
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

45 | P a g e  

www.ijacsa.thesai.org 

Crowd-Generated Data Mining for Continuous 

Requirements Elicitation 

Ayed Alwadain
1 

Computer Science Department. King Saud University 

Riyadh, Saudi Arabia 

Mishari Alshargi
2 

Information Systems Department. King Saud University 

Master Degree Student

 

 
Abstract—In software development projects, the process of 

requirements engineering (RE) is one in which requirements are 

elicited, analyzed, documented, and managed. Requirements are 

traditionally collected using manual approaches, including 

interviews, surveys, and workshops. Employing traditional RE 

methods to engage a large base of users has always been a 

challenge, especially when the process involves users beyond the 

organization’s reach. Furthermore, emerging software 

paradigms, such as mobile computing, social networks, and cloud 

computing, require better automated or semi-automated 

approaches for requirements elicitation because of the growth in 

systems users, the accessibility to crowd-generated data, and the 

rapid change of users’ requirements. This research proposes a 

methodology to capture and analyze crowd-generated data (e.g., 

user feedback and comments) to find potential requirements for 

a software system in use. It semi-automates some requirements-

elicitation tasks using data retrieval and natural language 

processing (NLP) techniques to extract potential requirements. It 

supports requirements engineers’ efforts to gather potential 

requirements from crowd-generated data on social networks 

(e.g., Twitter). It is an assistive approach that taps into unused 

knowledge and experiences emphasizing continuous 

requirements elicitation during systems use. 

Keywords—Requirements engineering; RE; crowd data 

mining; NLP; Twitter; continuous requirements elicitation 

I. INTRODUCTION 

Requirements engineering (RE) is the process of collecting, 
defining, documenting, and maintaining the requirements of a 
software system [1]. It is fundamental during the software 
development cycle to obtain users’ needs by utilizing effective 
means of requirements elicitation, analysis, and management 
[2]. Getting the requirements right is important because 
mistakes cascade to subsequent development stages. Owing to 
poor RE practices, deficiencies at this phase cost more later 
and often result in systems failure [2-4]. 

Traditionally, elicitation is done at the beginning of 
software development. Recent approaches have advocated 
continuous requirement elicitation to capture user feedback and 
experiences during system’s use [5]. Elicitation is needed 
during system’s use to understand new feature requests, issues, 
and emerging requirements [6]. Requirements elicitation for 
traditional software systems has been well-studied, but new 
computing paradigms (e.g., social media, mobile apps, and 
cloud computing) require different assumptions and 
approaches [5]. These new computing paradigms enable users 

to express their feedback and experiences online via social-
network sites, forums, and blogs. 

Because of changing contexts and user needs, continuous 
requirements elicitation should be adopted to ensure that 
requirements stay refreshed and that needs are addressed [7]. 
Stakeholder needs and technologies change over time, 
exacerbated by the rise of crowd-generated data. Automated 
requirements elicitation methods and analysis should be 
incorporated to enable requirements engineers to acquire and 
analyze online data efficiently. Automation facilitates access to 
online crowd-generated data and the use of these data for 
systems’ improvements [7]. Automated or semi-automated 
requirements elicitation approaches should be able to overcome 
issues facing existing traditional approaches [8]. This research 
proposes a methodology that collects crowd-generated data 
from social networks (e.g., Twitter) and processes the data 
using natural language processing (NLP) techniques to extract 
potential emerging requirements for a certain software product. 

The rest of the paper is organized as follows. Section 2 
presents the literature review while Section 3 details the 
proposed methodology and its supporting tool. Sections 4 and 
5 respectively present the discussion and the conclusion of this 
study. 

II. LITERATURE REVIEW 

The success of a system development or an upgrade 
depends on a well-developed RE process that successfully 
elicits and manages stakeholder requirements, resulting in a 
higher level of satisfaction [4, 9]. Requirements elicitation is 
traditionally the first phase of obtaining requirements. 
Elicitation is the most important phase because the collection 
of poor requirements can lead to project failure [10-12]. The 
involvement of users and customers in the RE process leads to 
many benefits, such as improved system acceptance, more 
accurate and complete requirements, and improved project 
success rates [13]. Many issues lead to poorly collected 
requirements, such as ambiguous project scopes, poor system 
understanding, and volatility where the evolved users’ needs do 
not meet the original requirements [14]. 

Various requirements elicitation approaches have been 
suggested [15]. Most existing techniques are manual and 
assume the presence of the stakeholders involved. Employing 
such techniques can rapidly become expensive and resource-
intensive, particularly when dealing with larger stakeholder 
populations [16-18]. Employing such techniques to engage a 
large user base has always been a challenge, especially when 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

46 | P a g e  

www.ijacsa.thesai.org 

there are large numbers of software users beyond the 
organization’s reach [7]. Traditional RE approaches ignore 
opportunities to continuously engage large and heterogeneous 
groups of users who express their feedback on social networks 
and other websites. Better approaches are needed to tap crowd-
generated data (e.g., feedback and opinions) to enable 
developers to consider them when developing their product’s 
next version [7]. 

Stakeholder goals, environments, technology evolvement, 
and the emergence of new computing paradigms require 
continuous requirements elicitation. For example, social-
network sites and mobile applications generate data that can be 
collected and analyzed for potential requirements [7]. The rise 
of social networks and mobile applications has enabled the 
collection of massively generated crowd data. Social-network 
users can contribute their feedback directly or indirectly 
regarding system improvements [19, 20]. Whereas social 
networks were not designed for the purpose of requirements 
engineering, many companies include social networks in their 
software development process for this purpose [21]. 

Understanding public opinion and demands is a time-
consuming process because of the high volume of crowd-
generated data that must be reviewed [22]. Thus, automatic 
approaches to elicit and analyze such data are needed to 
achieve faster response times [7]. Automation facilitates the 
identification and analysis of potential requirements that are 
otherwise challenging and unreachable using traditional RE 
[8]. 

An emerging theme within RE research is Crowd-based 
requirements engineering (CrowdRE). It is an overarching term 
for the employment of automated or semi-automated methods 
to elicit and explore data from a crowd to derive potential 
requirements [7]. Crowdsourcing in requirements elicitation 
would enable the continuous requirements elicitation process 
during the life cycle of the software product. Such a practice 
would facilitate a deeper, wider, and more up-to-date 
perspective of how users perceive systems and to understand 
how requirements evolve [5]. Typically, a crowd is a large and 
heterogeneous group of existing or prospective users [7]. 
CrowdRE captures and analyzes user needs regarding the 
evolution of existing software systems, and it monitors 
software system usage and experiences. Crowd users report on 
a variety of aspects, such as problems, improvements, or 
extension ideas, which are useful for software development 
teams [7]. 

Crowd-generated textual data should be retrieved and 
processed with NLP techniques. NLP concerns the application 
of computational techniques for automatic parsing, analysis, 
and representation of human language. Many techniques have 
been suggested to process raw text in natural languages. For 
example, tokenization is a technique used for splitting a stream 
of text into its basic elements (i.e., tokens) such as words and 
phrases and other symbols [23]. Part-of-speech (POS) tagging 
is used to assign labels (e.g., noun, verb) to each identified 
token in a given text [24]. 

Several studies have attempted to automate the 
requirements elicitation process using NLP techniques. For 
example, NLP was used to extract early requirements matching 

predefined patterns from user manuals and project reports. The 
text in these documents was tokenized and POS tagging was 
used to annotate the text. Then, topic modeling was applied to 
group-requirement items of similar content to avoid 
information overload. Whereas it is considered appropriate to 
reduce the burden of gathering requirements from scratch, 
some limitations have been reported, such as unclear extracted 
requirements and lack of comprehensive patterns [25]. 

Furthermore, an approach was developed to automate some 
requirements elicitation tasks using a tool that gathered 
stakeholder input in a centralized repository. Then, it used 
extended markup language and extensible stylesheet language 
transformations to render specifications [26]. In [27], a method 
was suggested to extract requirements from textual data in 
documents. NLP techniques (e.g., tokenization, POS tagging, 
and clustering) were used. Another study examined similar 
project documentation to extract potential requirements using 
NLP techniques (e.g., POS tagging) [28]. Another approach 
was proposed that used online customer reviews to extract 
needs and preferences regarding a specific product [29]. 

III. PROPOSED CONTINUOUS REQUIREMENTS-ELICITATION 

METHODOLOGY 

This section outlines the proposed methodology and its 
supporting tool. This research provides an approach to 
automatically collect crowd-generated data via Twitter and 
process it using NLP techniques to find requirements. The 
proposed methodology is shown in Fig. 1. It enables engineers 
to elicit data from Twitter and analyze it using NLP techniques 
to find potential requirements. Twitter was selected because it 
is a popular microblogging social-media network and a 
potential data source to extract requirements [30, 31]. 

The methodology has four main steps: tweets collection 
and filtering, applying POS tagging, requirements generation, 
and requirements clustering. The following subsections 
illustrate the proposed methodology steps and its instantiation 
using AutoReq. 

A. Tweet Collection (Pattern Matching) and Filtering 

AutoReq enables requirements engineers to input a search 
keyword (e.g., the name of an existing system) and search 
twitter feed. The tool uses the Twitter application program 
interface (API) to retrieve real-time tweets matching the search 
criteria (i.e., predefined pattern). For example, if we were 
interested in finding the feedback of an existing system, X, the 
patterns added to AutoReq would include ―X should …,‖ ―X 
could …,‖ and ―X lacks …‖. 

In this study, the software system of interest is Snapchat. It 
is a global multimedia messaging application. It was selected 
because it is widely used and has very diverse user groups with 
constantly evolving requirements. Prior to this experiment, we 
noticed users tweeting potential requirements, additional 
features, complaints, and other issues about Snapchat. An 
AutoReq pattern search list was used. Then, tweets were 
filtered from unwanted noise (e.g., hashtags, user mentions, 
and universal resource locators). They were then saved to the 
AutoReq database. During the active stream retrieval of tweets, 
more than 350 tweets having the word ―Snapchat‖ were 
retrieved, and only 47 matched the predefined pattern. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

47 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Methodology and AutoReq System Architecture. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

48 | P a g e  

www.ijacsa.thesai.org 

B. Part-of-Speech (POS) Tagging 

Retrieved tweets were then tokenized by breaking them 
into tokens. Each tweet was then annotated using the Stanford 
POS tagger [24]. Tags were assigned to each word, depending 
on its role in the sentence. Still, there was some incorrect 
tagging. For example, the word ―update‖ was incorrectly 
tagged in the tweet ―snapchat should remove the last update.‖ 
It should have been tagged as a noun, but it was instead tagged 
as a verb. This phenomenon can lead to the generation of 
confusing requirements. 

C. Requirements Generation 

After tagging the words of each tweet, the first annotated 
verb and the closest three words were used to generate a 
requirement clause. Using a predefined requirement template 
within the tool, the requirement phrase was structured as ―X 
shall + requirement clause.‖ In this experiment, generated 
requirements were structured as ―Snapchat shall + requirement 
clause.‖ In some cases, a tweet contained more than one 
sentence. Thus, a recursion function of the tool was used to 
process the second part of the tweet. To find common 
conjunctions that potentially indicate the need for the use of the 
recursion capability, a qualitative analysis of the raw collected 
tweets was conducted. Then, the connection-words list was 

developed based on the qualitative analysis and the use of 
existing conjunction words in English [32]. Using recursion, 
tweets were split into parts using a conjunction word. Each part 
of the tweet was processed alone, and then both parts were 
combined as one requirement using the format ―Snapchat shall 
+ combined tweet output.‖ 

D. Requirements Clustering 

After requirements generation, clustering can be useful, 
particularly in cases where the retrieved tweets are large. 
Generated requirements were clustered to provide an 
aggregated perspective of common themes from the generated 
requirements. Clustering was conducted using the RxNLP 
sentence-clustering API [33]. It groups text tokens on a 
sentence level. It can be applied to short texts, or, in this 
research, tweets, to build logical and meaningful clusters with 
suggested topics for each cluster. 

Generated requirements were clustered based on the most 
frequent topic themes, making it easier to find requirements of 
interest. The results, as shown in Fig. 2, contain the cluster 
topic, cluster score, and cluster tweets. The cluster topic is a 
suggested name of the cluster contents, whereas the cluster 
score describes the topic meaningfulness and cluster size. It 
facilitates cluster ranking and unwanted cluster pruning. 

 

Fig. 2. Requirements Clustering. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

49 | P a g e  

www.ijacsa.thesai.org 

IV. DISCUSSION 

RE mostly uses traditional data sources (e.g., forms, 
reports, notes, workshops, and meetings) and manual 
approaches such as interviews for capturing stakeholder 
requirements. The wide use of social networks and mobile apps 
has contributed to a massive growth in online crowd-generated 
data. Crowd users report on a variety of issues based on 
software problems, desired improvements, and extension ideas, 
which are potentially useful for software development teams 
[7]. These data are often massive, unstructured, and manually 
inaccessible [22]. Hence, recent research has called for the 
development of automated approaches to capture and analyze 
these data to locate potential requirements. A rising 
opportunity for RE lies within the use of hidden and unused 
crowd-generated data [7]. 

This research endeavored to explore this research area and 
contributed as follows. First, this study is early research 
exploring the use of crowd-generated social-networks data to 
find new requirements for an existing software system. It 
proposed a methodology and a tool to capture and analyze 
crowd-generated data to identify potential requirements. Such 
an approach is needed to achieve fast responses to user needs 
and to explore the hidden, unused data generated by users on 
social networks [7]. The developed methodology and tool 
support requirements engineers in their tasks of monitoring and 
eliciting potential requirements from crowd-generated data 
using their reported feedback, comments, and experiences. 

Second, this research used NLP techniques to automatically 
analyze the captured textual crowd-generated data (i.e., 
tweets). NLP techniques support requirements engineers by 
automating parsing, analysis, and representation of textual data. 
Manual inspection, filtering, and processing are time-
consuming and resource-intensive. Thus, an automated 
approach of crowd-generated data retrieval and processing 
reduces time and resource utilization. Nonetheless, there were 
some issues with unclear generated requirements phrases from 
incorrect tagging when using a POS tagger. To overcome this, 
the developed tool was designed to show the original tweets 
and the generated associated requirement phrases to help 
requirements engineers trace and understand the generated 
requirements. 

Third, this research emphasized the continuous 
requirements elicitation process over a software product life 
cycle using crowd-generated data [5]. Feedback and 
experiences of current or prospective users were continuously 
captured about new features, emerging needs, and other issues. 
This approach is not easily implementable with traditional data 
sources, such as manuals and reports. 

Fourth, a sentence-clustering technique was used to cluster 
requirements based on their similarity [33]. In this research, 
every processed tweet was treated as a unique requirement and 
a genuine idea that may lead to redundant requirements. Thus, 
a sentence-clustering technique was used to enable 
requirements engineers to look at clusters when the generated 
requirements are large. This reduces requirements engineers’ 
manual efforts. Previous research mostly used topic modeling 

techniques to detect the most frequent words in their data 
source to build requirements [25].Some studies used clustering 
to cluster the requirements based on predefined centroids, 
regardless of similarity [27]. 

V. CONCLUSION 

Requirements elicitation is a crucial phase in the software 
development life cycle designed to fully understand users’ 
needs. During the elicitation process, interviews, workshops, 
reports, and manuals are typically used to generate 
requirements. However, emerging computing paradigms and 
the massive growth of crowd-generated data require automated 
elicitation approaches. Crowds directly or indirectly express 
their feedback, comments, and opinions regarding an existing 
system on social networks and similar platforms. Gathering 
data using existing requirements elicitation techniques is an 
arduous process, particularly when dealing with large-scale 
systems. 

This research proposed a methodology and proof-of-
concept to automate the retrieval and analysis of crowd-
generated data from Twitter using NLP techniques to find 
potential requirements of an existing software product. This is 
an early study investigating the use of crowd-generated data to 
find potential requirements. It employs NLP techniques to 
automatically analyze captured textual data, and it enables a 
continuous requirements elicitation process during the use of 
software products. It also uses a clustering-sentence technique 
to cluster requirements based on their similarity to automate 
grouping of similar tweets. This reduces manual RE efforts. 

Because every research effort is limited, there are some 
limitations with this study. First, because we proposed a semi-
automated tool, there needs to be an RE verification and 
evaluation of the generated requirements to assess their 
relevance and importance. Second, this study inherited some 
limitations of the applied NLP techniques, particularly POS 
tagging. In addition, automated text processing and analysis 
have their own limitations. For example, there were some 
generated requirements that were not meaningful because of 
either incorrect tagging or retrieval. Another limitation was 
inherited from the data source, owing restricted access to 
tweets using the Twitter API and the 140-character limitations 
at the time of the execution of the experiment. 

In the future, extra efforts are needed to improve the 
suggested approach. For example, additional NLP techniques 
(e.g., collaborative filtering) should be included to extract 
relevant requirements. Furthermore, richer data sources are 
suggested, including Facebook and online app reviews, to 
collect richer requirements. In general, further research is 
needed to develop methods and tools that facilitate continuous 
requirements elicitation to retrieve and analyze online crowd-
generated data during software systems use. 

ACKNOWLEDGMENT 

The authors extend their appreciation to the Deanship of 
Scientific Research at King Saud University for funding this 
research. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

50 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] S. Gupta and M. Wadhwa, "Requirement Engineering: An Overview," 
International Journal of Research and Engineering, vol. 1, pp. 155-160, 
2013. 

[2] J. Vijayan and G. Raju, "A New Approach to Requirements Elicitation 
Using Paper Prototype," International Journal of Advanced Science and 
Technology, vol. 28, pp. 9-16, 2011. 

[3] P. Rajagopal, R. Lee, T. Ahlswede, C. Chia-Chu, and D. Karolak, "A new 
approach for software requirements elicitation," in Proceedings of the 6th 
IEEE International Conference on Software Engineering, Artificial 
Intelligence, Networking and Parallel/Distributed Computing, 2005. 

[4] D. Pandey and V. Pandey, "Requirement Engineering: An Approach to 
Quality Software Development," Journal of Global Research in Computer 
Science, vol. 3, pp. 31-33, 2012. 

[5] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, "Towards Crowdsourcing 
for Requirements Engineering," in The 20th International Working 
Conference on Requirements Engineering: Foundation for Software 
Quality, 2014. 

[6] J. A. Khan, L. Liu, L. Wen, and R. Ali, "Crowd Intelligence in 
Requirements Engineering: Current Status and Future Directions," in 
Requirements Engineering: Foundation for Software Quality, 2019, pp. 
245-261. 

[7] E. C. Groen, N. Seyff, R. Ali, F. Dalpiaz, J. Doerr, E. Guzman, et al., 
"The Crowd in Requirements Engineering: The Landscape and 
Challenges," IEEE Software, vol. 34, pp. 44-52, 2017. 

[8] N. Mulla and S. Girase, "A New Approach to Requirement Elicitation 
Based on Stakeholder Recommendation and Collaborative Filtering," 
International Journal of Software Engineering & Applications (IJSEA), 
vol. 3, pp. 51-60, 2012. 

[9] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," 
in Proceedings of the Conference on the Future of Software Engineering, 
2000, pp. 35-46. 

[10] S. Khan, A. B. Dulloo, and M. Verma, "Systematic Review of 
Requirement Elicitation Techniques," International Journal of 
Information and Computation Technology, vol. 4, pp. 133-138, 2014. 

[11] O. I. A. Mrayat, N. M. Norwawi, and N. Basir, "Requirements Elicitation 
Techniques: Comparative Study," International Journal of Recent 
Development in Engineering and Technology, vol. 1, pp. 1-10, 2013. 

[12] S. Sharma and S. Pandey, "Revisiting Requirements Elicitation 
Techniques," International Journal of Computer Applications, vol. 75, pp. 
35-39, 2013. 

[13] R. Snijders, Ö. Atilla, F. Dalpiaz, and S. Brinkkemper, "Crowd-centric 
requirements engineering: A method based on crowdsourcing and 
gamification," Master's Thesis, Utrecht University, 2015. 

[14] M. G. Christel and K. C. Kang, "Issues in requirements elicitation," 
Technical Report CMU/SEI-92-TR-012., Software Eng. Inst., Carnegie 
Mellon University, 1992. 

[15] M. S. Tabbassum Iqbal, "Requirement Elicitation Technique: - A Review 
Paper," International Journal of Computer & Mathematical Sciences, vol. 
3, pp. 1-6, 2014. 

[16] M. Yousuf, M. Asger, and M. U. Bokhari, "A Systematic Approach for 
Requirements Elicitation Techniques Selection: A Review," International 
Journal of Advanced Research in Computer Science and Software 
Engineering, vol. 5, pp. 1399-1403, 2015. 

[17] K. Wnuk, "Understanding and supporting large-scale requirements 
management," Licentiate Thesis, Department of Computer Science, Lund 
University, vol. 2010, 2010. 

[18] U. Sajjad and M. Q. Hanif, "Issues and challenges of requirement 
elicitation in large web projects," School of Computing, Blekinge 
Institute of Technology, Ronneby, Sweden, 2010. 

[19] D. T. Nguyen, N. P. Nguyen, and M. T. Thai, "Sources of misinformation 
in Online Social Networks: Who to suspect?," presented at the Military 
Communications Conference, 2012. 

[20] D. S. Kim and J. W. Kim, "Public Opinion Sensing and Trend Analysis 
on Social Media: A Study on Nuclear Power on Twitter," International 
Journal of Multimedia and Ubiquitous Engineering, vol. 9, pp. 373-384, 
2014. 

[21] N. Seyff, I. Todoran, K. Caluser, L. Singer, and M. Glinz, "Using Popular 
Social Network Sites to Support Requirements Elicitation, Prioritization 
and Negotiation," Journal of Internet Services and Applications, vol. 6, 
pp. 1-16, 2015. 

[22] M. Yousuf and M. Asger, "Comparison of Various Requirements 
Elicitation Techniques," International Journal of Computer Applications, 
vol. 116, pp. 8-15, 2015. 

[23] T. Verma and D. G. Renu, "Tokenization and Filtering Process in 
RapidMiner," International Journal of Applied Information Systems 
(IJAIS)–ISSN, vol.7, pp. 2249-0868, 2014. 

[24] K. Toutanova, D. Klein, C. Manning, and Y. Singer, "Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Network," in Proceedings 
of the 2003 Conference of the North American Chapter of the 
Association for Computational Linguistics on Human Language 
Technology, 2003. 

[25] Y. Li, E. Guzman, K. Tsiamoura, F. Schneider, and B. Bruegge, 
"Automated Requirements Extraction for Scientific Software," Procedia 
Computer Science, vol. 51, pp. 582-591, 2015. 

[26] N. W. Kassel and B. A. Malloy, "An approach to automate requirements 
elicitation and specification," in International Conference Software 
Engineering and Applications, 2003. 

[27] S. Murugesh and A. Jaya, "A Generic Framework for Requirements 
Elicitation from Informal Descriptions," International Journal of 
Advanced Research in Computer Engineering & Technology, vol. 3, pp. 
2545-2549, 2014. 

[28] K. Li, R. Dewar, and R. Pooley, "Requirements capture in natural 
language problem statements," Heriot-Watt Technical Report HW-
MACS-TR-0023, 2004. 

[29] R. Rai, "Identifying key product attributes and their importance levels 
from online customer reviews," in ASME International Design 
Engineering Technical Conferences and Computers and Information in 
Engineering Conference (IDETC/CIE2011), Paper No. DETC2012-
70493, 2012. 

[30] S. Arapostathis and S. Kalogirou, "Twitter data as a volunteered 
geographic information source: review paper of recent research analysis 
methods and applications," in Proceedings of the 1st Spatial Analysis 
Conference, 2013. 

[31] Y.-k. Lee, N.-H. Kim, D. Kim, D.-h. Lee, and H. P. In, "Customer 
Requirements Elicitation Based on Social Network Service," KSII 
Transactions on Internet and Information Systems (TIIS), vol. 5, pp. 
1733-1750, 2011. 

[32] Smart Words. (20 Feb). Conjunctions. Available: https://www.smart-
words.org/linking-words/conjunctions.html 

[33] RxNLP. Sentence Clustering API. Available: http://www.rxnlp.com/api-
reference/cluster-sentences-api-reference/ 


