer to the processing elements have been introduced,
including: computational RAM, [22], Mitsubishi М32R/D,
[23], DIVA, [24], Terasys, [25], intelligent RAM, [26] - [28],
parallel processing RAM, [29], DataScalar, [30], and an
intelligent memory system, known as active pages model, [31].
Within these memory-centric systems, the processor can be
realized as some simple RISC or complex superscalar
processor and may contain a vector unit, as is the case with the
Intelligent RAM.

The aim of this paper is to develop a novel RISC-based
memory-centric processor architecture, which suggests an
integration of processor and memory on the same chip die and
proposes removal of general-purpose registers and cache
memory (inside and outside of the processor) from the standard
memory hierarchy. Contrary to the other memory/logic merged
chips, which mostly use the standard memory hierarchy model
for data access, the proposed RISC-based memory-centric
processor provides direct access to the data into its on-chip
memory (without the use of explicit LOAD and STORE
instructions) and includes specialized control unit that performs
4-stage pipelining of instructions, allowing every (arithmetical,
logical, branch and control) instruction to be completed in а
single tact cycle. If this logic is manufactured as an ASIC
(application-specific integrated circuit) it cannot be reused for
further extensions, so in this paper we are investigating the
possibilities to utilize a reconfigurable hardware platform -
Virtex7 VC709 FPGA board, [32]. In that process, we are
developing a VHDL model of the proposed RISC-based
memory-centric processor, and then we are simulating the
functionalities of the proposed processor and analyzing the
characteristics and the complexity of its FPGA
implementation, by means of Xilinx VIVADO Design Suite. In
fact, FPGA technology is very suitable for the purposes of this
research since it represents a good compromise between
performance, price, and re-programmability, [33].

The rest of this paper is organized as follows: Section II
gives an overview of different techniques and methods used to
alleviate the processor-memory bottleneck and also discusses
several memory-centric approaches of computing. Section III
presents the proposed RISC-based memory-centric processor,
describing its basic architectural characteristics, including
instruction set, addressing modes, pipelining support, data

forwarding, access to on-chip memory, etc. Section IV presents
simulations and synthesis results from the FPGA implemen-
tation of the proposed RISC-based memory-centric processor.
The paper ends with a conclusion, stated in section V.

II. CURRENT STATE

The extraordinary increase of microprocessor speed has
caused significant demands to the memory system, requiring an
immediate response to the CPU (central processing unit)
requests. Considering that the memory price, capacity, and
speed are in direct opposition, an ideal memory system cannot
be implemented in practice, [2]. Therefore, today's modern
computer systems are characterized with hierarchical memory,
organized in several levels, each of them having smaller, faster
and more expensive memory, compared to the previous level.

The hierarchical approach of memory organization is based
on the principle of temporal and spatial locality, [1], [2], and
the rule "smaller is faster" which states that smaller pieces of
memory are usually faster and hence more expensive than the
larger ones. According to that, cache memories have lower
access time, but on the other hand they bring indeterminism in
the timing of the program, as a result of the misses that can
occur during the memory accesses (read or write). This is also
confirmed with equations 1 and 2, which give the expressions
for computing average memory access time and program
execution time, accordingly. The relation between these
equations is expressed with the CPI (cycles per instruction)
parameter, which value depends on the average memory access
time. Therefore, if many misses to intermediate memory levels
occur, the program's execution time will increase, resulting in
many wasted processor cycles.

Average memory access time =

= Hit time + Miss rate * Miss penalty (1)

Execution time = Instructions number *CPI*Clock period (2)

According to the previous assumptions, we can say that
multi-level cache memories can cause reduction of the memory
access time, but at the cost of additional hardware complexity,
increased power consumption, unpredictable program's timing
and extra redundancy in the system. Other techniques for
memory latency reduction include a combination of large
cache memories with some form of branch predictive
speculation, or out-of-order execution, [14]. These methods
also increase the chip area and cause extra complexity on both
the hardware and software level. Even other more complex
approaches of computing like vector, wide superscalar, VLIW
and EPIC suffer from low utilization of resources, implemen-
tation complexity, and immature compiler technology, [15] -
[18]. When it comes to processor architectures, we can say that
the integration of multiple cores or processors on a single chip
die brings even greater demands to the memory system,
increasing the number of slow off-chip memory accesses, [8].

In order to tolerate the memory latency and allow the
processor to execute other tasks while a memory request is
being served, a separate group of memory latency tolerance
techniques was introduced. Some of the most popular methods
in this group are multithreading, [2], instruction and data pre-
fetching, [1] and non-blocking caches, [34]. In general, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

8 | P a g e

www.ijacsa.thesai.org

usage of these methods contributes to the "reduction" of the
memory latency, but on the other hand it increases the memory
traffic, leading to a higher instruction and data rate. As a result
of the limited bandwidth on the memory interface, additional
latency can be generated.

Besides the previously discussed memory latency reduction
and tolerance methods, there are several proposals, which
present some modifications into the classic multi-level memory
hierarchy and provide nonstandard faster access to the main
memory. For example, the author of [19] proposes a register-
less processor that performs all the operations directly with the
cache memory, organized in several layers (on-chip and off-
chip), excluding the explicit use of GPRs. Additionally, the
authors of [21] suggest the use of Scratchpad memory as a
small high-speed on-chip memory that maps into the
processors address space at a predefined memory address
range. Opposite to the cache memory, the Scratchpad memory
is allocated under software control and is characterized with
deterministic behavior, allowing single-cycle access time. This
small on-chip memory is mostly used for storing in-between
results and frequently accessed data, so it requires developing
of complex compiler methods for effective data allocation.

Contrary to the standard model of processor-centric
computing (Von Neumann model), [9], some researchers have
proposed alternative approaches of memory-centric computing,
which suggests integrating or placing the memory near to the
processor. These proposals are known as computational RAM,
intelligent RAM, processing in memory chips, intelligent
memory systems, [22] - [31], etc. These merged memory/logic
chips implement on-chip memory which allows high internal
bandwidth, low latency, and high power efficiency, eliminating
the need for expensive, high-speed inter-chip interconnects,
[35]. This makes them suitable to perform computations which
require high data throughput and stride memory accesses, such
as FFT, multimedia processing, network processing, etc., [28].

The integrated on-chip memory in the merged
memory/logic chips is usually implemented as SRAM or
embedded DRAM, which is mostly accessed through the
processor's cache memory. Although the processing in/near
memory brings latency and bandwidth improvement, still the
system has to perform unnecessary copying and movement of
data between the on-chip memory, caches, and GPRs. Besides
that, the processing speed, the on-chip memory size, and the
chip cost are limited due to the used implementation
technology and the production process. Moreover, it is even a
greater challenge to develop suitable compiler support for the
system, which will recognize the program parallelism and will
enable effective utilization of the internal memory bandwidth.

Having in mind that modern processors are lately dealing
with both technical and physical limitations, while the memory
capacity is constantly increasing, it seems that now is the right
time to reinvestigate the idea of placing the processor in or near
to the memory in order to overcome their speed difference,
[36] - [38]. A promising approach that targets this problem is
presented by the Hewlett Packard international information
technology company that suggests novel computer architecture,

called the Machine, [39], which utilizes non-volatile memory
as a true DRAM replacement. A more detailed study about
other proposals for overcoming the processor-memory
bottleneck is presented in our previous research, given in [40].

Considering the adjustments of the standard memory
hierarchy model, presented in some of the previously discussed
approaches (ex. PERL, Scratchpad, Machine), we can say that
the extension or revision of their work can be a good starting
point for further research. In that process, we can first perceive
that the relatively small number of fast GPRs in the highest
level of the memory hierarchy is the major obstacle for
achieving high data throughput. After that, we can consider
that the cache memory is a limiting factor in real-time
computing, and is also a redundant memory resource, which
adds extra hardware complexity and power consumption into
the system. Therefore, our research will continue into the
direction of developing a novel RISC-based memory-centric
processor similar to PERL, which will provide direct access to
the memory that is integrated into the processor chip, without
the use of GPRs and cache memory. The proposed replacement
of the two highest memory hierarchy levels with an on-chip
memory is intended to provide: exclusion of unnecessary data
copying and individual or block data transfer into the GPRs
and cache memory, a decrease of the capacity of redundant
memory resources, simplification of the accesses to memory
and removal of complex memory management mechanisms.

III. DESIGN OF RISC-BASED MEMORY-CENTRIC

PROCESSOR ARCHITECTURE

As a referencing point for designing the proposed RISC-
based memory-centric processor, we make use of a RISC
architecture implementation (MIPS), which is widely applied
in the embedded industry and additionally is well documented
and presented in the leading world's literature in the field of
processor architectures. The selected MIPS implementation of
a single-cycle pipelined RISC architecture, presented by D. A.
Patterson and J. L. Hennessy in [1], is also used as a basis in
the PERL processor architecture design. In general, MIPS
processor is characterized with: fix-length instructions, simple
addressing modes, memory accesses with explicit load and
store instructions, hardwired control unit, large GPR set and
pipeline operation in five stages (fetch, decode, execute,
memory access and write back), as shown in Fig. 1.

According to Fig. 1, a MIPS processor includes: Program
counter - PC, Instruction Register - IR, pipeline registers, 32
general-purpose registers, separated instruction and data cache
memory, 32-bit arithmetical and logical unit, control unit
(marked with blue), and other selecting and control logic
(multiplexers, decoders, adders, extenders etc.). Therefore,
MIPS operates only on operands found in its local GPRs,
requiring frequent data transfer between the memory and the
processor's registers, via load and store instructions. In order to
provide easier access and manipulation of memory data, this
paper proposes a modification and extension of the original
pipelined RISC architecture and creation of a novel MEMRISC
(Memory Access Reduced Instruction Set Computing)
pipelined processor architecture, shown in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

9 | P a g e

www.ijacsa.thesai.org

Fig. 1. Pipelined RISC-based MIPS Processor, [1].

A
D

D

IF
/I
D

E
X

/W
B

ID
/E

X

A
L

U
 f

o
r

In
te

g
e

r

a
n

d

F
lo

a
t

Instruction

memory

segmented

in blocks

8

PC

Instruction

Memory

Address

Generator

Address

Comparator

(=,!=,<,>.<=,>=)

(CondBranch

AND

branchFlag)

OR

UncondBranch

Sign Extend

to32bit &

ShiftLeft 3

A
D

D

Instruction[55..40]

M
U

X0

1

Instruction[36..8]

In
s
tr

u
c
ti
o

n
[6

3
..

0
]

Data

Memory

Address

Generator

Instruction[39..24]

Instruction[23..8]

Instruction[23..8]

Hazard

detection

unit

for Op2

Integer

Extend

to32bit

Float

Extend

to32bit

M
U

X0

1

Hazard

detection

unit

for Op1

M
U

X

0

1

M
U

X0

1

Instruction[55..40]
Data

memory

segmented

in blocks

AddrOp1

AddrOp2

Op1

Op2

ResAddr

ResData

Shifter

Constants

Extender

to32bit

Load

Constants

Extender

to32bit

Instruction[39..24]

Instruction[39..8]

Instruction[39..32]

Instruction[7..3]

Instruction[23..3]
ShiftAmmount

Imm32

E
X

W
B

W
B

BranchFlag

Op1

Op2

0

1

2

3

M
U

X0

1

Shifter

M
U

X

0

1

M
U

X0

1

ShiftResult

M
U

X

NextPC

LoadResult

M
U

X

ALUResult

Control Unit

 Instruction[63..56] = Opcode

Forward

ExRes

Forward

WBRes

ResDataDMem

Write

PCSrc

14

Imm

Type

Op2

Type

CondBranch

CondBranch,

UncondBranch

2

CondBranch

Opcode[2..0]

ShiftType[2],

ShiftEnable

ALUOpcode

[5..0]

Load

Op[2]

ShiftOp2

Selector

ShiftOper

Selector

ShiftOper

Selector

3

Result

Selector[2..0]

inData

inoutbus

Out

Data

inoutbus

Imm16Up

Imm16

Imm8

Imm21Shift

6

DMemWrite

MemoryOperands[2..0]

PRsWrite[2..0], BRsWrite[2..0]

PRSelector[1..0], RSelector[1..0]

DMemPTWrite

PageReg

BaseReg

PageReg&BaseReg
AddrResult AddrResult

ResAddr

Forward_EX
Forward_Wb

ResData

PageRegister

BaseRegister

PageReg&BaseReg

Shift

Left 3

0

1 M
U

X

UncondBranchType

3

Halt

DMem

Read

3

2

IMemPTWrite

M
U

X0

1

Data

inoutbus

IMem

Write
IMem

Read

2

PRsMemWrite[2..0],

BRsMemWrite[2..0]
6

Fig. 2. Pipelined MIMOPS Processor with MEMRISC Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

10 | P a g e

www.ijacsa.thesai.org

As shown in Fig. 2, the proposed processor with
MEMRISC architecture uses separated on-chip data and
program memory, instead of GPRs and on-chip cache memory.
This means that the given processor executes all the operations
on values found in its on-chip memory, avoiding the
unnecessary and redundant data copying and movements,
which are performed in the MIPS processor, during (load/store)
data transfers. Therefore if the RISC-based MIPS processor is
able to execute a million instructions per second, then the
proposed processor with MEMRISC architecture would be
able to execute a million instructions on memory operands per
second, which is the reason why it is called MIMOPS
processor in continuation.

The proposed MIMOPS processor excludes the GPRs and
the cache memory from the memory hierarchy and thus allows
direct and simultaneous access to two sources and one result
operand, specified in the instruction. These operands are
selected by a specialized memory address generator unit that is
used to perform the translation of the input virtual addresses
into physical addresses of the paged on-chip memory. Once the
operands are read from the on-chip data memory, the operation
is executed and then the result is written back to the on-chip
data memory. In fact, the MIMOPS processor operates in a 4-
stage pipeline (instruction fetch, instruction decode, execute
and write back), excluding the MEM phase, and allowing every
(arithmetical, logical, branch or control) MIMOPS instruction
to be completed in а single tact cycle. The instructions that are
supported by the proposed MIMOPS processor are MIPS alike,
but the way of their interpretation and execution is slightly
different.

Unlike the MIPS processor that is given in Fig. 1, the
MIMOPS processor operates directly with the on-chip memory

and thus simplifies the access to the operands, the execution of
the instructions (pipelining without MEM phase) and the
instruction set (removes explicit LOAD/STORE instructions).
This way of operation of the MIMOPS processor is managed
by a specialized control unit (marked with blue on Fig. 2),
which provides support for several addressing modes (ex.
direct, immediate, base, PC-direct, and PC-relative addressing).
Generally, the memory operands are addressed directly, while
the translation of the virtual addresses to physical addresses is
performed via specialized hardware support for virtual memory
that is implemented inside the MIMOPS processor. This refers
to segmentation of the on-chip memory and filling it with
virtual pages, and implementation of page translation tables
and page replacement mechanisms (ex. FIFO).

The proposed MIMOPS processor implements separated
on-chip instruction and data memories that are segmented into
М equal-sized physical blocks (for virtual pages). Each of
these local memories is organized as an array of N contiguous
byte-sized elements, whereas each element has a unique
physical address. To provide support for address translation
and simultaneous access to the separated instruction and data
on-chip memories, the proposed MIMOPS processor
implements two dedicated hardware units, called instruction
and data memory address generators. These units translate
virtual addresses on the fly, performing a look-up in inverted
page tables, [14], stored inside the processor's fetch and decode
hardware logic, whose contents are managed by the operating
system. According to the implemented approach of pipelining,
MIMOPS can simultaneously access to a single instruction of
an on-chip instruction memory block, and to three operands of
up to three on-chip data memory blocks (some operands might
be in the same block), as shown in Fig. 3.

Op1page Op1offset

16 bits

CPU

Virtual address of operand1

Physical addresses:

...

...

Block 0

Block 2

Block M-1

.

.

.

...

Block 1

Op1Data[31..0]

0

65535

65537

65538

.

.

.

65540

65541

65542

On-chip

data memory

CPU chip

N-1

Op2page Op2offset

Virtual address of operand 2

Respage Resoffset

Virtual address of result

...

Block 3 .. M-2

.

.

.

Wb_ResData[31..0]

Op2Data[31..0]

 n bits

16 bits

16 bits16 bits

Op1frame Op1offset

 n bits

Op2frame Op2offset

Resframe Resoffset

 n bits

16 bits16 bits

Look-up in

Page table

Res

page
Res

frame

Op2

page

Op1

page
Op1

frame

Op2

frame

Op1

(V.A.)

Op2

(V.A.)

Res

(V.A.)

Res

(P.A.)

Op1

(P.A.)

Op2

(P.A.)

Data Memory Address Generator

Wb_ResAddress[n-1..0]

Dec_ResAddress[n-1..0]

Fig. 3. Virtual Addressing of on-Chip Data Memory.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

11 | P a g e

www.ijacsa.thesai.org

Fig. 3 shows how the CPU accesses to the on-chip data
memory, during the instruction decode pipeline stage. Once the
CPU decodes the instruction, it passes three virtual memory
addresses (for operand1, operand2, and result) to the data
memory address generator unit. This unit performs a look-up in
a page table in order to find the appropriate frame numbers for
the input page numbers, and thus to generate the effective
physical addresses of the two input operands and the result
operand. After that, the physical address of operand1 and
operand2 are passed to the data memory over the memory bus,
while the physical address of the result operand,
(Dec_ResAddress), is sent to the next CPU pipeline stage, to
be further used during the write-back stage.

According to Fig. 3, the CPU can simultaneously perform
two reads and a single write to the on-chip data memory. This
is achieved in such a way that the processor fetches two 4-byte
(32-bit) data operands, starting at the generated physical
addresses of operand1 and operand2, and in parallel stores the
received 32-bit result data (Wb_ResData), starting at the
physical address (Wb_ResAddress) of the result operand,
which is actually passed from the write-back pipeline stage.
Similarly to the result data and address forwarding
(Wb_ResData, Wb_ResAddress), the fetched operands
(operand1 and operand2) are sent to the next CPU pipeline
stage, to be further used as input operands for computing some
ALU operation in the execute stage.

When it comes to pipelines, it can be noticed that both
MIPS and MIMOPS processors provide overlapping of the
execution of the instructions, by implementing pipeline
registers for every inter-phase (ex. instruction fetch/instruction
decode). Besides these similarities, the MIMOPS processor
differs from the MIPS processor in many ways, since it allows:
reducing of the pipeline stages number by one, finishing the
execution of conditional and unconditional branches in the
decode pipeline stage and support of data forwarding for
overcoming data hazards during parallel instructions execution.
Additionally, the MIMOPS processor implements a separate
shifter logic that is purposed to generate a second flexible
operand for the arithmetical-logical unit (ALU). This is
achieved by shifting the second operand by a specific constant
value before it is being used by the ALU (this is similar to the
ARM - Advanced RISC Machine architecture, [39]). There-
fore, the ALU of the MIMOPS processor is able to perform
operations over two integer or floating-point input numbers,
where the second operand might be previously shifted.

Basically, the instruction set architecture of the proposed
MIMOPS processor is RISC-like and includes three types of
instructions (M-type, I-type and J-type), organized in four
different groups. M-type instructions operate with memory
operands placed in the on-chip data memory (similar to
registers in R-type MIPS instructions), while I-type and J-type
instructions operate with immediate values, whereas J-type
instructions are used for unconditional branching. Depending
on the function of the instructions, they can belong to
arithmetical-logical, shifting, branching or control group. The
arithmetical-logical group of instructions includes addition
with overflow detection, subtraction, multiplication, integer
division (div), modulo division (mod) and AND, OR, XOR and
NOT logical bit-wise operations. The shifting group of

instructions consists of left and right logical and arithmetical
shifts and rotations. The branching group includes instructions
for conditional and unconditional change of the program flow.
The last group is the auxiliary group, consisting of instructions
for program termination and system halt, SET instructions that
update the base address units, load instructions for storing 8-,
16- or 32-bit immediate values in the on-chip data memory and
IN/OUT instructions for communication with external devices.

 The execution of MIMOPS instructions is managed by the
control signals generated by the control unit that is specifically
defined for the MEMRISC architecture. This unit provides
support for several addressing modes, including base, direct,
immediate, PC-direct and PC-relative. In addition to the
control unit, the MIMOPS processor also includes: arithmetical
- logical unit that can operate with integers and floating-point
numbers, units for pipelining support, hazard detection unit for
overcoming data hazards during pipeline execution of
instructions, units that provide hardware support for virtual
memory (memory segmentation in blocks, page tables etc),
mechanisms for exception handling (ex. incorrect result), I/O
(in-/output) control, and additional control and selection logic.

The proposed MIMOPS processor with MEMRISC
architecture is expected to save many timing and hardware
resources since it removes the complex cache memory mana-
gement mechanisms and eliminates the use of explicit load and
store instructions. Indeed, the MIMOPS processor excludes the
many redundant copies of data that occur in GPRs and caches
of processors which operate with standard memory hierarchy.
This way of operation is very suitable for applications that
perform many arithmetical-logical operations over some data
set that is accessed with a high degree of locality. Examples of
such type of applications are those that perform computations
with matrices, such as matrix multiplication programs.

In order to present the performance gains (in terms of
speed) of the novel MEMOPS processor with MEMRISC
architecture, a comparative analysis between three similar
processors is made. This refers to a MIMOPS processor, a
register-less PERL processor, and a RISC-based MIPS
processor. It is considered that the proposed MIMOPS
processor includes on-chip memory with a capacity equal to
the amount of cache memory into the MIPS and PERL
processors (128KB L1 and 2M L2 cache). The actual analysis
measures the execution time of a 32x32 matrix-multiplication
program for each of the given processors. The program
simulation is done with a MIMОPS instruction-set simulator,
explained in [41], a MARS simulator for MIPS, [42] and a
special instruction-set simulator for PERL, given in [19].

The results of the analysis are shown in Fig. 4 and Fig. 5,
where Fig. 4 shows the execution time of the test program run
on each of the three processors (PERL, MIPS, MIMOPS),
while Fig. 5 illustrates the improvement that is achieved by
MIMOPS. Referring to these results, it can be noticed that
PERL provides an improvement of 8.82% in comparison to
MIPS, but on the other hand the MIMOPS processor
outperforms both of them, achieving 1.33 times (25%) better
results than MIPS and 1.21 times (17.7%) better results than
PERL. This analysis is made just to show and emphasize the
performance potential of the proposed MIMOPS processor.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

12 | P a g e

www.ijacsa.thesai.org

Fig. 4. Execution Time of 32x32 Matrices Multiplication on Three different

Processors: MIPS, PERL and MIMOPS.

Fig. 5. Percentage Speedup of Execution Time of 32x32 Matrices

Multiplication on MIMOPS Processor.

IV. FPGA IMPLEMENTATION OF THE PROPOSED RISC-

BASED MEMORY-CENTRIC PROCESSOR ARCHITECTURE

The proposed MIMOPS processor is described in VHDL,
by means of Xilinx VIVADO Design Suite. This software
environment enables hardware designers to synthesize
(compile) their HDL codes, perform timing analysis, examine
RTL diagrams, simulate a design's reaction to different stimuli,
and configure (program) a target FPGA device. In fact, all
these functionalities are achieved by several different tools,
including: Vivado regular synthesis and XST (High-Level
Synthesis) compiler, Vivado implementation tool (translate,
map, place, and route), Vivado Intellectual Property integrator,
Vivado Simulator, Vivado serial I/O and logic analyzer for
debugging, XDC (Xilinx Design Constraints) tool for timing
constraints and entry, Vivado programming (Xilinx impact)
tool etc. In general, Vivado is a design environment for FPGA
products from Xilinx and is tightly-coupled to the architecture
of such chips. Therefore, we use the Vivado tools suite in order
to perform FPGA implementation of the proposed MIMOPS
processor on Virtex7 VC709 Xilinx evaluation platform, [32].

The VHDL model of the proposed MIMOPS processor is
organized in four modules (fetch, decode, execute, write-back)
that form the processor's pipelined data-path and an additional
module that provides communication with I/O devices. This is
also presented in Fig. 6, where a block diagram (schematic) of
the VHDL model of MIMOPS processor, generated in Vivado
Design Suite, is given.

The fetch module is purposed to read an instruction from
the on-chip instruction memory and to generate the next PC
value that will be used for instruction fetch in the next tact
cycle. This module includes three separate components:
instruction memory, instruction page table and IF/ID pipeline
register; that are accessed during the instruction fetching phase.

The decode module is purposed to decode the instruction
that is sent from the fetch module and to read the instruction
operands that are placed inside the on-chip data memory.
Besides that, this module also executes shift and sign-extension
operations for immediately-addressed operands, comparisons
for conditional branching, data hazards detection, and produces
control signals with the control unit. This module includes
several separate components: data memory, data page table,
ID/EX pipeline register, comparator, control unit, and a few
multiplexers and extenders; that are accessed during the
instruction decoding phase.

The execute module is purposed to execute shifting and
arithmetical-logical operations and to select the result value
(result from ALU, result from the shifter, etc.) that should be
written back to the on-chip data memory. In addition to that,
this module also performs forwarding of the result value and
address to the decode module in order to prevent the
occurrence of data hazards. This module includes several
separate components: ALU for integer and real numbers,
shifter, EX/WB pipeline register, result selector multiplexer,
and several other multiplexers; that are accessed during the
instruction executing phase.

The write-back module is purposed to write the result value
to the on-chip data memory and to provide forwarding of the
result to the decode module in order to prevent the occurrence
of data hazards. This module acts as an interface to the decode
module, which actually executes the operations of writing and
resolving data conflicts.

The I/O communication module is purposed to transfer data
between an I/O device and the MIMOPS processor (instruction
or data on-chip memory) with IN or OUT instructions.
Accordingly, this module uses an in/out data bus to receive
data from an I/O device to its on-chip memory (when IN
instruction is executed) or to send data to an I/O device from its
on-chip memory (when OUT instruction is executed).

FE DE EX WB and I/O

Fig. 6. Block diagram of the VHDL model of MIMOPS.

0

100000

200000

300000

400000

500000

600000

700000

800000

Processor cycles

MIPS

PERL

MIMOPS

0

5

10

15

20

25

30

Percents (%)

compared to MIPS

compared to PERL

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

13 | P a g e

www.ijacsa.thesai.org

Each of the given VHDL modules is represented with a
block diagram (schematic) that is generated by the Vivado
Design Suite. In addition to that, the Vivado Simulator is used
to verify the operation of these VHDL modules with separate
test-bench programs, written for that purpose. Finally, the
complete MIMOPS processor is simulated, and its overall
functionality is verified. Therefore, a test-bench is written to

analyze the processor's behavior during the execution of a test
program that is placed in the processor's instruction memory,
(given in Fig. 7(a)). Additionally, it is considered that the
processor's data memory is already filled with data, as shown
in Fig. 7(b). The results of the test-bench simulation are
presented in Fig. 7(c).

a) State of MIMOPS instruction memory. b) State of MIMOPS data memory.

c) Results of MIMOPS VHDL Model Simulation.

Fig. 7. Simulation of VHDL model of MIMOPS Processor.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

14 | P a g e

www.ijacsa.thesai.org

Once the VHDL model of the MIMOPS processor is
simulated and verified, the next step is to perform synthesis
and implementation of the particular processor in Vivado
Design Suite. These activities are performed automatically
with the synthesis and implementation tools, which are
previously set to target the processor's FPGA realization on
Virtex7 VC709 evaluation board, shown in Fig. 8. In general,
the VC709 evaluation board provides a hardware environment
for developing and evaluating designs targeting Virtex7
XC7VX690T-2FFG1761C FPGA, [32]. This board allows
features common to many embedded processing systems, such
as DDR3 memories, an 8-lane PCI Express interface, general-
purpose I/O, and a UART interface. Other features can be
added by using mezzanine cards attached to the VITA-57
FPGA mezzanine connector (FMC) provided on the board.

In the synthesis stage, the VHDL model of the MIMOPS
processor is converted to a "netlist", which is composed of
generic circuit components interconnected with connections.
After the synthesis, the Vivado implementation tool is used to
perform: translate, map, place, and route sub-steps. This way,
the MIMOPS processor is translated and mapped to Xilinx
Virtex7 XC7VX690T FPGA components and after that these
components are physically placed and connected together
(routed) on the appropriate FPGA board. Fig. 9 presents the
state of the Virtex7 VC709 FPGA device after the synthesis
and implementation of the MIMOPS processor.

Once the processor's implementation is finished, more
detailed reports about the hardware characteristics of the
designed MIMOPS processor are generated. According to the
resource utilization report, shown in Fig. 10 it can be noticed
that the proposed MIMOPS processor can be implemented in
Virtex7 VC709 evaluation platform, by utilizing less than 1%
of the slice registers and 36% of the slice LUT resources. This
result is expected since the MIMOPS processor integrates the
memory inside the chip and it implements complex
mechanisms that provide hardware support for virtual memory
(includes memory address generators with on-chip page tables

and performs management of memory blocks etc). In addition
to that, the MIMOPS processor includes a more complex
control unit that provides support for direct access to memory
operands. Besides the control unit, additional complexity is
introduced with the implementation of data hazard detection
unit, comparison logic purposed for conditional branching in
the decode phase, ALU unit that is extended to operate with
floating-point numbers and shifter unit that provides support
for second source flexible operand. All these hardware units
are implemented with the aim to improve the computing
performances of the MIMOPS processor, which is actually
achieved, but the chip complexity is increased.

In order to program the Virtex7 VC709 FPGA, a constraint
file has to be prepared. This file is used to assign the VHDL
code signals of the MIMOPS processor to the device pins
found on the Virtex7 VC709 evaluation board. For example,
the reset signal is assigned to the on-board CPU reset push
button switch, which allows the user to manually reset the
processor. Similarly, the CLK signal is assigned to the 200
MHz system clock of the FPGA board that is active on a
positive edge. In addition to that, the last 8 bits of the
ResultData signal that is forwarded from executing to the
write-back stage are assigned to the 8 user LEDs of the FPGA
board. More details about the Virtex7 VC709 board I/O pin
assignments are given in Table 1.

After the FPGA programming, the user can analyze the
execution of some program that is already loaded inside the
processor's on-chip instruction memory, just by observing the
changes of the LEDs state. It is considered that the given
program operates with numbers that are in the range of [0-255].
Considering that a MIMOPS processor that works with 200
MHz system clock executes the program very fast, an
additional component is defined in order to scale the input 200
MHz clock signal to 1 Hz clock signal (with a period of 1 s).
This way, the state of the LEDs changes slowly, so the user can
easily monitor the test program's execution.

Fig. 8. Virtex7 VC709 evaluation board, [32].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

15 | P a g e

www.ijacsa.thesai.org

a) State of FPGA after synthsis. b) State of FPGA after implementation.

Fig. 9. FPGA Implementation of MIMOPS Processor on Virtex7 VC709

Evaluation Board.

Fig. 10. FPGA utilization(%) of MIMOPS Processor.

TABLE. I. VIRTEX7 VC709 BOARD I/O PINS ASSIGNMENT TO MIMOPS

PROCESSOR'S SIGNALS

Signal Pin Pin Type Pin Function

CLK H19 IN
200 MHz system clock active
on positive edge

Reset AV40 IN Reset push button (PB) switch

ResultData[7] AU39 OUT User LED 7

ResultData[6] AP42 OUT User LED 6

ResultData[5] AP41 OUT User LED 5

ResultData[4] AR35 OUT User LED 4

ResultData[3] AT37 OUT User LED 3

ResultData[2] AR37 OUT User LED 2

ResultData[1] AN39 OUT User LED 1

ResultData[0] AM39 OUT User LED 0

a) Programming of Virtex7 VC709 FPGA with Xilinx Impact Tool.

b) Simulation of MIMOPS Processor in Real Hardware.

Fig. 11. Hardware Prototype of MIMOPS Processor in Virtex7 VC709 FPGA

Board.

Finally, the processor is completely ready to program onto
the FPGA device, by means of the Xilinx impact tool. In that
process, a bit stream file is generated and used to program the
target FPGA device by JTAG cable. The created prototype of
the proposed MIMOPS processor in real hardware i.e. Virtex7
VC709 XC7VX690T FPGA board is shown in Fig. 11. After
that the test program that is shown in Fig. 7.a is simulated and
executed in real FPGA, and the results are verified, according
to the FPGA LEDs state and Fig. 7.c simulation diagrams.

V. CONCLUSION

This paper proposes a memory-centric processor core that
is based on a standard MIPS implementation of RISC
architecture, which is further improved to operate with
separated on-chip data and program memory, by excluding the
use of GPRs and cache (in and out of the processor chip). The
memory-centric approach of processing provides 4-stage
pipelining with direct access to the on-chip memory (without
MEM phase), fast and simple access to the on-chip memory
(without explicit load/store instructions), avoidance of copy
operations and transfers of redundant data and blocks into
GPRs and cache memory, decrease of capacity of redundant
on-chip memory resources, high internal memory bandwidth,
and removal of complex cache memory management
mechanisms. Actually, it is shown that a MIMOPS processor
achieves 25/17.7% better results than a MIPS/PERL processor
when executing a 32x32 matrix-multiplication program.

The main focus of this paper is the FPGA implementation
of the proposed MIMOPS processor. This includes designing
of VHDL hardware model of the proposed processor and
experimenting with Xilinx VIVADO Design Suite software
environment, which provides support for Virtex7 VC709
FPGA evaluation board. In that process, the hardware model of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

16 | P a g e

www.ijacsa.thesai.org

the proposed RISC-based memory-centric processor is first
simulated, by means of Xilinx VIVADO Design Suite
Simulator tool. The simulation is performed with test bench
programs that generate timing diagrams, which are further used
for analyzing the behavior of the hardware model of the
proposed processor and its components. The VIVADO
synthesis and implementation tools are next employed in
creating an RTL model of the proposed processor and
implementing the synthesized processor in Virtex7 VC709
FPGA board. The reports that are generated from these tools
present that the MIMOPS processor utilizes less than 1% of the
slice registers and 36% of the slice LUT resources. The I/O
mapping of the MIMOPS processor interfaces with the Virtex7
VC709 FPGA board pins and the programming of the given
FPGA Virtex7 VC709 FPGA board are performed at the final
stage. The created hardware prototype is used for simulating
and analyzing of the proposed MIMOPS processor in real
hardware, by means of Virtex7 VC709 FPGA component. This
approach makes use of FPGA re-programmability, which has
proven to be an ideal solution for achieving reasonable speed at
a low price.

The proposed MIMOPS processor provides many
advantages, especially in terms of processing speed, but on the
other hand it imposes additional requirements to the system's
hardware and software, which cause limitations in its
application area. Accordingly, the proposed MIMOPS
processor implements specific ISA and several special-purpose
hardware components that provide direct operation with the
on-chip memory. Therefore, it is obvious that а specific
software support for the proposed MIMOPS processor should
be developed in the future. The primer requirement would be
designing of a dedicated compiler that would be able to
translate high-level language programs to MIMOPS assembler,
(that significantly differs from the assembler of other RISC-
based processors) while keeping the standard programming
model. Afterward, the next research activities would include
developing of a dedicated operating system with process
scheduler, which would be able to manage the MIMOPS on-
chip memory and to coordinate the complete virtual address
space, while multiple processes are being executed.
Furthermore, assuming the recent innovation in processing in
memory architecture and technology it may become desirable
to build a scalable multi-processor MIMOPS-based system in
very near future.

REFERENCES

[1] D. A. Patterson, J. L. Hennessy, Computer Organization and Design:
The hardware/software Interface, 5th ed., Elsevier, 2014.

[2] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed., Morgan Kaufmann Publishers, 2011.

[3] “Moore's law is dead - long live Moore's law,” in IEEE Spectrum
Magazine, April 2015.

[4] J. Hruska, “Forget Moore’s law: hot and slow DRAM is a major
roadblock to exascale and beyond,” in Extreme Tech Magazine, 2014.

[5] W. A. Wulf, S. A. McKee, “Hitting the memory wall: implications of
the obvious,” in ACM SIGARCH Computer Architecture News, Vol.
23, Issue 1, March 1995.

[6] Y. Yan, R. Brightwell, X. Sun, “Principles of memory-centric
programming for high performance computing,” in Proc. of Workshop
on Memory Centric Programming for HPC, USA, 2017.

[7] D. Patterson, “Latency lags bandwidth,” in Communications of the
ACM, Vol. 47, No. 10, 2004, pp 71-75.

[8] D. Jakimovska, A. Tentov, G. Jakimovski, S. Gjorgjievska, M.Malenko,
“Modern processor architectures overview,” in Proc. of XVIII
International Scientific Conference on Information, Communication and
Energy Systems and Technologies, Bulgaria, 2012, pp. 239-242.

[9] R. Eigenmann, D. J. Lilja, “Von Neumann computers,” in Wiley
Encyclopedia of Electrical and Electronics Engineering, Volume 23,
1998, pp. 387-400.

[10] A. Bakshi, J. Gaudiot, W. Lin, M. Makhija, V. K. Prasanna, W. Ro, C.
Shin, “Memory latency: to tolerate or to reduce?,” in Proc. of 12th
Symposium on Computer Architecture and High Performance
Computing, 2000.

[11] S. Borkar, A. A. Chien, “The future of microprocessors,” in
Communications of the ACM, Vol. 54 No. 5, May 2011, pp 67-77.

[12] Intel Corporation, “New microarchitecture for 4th gen. Intel core
processor platforms,” Product Brief, 2013.

[13] W. Bao, S. Tavarageri, F. Ozguner, P. Sadayappan, “PWCET: power-
aware worst case execution time analysis,” in Proc. of 43rd International
Conference on Parallel Processing Workshops, 2014.

[14] P. Machanick, “Approaches to addressing the memory wall,” Technical
Report, School of IT and Electrical Engineering, University of
Queensland Brisbane, Australia, 2002.

[15] C. Kozyrakis, D. Patterson, “Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks,” in Proc. of the
35th International Symposium on Microarchitecture, Instabul, Turkey,
November 2002.

[16] J. Silc, B. Robic, T. Ungerer, Processor architecture: From Dataflow to
Superscalar and Beyond, Springer, 1999.

[17] N. FitzRoy-Dale, “The VLIW and EPIC processor architectures,”
Master Thesis, New South Wales University, July 2005.

[18] M. Smotherman, “Understanding EPIC architectures and
implementations,” in Proc. of ACM Southeast Conference, 2002.

[19] P. Suresh, “PERL - a register-less processor,” PhD Thesis, Department
of Computer Science & Engineering, Indian Institute of Technology,
Kanpur, 2004.

[20] P. R. Panda, N. D. Dutt, A. Nicolu, “On-chip vs. off-chip memory: the
data partitioning problem in embedded processor-based systems,” ACM
Transactions on Design Automation of Electronic Systems, 2000.

[21] V. Venkataramani, M. Choon Chan, T. Mitra, “Scratchpad-memory
management for multi-threaded applications on many-core
architectures,” ACM Transactions on Embedded Computing Systems,
Vol. 18, Issue 1, 2019.

[22] C. Cojocaru, “Computational RAM: implementation and bit-parallel
architecture,” Master Thesis, Carletorn University, Ottawa, 1995.

[23] H. Tsubota, T. Kobayashi, “The M32R/D, a 32b RISC microprocessor
with 16Mb embedded DRAM,” Technical Report, 1996.

[24] J. Draper, J. T. Barrett, J. Sondeen, S. Mediratta, C. W. Kang, I. Kim, G.
Daglikoca, “A prototype processing-in-memory (PIM) chip for the data-
intensive architecture (DIVA) system,” Journal of VLSI Signal
Processing Systems, Vol. 40, Issue 1, 2005, pp. 73-84.

[25] M. Gokhale, B. Holmes, K. Jobst, “Processing in memory: the Terasys
massively parallel PIM array,” IEEE Computer Journal, 1995.

[26] K. Keeton, R. Arpaci-Dusseau, and D.A. Patterson, "IRAM and
SmartSIMM: overcoming the I/O bus bottleneck", in Proc. of the 24th
Annual International Symposium on Computer Architecture, June 1997.

[27] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Andreson, K. Asanovic,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, K. Yelick, “Scalable processors in the billion-transistor era:
IRAM,” IEEE Computer Journal, Vol. 30, Issue 9, pp 75-78, 1997.

[28] J. Gebis, S. Williams, D. Patterson, C. Kozyrakis, “VIRAM1: a
media­oriented vector processor with embedded DRAM,” 41st Design
Automation Student Design Contest, San Diego, CA, 2004.

[29] K. Murakami, S. Shirakawa, H. Miyajima, “Parallel processing RAM
chip with 256 Mb DRAM and quad processors,” in Proc. of Solid-State
Circuits Conference, 1997.

[30] S. Kaxiras, D. Burger, J. R. Goodman, “DataScalar: a memory-centric
approach to computing,” Journal of Systems Architecture, 1999.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

17 | P a g e

www.ijacsa.thesai.org

[31] M. Oskin, F. T Chong, T. Sherwood, “Active pages a computation
model for intelligent memory,” in Proc. of the 25th Annual International
Symposium on Computer architecture, 1998, pp. 192-203.

[32] Xilinx, “VC709 evaluation board for the Virtex-7 FPGA,” User Guide,
2019.

[33] J. M. P. Cardoso, M. Hubner, Reconfigurable Computing: From FPGAs
to Hardware/Software Codesign, Springer-Verlag New York, 2011.

[34] S. Li, K. Chen, J. B. Brockman, N. P. Joupp, “Performance impacts of
non-blocking caches in out-of-order processors,” Technical Paper, 2011.

[35] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, O. Mutlu,
“The processing-in-memory paradigm: mechanisms to enable adoption,”
in book: Beyond-CMOS Technologies for Next Generation Computer
Design, 2019.

[36] G. Singh, L. Chelini, S. Corda, A. Javed Awan, S. Stuijk, R. Jordans, H.
Corporaal, A. Boonstra, “A review of near-memory computing
architectures,” in Proc. of the 21st Euromicro Conference on Digital
System Design, 2018.

[37] E. Azarkhish, D. Rossi, I. Loi, L. Benini, “Design and evaluation of a
processing-in-memory architecture for the smart memory cube,” in Proc.

of the 29th International Conference Architecture of Computing
Systems, Germany, 2016.

[38] E. Vermij, L. Fiorin, R. Jongerius, C. Hagleitner, J. Van Lunteren, K.
Bertels, “An architecture for integrated near-data processors,” ACM
Transactions on Architecture and Code Optimization, Vol. 14, Issue 3,
2017.

[39] Hewlett Packard Labs, “The machine: the future of technology,”
Technical Paper, 2016.

[40] D. Efnusheva, A. Cholakoska, A. Tentov, “A survey of different
approaches for overcoming the processor-memory bottleneck,”
International Journal of Computer Science & Information Technology,
Vol. 9, No. 2, April 2017.

[41] G. Dokoski, D. Efnusheva, A. Tentov, M. Kalendar, “Software for
explicitly parallel memory-centric processor architecture,” in Proc. of
Third International Conference on Applied Innovations in IT, 2015.

[42] K. Vollmar, P. Sanderson, “MARS: an education-oriented MIPS
assembly language simulator,” in Proc. of the 37th SIGCSE Tech.
Symposium on Computer Science Education, 2007.

