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Abstract—The fourth-order finite difference Iterative 

Alternating Decomposition Explicit Method of Mitchell and 

Fairweather (IADEMF4) sequential algorithm has demonstrated 

its ability to perform with high accuracy and efficiency for the 

solution of a one-dimensional heat equation with Dirichlet 

boundary conditions.  This paper develops the parallelization of 

the IADEMF4, by applying the Red-Black (RB) ordering 

technique. The proposed IADEMF4-RB is implemented on 

multiprocessor distributed memory architecture based on 

Parallel Virtual Machine (PVM) environment with Linux 

operating system.  Numerical results show that the IADEMF4-

RB accelerates the convergence rate and largely improves the 

serial time of the IADEMF4. In terms of parallel performance 

evaluations, the IADEMF4-RB significantly outperforms its 

counterpart of the second-order (IADEMF2-RB), as well as the 

benchmarked fourth-order classical iterative RB methods, 

namely, the Gauss-Seidel (GS4-RB) and the Successive Over-

relaxation (SOR4-RB) methods. 

Keywords—Fourth-order method; finite difference; red-black 

ordering; distributed memory architecture; parallel performance 

evaluations 

I. INTRODUCTION 

The heat equation is a mathematical model that describes 
heat conduction processes of a physical system. Sahimi et al. 
[1] had proposed a finite difference scheme known as the 
Iterative Alternating Decomposition Explicit (IADE) method 
to approximate the solution of a one-dimensional heat 
equation with Dirichlet boundary conditions. The IADE 
scheme employs the fractional splitting of the Mitchell and 
Fairweather (MF) variant whose accuracy is of the order, 

 2 4( ) ( ) .O t x  
 
The scheme, commonly abbreviated as the 

IADEMF, is developed by applying the second-order spatial 
accuracy to the heat equation. Due to the latter, in this paper, 
the IADEMF will also be referred to as the IADEMF2. It is a 
two-stage iterative procedure and has been proven to have 
merit in terms of convergence, stability and accuracy.  It is 
generally found to be more accurate than the classical 
Alternating Group Explicit class of methods [2]. 

Several studies have later been developed based on the 
IADE method. Sahimi et al. [3, 4] developed new second-
order IADE methods using different variants such as the 
D‟Yakonov (IADEDY) and the Mitchell-Griffith variant 

(IADEMG). Each variant is of the order,  2 4( ) ( )O t x   . 

The studies showed that the accuracies of the IADEDY and 
the IADEMG are comparable to the IADEMF. Alias [5] 
studied the parallel implementation of the IADEMF on 
distributed parallel computing using the parallel virtual 
machine. A fragmented numerical algorithm of the IADEMF 
method was designed by Alias [6] in terms of the data-flow 
graph where its parallel implementation using LuNA 
programming system was then executed. Sulaiman et al. [7, 8] 
proposed the half-sweep and the quarter-sweep IADEMF 
methods respectively, for the purpose of achieving better 
convergence rate and faster execution time than the 
corresponding full-sweep method. Alias [9] implemented the 
Interpolation Conjugate gradient method to improve the 
parallel performance of the IADEMF. Shariffudin et al. [10] 
presented the parallel implementation of the IADEDY for 
solving a two-dimensional heat equation on a distributed 
system of Geranium Cadcam cluster (GCC) using the Message 
Passing Interface. 

A recent study made by Mansor [11] involved the 
development of a convergent and unconditionally stable 
fourth-order IADEMF sequential algorithm (IADEMF4). The 
proposed scheme is found to be capable of enhancing the 
accuracy of the original corresponding method of the second-
order, that is, the IADEMF2. The IADEMF4 seems to be 
more accurate, more efficient and has better rate of 
convergence than the benchmarked fourth-order classical 
iterative methods, namely, the Gauss-Seidel (GS4) and the 
successive over-relaxation (SOR4) methods. However, the 
IADEMF4 may be too slow to be implemented especially 
when the problem involves larger linear systems of equations. 
It is thus justified to consider parallel computing to speed up 
the execution time without compromising its accuracy. The 
algorithm has explicit features which add to its advantage, 
thus it can be fully utilized for parallelization. 

This paper attempts to parallelize the IADEMF4, by 
applying the Red-Black (RB) ordering technique, for solving 
large sparse linear systems that arise from the discretization of 
the one-dimensional heat equation with Dirichlet boundary 
conditions. It aims to effectively implement the IADEMF4-
RB on parallel computers, with improved performance over its 
serial counterpart. The high computational complexity of the 
IADEMF4-RB will be implemented on multiprocessor 
distributed memory architecture based on Parallel Virtual 
Machine (PVM) environment with Linux operating system. 
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This paper is outlined as follows. Section II recalls the 
formulation of the IADEMF4 scheme. Section III presents the 
development of the IADEMF4-RB parallel strategy. The 
computational complexity of the RB methods considered in 
this paper is given in Section IV. Section V shows the 
numerical experiment conducted in this study. The results and 
discussion on parallel performance of the methods under 
consideration are discussed in Section VI. At the end of this 
paper is the conclusion. 

II. FORMULATION OF THE IADEMF4 (AN OVERVIEW) 

In this section, the development of the IADEMF4 
algorithm [11] is briefly reviewed. Consider the one-
dimensional heat equation (1) which models the flow of heat 
in a homogeneous unchanging medium of finite extent, in the 
absence of heat source. 

2

2

U U

t x

 


                (1) 

subject to given initial and Dirichlet boundary conditions 

( ,0) ( ), 0 1

(0, ) ( ), 0

(1, ) ( ), 0

U x f x x

U t g t t T

U t h t t T

  

  

  
             (2) 

Based on the finite difference approach, the time-space 
domain is discretized by using a set of lines parallel to the t 

axis given by  ix i x  , 0,1, ... , , 1i m m   and a set of lines 

parallel to the x axis given by kt k t  , 0,1, ... , , 1k n n 

. The grid spacings have uniform size, that is, 1/( 1)x m  

and /( 1)t T n   . At a grid-point ( , )i kP x t  in the solution 

domain, the dependent variable ( , )U x t
 
which represents the 

non-dimensional temperature at time t and at position x, is 

approximated by k

iu . 

The IADEMF4 is developed by firstly executing the 
unconditionally stable fourth-order Crank-Nicolson 
approximation (3) on the heat equation [12]. 

1 2 4 1

2

1 1 1
( ) ( )( )

122( )

k k k k

i i x x i iu u u u
t x

     
 

          (3) 

The discretization of (3) leads to the expression given in 
(4), with the constants defined as in (5). 

1 1 1 1 1

2 1 1 2 2 1

1 2
ˆ ,     2,3, ..., 1

k k k k k k k

i i i i i i i

k k k

i i i

au bu cu du eu au bu

cu du eu i m

    

     

 

      

            (4) 

2 4 5 2 4 5
ˆ, , , , ,

24 3 4 3 24 4
a b c d e c

      
       

   (5) 

In matrix form, the approximation in (4) can be 
represented by A u f

 
(6), where A  is a sparse penta-

diagonal coefficient matrix,  and the column vectors 

2 3 2 1( , ,..., , )T

m mu u u u u  contain the unknown values of u  at 

the time level 1k   and 2 3 2 1( , ,..., , )T
m mf f f f f  consists 

of boundary values and known u  values at the previous time 

level k . 

A u f  

  

2 2

3 3

2 2

1 11( 2) ( 2)

. .

. .
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m m

m mkm x m

c d e u f
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         (6) 

The entries in f are defined as 

1
2 1 1 2 3 4

1
3 1 1 2 3 4 5

2 1 1 2

1
2 4 3 2 1

1 3 2 1

ˆ( )

ˆ( )
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ˆ ( )

ˆ (

k k k k k

k k k k k k

k k k k k
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k k k k k k
m m m m m m m
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
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      

     1)k
mu 

  (7)
 

The IADEMF4 scheme secondly employs the fractional 
splitting of the higher-order accuracy formula of the MF 
variant [13], 

( 1/2) ( )
1 2( ) ( )p prI G rI gG   u u f

           (8) 

( 1) ( 1/2)
2 1( ) ( )p prI G rI gG g    u u f

           (9) 

where 1G
 
and 2G are two constituent matrices and ,r I

 
and p  represent an acceleration parameter, an identity matrix 

and the iteration index respectively. The value of g is defined 

as 
6

6

r
g


 , 0r  . The vectors 

( 1)p
u  and 

( 1/ 2)p
u  

represent the approximate solution at the iteration level 

( 1)p   and at some intermediate level ( 1/ 2)p  , 

respectively. 

After some algebraic manipulations for the equations in (8) 

and (9), the form, 1 2 1 2
1

6
G G G G
 

   
 

u f is obtained, 

suggesting that matrix A in (6) can be decomposed into. 

1 2 1 2
1

6
A G G G G  

           (10) 

To retain the penta-diagonal structure of A , the matrices 

1G and 2G
 
have to be in the form of lower and upper tri-

diagonal matrices respectively, Thus, 
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If each 1G
 
and 2G

 
in (11) is substituted into the matrix A  

in (10), then the new entries of the latter can be compared with 
those in (6) to yield the following constants. 

1 1
1 1 1 2
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5
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   (12) 

Since 1G
 
and 2G

 
are three banded matrices, then it is easy 

to obtain the inverses of 1( )rI G  and 2( )rI G . By 

rearranging the equations in (8) and (9), the following 
expressions are obtained. 

( 1/2) 1 ( ) 1
1 2 1( ) ( ) ( )p prI G rI gG rI G      u u f

         (13) 

( 1) 1 ( 1/2) 1
2 1 2( ) ( ) ( )p prI G rI gG g rI G       u u f

        (14) 

Based on the above two equations, the computational 
formulae at each of the half iteration levels can be derived as 
given in (15) and (16). 

1) At the (p+1/2) iteration level: 

( ) ( ) ( 1/2)( 1/2) ( )
1 1 1 31 2 2

( 1/2)
2 1

1
ˆ(

              ), 2,3,..., 2, 1

p p pp p
i i i i i ii i i

p
i ii

u E u W u V u m u
R

l u f i m m


     


 

   

    
   (15) 

2) At the (p+1) iteration level: 

( 1/2) ( 1/2) ( 1)( 1) ( 1/2)
3 2 12 1 1

1

( 1)
1 2

1
ˆ(

ˆ            ), 1, 2,...,3,2
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i

p
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Z
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   
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


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   (16) 

with 

1 0 0 2 3 2 2 2

3 0 1 0

ˆ ˆ ˆ ˆ

ˆ 0

m m m m m

m

m m l V V W u v

v Q S S
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1 , ,

ˆ ˆ, , 1, 2, ..., 2

ˆ , , 1, 2, ..., 3

ˆ ˆ, , 1, 2, ..., 4

i i i i

i i i i

i i i i

R r P r g

E r ge Z r e i m
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V gv S gm i m
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     
        (17) 

The two-stage IADEMF4 algorithm is implemented by 
using the required equations at the two iteration levels in 
alternate sweeps along all the grid-points in the interval (0,1) 
until convergence is reached. The method is explicit, since at 
each level of iteration, the computational molecules involve 
two known grid-points at the new level and another three 
known ones at the old level (Fig. 1 and 2). The unknown 

( 1/ 2)p
iu

 in (15)
 

is calculated by proceeding from the left 

boundary towards the right, whereas the unknown 
( 1)p
iu



 
in 

(16) is calculated from the right boundary and moves to the 
left. 

 

Fig. 1. Computational Molecule of the IADEMF4 at the ( 1/ 2)p
 
Iteration 

Level. 

 

Fig. 2. Computational Molecule of the IADEMF4 at the ( 1)p 
 
Iteration 

Level. 
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III. PARALLELIZATION OF THE IADEMF4 

It is observed that for 2,3, ..., 1i m  , the computation 

of the unknown grid-point, 
( 1/2)p
iu 

, requires the values of the 

grid-points at 
( 1/2)

2,
p

iu 
  

and 
( 1/2)

1
p

iu 
  (Fig. 1) and the 

computation of the unknown 
( 1)

1
p

m iu 
   

requires the values of 

( 1)
2

p
m iu 
   

and 
( 1)

3
p

m iu 
   (Fig. 2). The unknown grid-points can only 

be determined after the values of their two previous neighbors 
at their respective current iteration levels have been 

calculated. In other words, all values at the ( 1/ 2)thp   level 

cannot be calculated independently and simultaneously, so as 
values at the ( 1)thp  level. These situations show that the 

IADEMF4 is not inherently parallel. Thus, to handle this 
problem, this study resorts to undertake a domain 
decomposition approach that firstly divides the physical 
domain into a number of subdomains, each being assigned to a 
processor; and secondly exchanges appropriate data across the 
boundaries of the subdomains. The Red-Black (RB) ordering 
is the domain decomposition strategy that is considered in this 
study. The approach focuses on minimizing the problem of 
data dependencies and it is highly parallel. 

A. The IADEMF4-RB 

The RB ordering has shown its competitiveness in terms of 
speedup and efficiency, as has been proven in  studies made 
by Evans [14] in solving the parallel SOR iterative methods; 
Brill et al. [15] in using the block GS-RB on the Hermite 
collocation discretization of partial differential equations in 
two spatial dimensions; and Alias [5] in parallelizing the 
IADEMF2. Darwis et al. [16] proved that the GS-RB 
algorithm is more accurate and converges faster than the GS 
algorithm. Yavneh [17] showed that the SOR-RB is more 
efficient and smoother than the sequential SOR method for 
solving two-dimensional Poisson equations. 

This section parallelizes the IADEMF4 by using the RB 
ordering technique. The algorithm used will be referred to as 
the IADEMF4-RB. 

The strategy to develop the IADEMF4-RB algorithm 
begins by decomposing the domain    into two different 

independent subdomains, R  and B . Each grid-point   in 

the subdomains R  and B  is denoted red and black 
respectively. If i  is even, the grid-point is marked red, and if 

i  is odd, the grid-point is marked black. Assuming m  is even, 

then, the computational formulae for the IADEMF4-RB are: 

( ) ( )( 1/2) ( ) ( )
1 1 11 2

( 1/2) ( 1/2)
3 22 1

(1 ) (

ˆ              )

y p pp p p
i y i i i i ii i

p p
i i ii i

u u E u W u V u
R

m u l u f




   

 
  

    

  
 (18) 

for 2,4,.., 2i m   (red grid-points) and 3,5,.., 1i m   

(blackgrid-points) 

( 1/2) ( 1/2)( 1) ( 1/2)
3 22 1

1

( 1) ( 1)( 1/2)
1 11 2

(1 ) (

ˆ ˆ            )

p pp p z
i z i i ii i

i

p pp
i i i ii i

u u S u Q u
Z

Pu u u v u gf


   

  


 
  

   

   
  

(19) 

for 2,4,.., 2i m   (red grid-points) and 3,5,.., 1i m   

(blackgrid-points) 

The purpose of including the relaxation factors y  and 

z in (18) and (19) is to accelerate the convergence rate of the 

scheme. 

The IADEMF4-RB ordering, on say, three processors, P1, 
P2 and P3, is illustrated in Fig. 3. P1 and P3 holds boundary 
values at 0i   and 1i m  , respectively. The fourth-order 

methods require additional boundary values which are at 
positions 1i  (a grid-point in P1) and i m  (a grid-point in 

P3). As a strategy to obtain good load balancing, similar 
numbers of alternate red (R) and black (B) grid-points are 
assigned to each processor [18]. Depending on the color of the 
grid-point, the first two starting grid-points in a processor may 
be labelled as „stR‟ and followed by „stB‟, and the last two end 
grid-points may be labelled as „enB‟ followed by „enR‟. 

The following describes the implementation of the 
IADEMF4-RB based on Fig. 3. The algorithm is subjected to 
the given initial and boundary conditions. Before the 

beginning of the execution, the unknowns, ( 1/2)p
iu  , for 

2,3,.., 1i m  , are given „guessed‟ values at the initial time. 

Then, the execution of the IADEMF4-RB algorithm is 
performed in two phases: 

The first phase involves the computations of only the red 

grid-points at the iteration levels ( 1 / 2)p 
 
and ( 1)p  . This 

phase requires every processor to compute in parallel the red 
unknowns by making use of the initialized „guessed‟ values. 

Example, the  computation of 
R

( 1/2)

st

p
u

  in P2 requires „guessed‟ 

R

( 1/2)

en

p
u

  value from P1 and 
B

( 1/2)

st

p
u

  value from P2 itself, while 

the computation of 
R

( 1)

en

p
u

  in P2 requires „guessed‟ 
R

( 1)

st

p
u

  

value from P3 and 
B

( 1)

en

p
u

  value from P2 itself. 

 

 

Fig. 3. One-Dimensional IADEMF4-RB Ordering 
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After the computations of the red grid-points for the two 
iteration levels have been completed, adjacent processors 
exchange their updated red values at the boundary grid-points 
to prepare for the calculation of the black grid-points in the 
second phase. Example, 

Send updated 
R

( 1/2)

en

p
u

 : from P1 to P2, and from P2 to P3. 

Send updated 
R

( 1)

st

p
u

 : from P2 to P1, and from P3 to P2. 

The second phase continues by computing simultaneously 
the black unknowns at levels ( 1/ 2)p 

 
and ( 1)p  , using the 

most recent red values computed in the first phase. For 
example, the computation of 

B

( 1/2)

st

p
u

  in P2 uses the updated red 

values 
R

( 1/2)

en

p
u

  and the „guessed‟ black value 
B

( 1/2)

en

p
u

  from P1, 

while the computation of 
B

( 1)

en

p
u

  in P2 requires the updated red 

values 
R

( 1)

st

p
u

  from P3 and the „guessed‟ 
B

( 1)

st

p
u

  value from P3. 

The updated black grid-points at the boundaries are then 
shared between adjacent processors. Example, 

Send updated 
B

( 1/2)

en

p
u

 : from P1 to P2, and from P2 to P3 

Send updated 
B

( 1)

st

p
u

 : from P2 to P1, and from P3 to P2. 

The two phases are repeated until convergence is reached. 
Due to the dependencies on the updated values between 
adjacent processors, the IADEMF4-RB algorithm involves 
statements that take care of the communication between the 
processors. An example of a procedure for sending and 
receiving messages between processors in a PVM 
environment is as illustrated in Fig. 4. The IADEMF4-RB 
algorithm implemented by a slave processor can be described 
as in Fig. 5. 

 

Fig. 4. Communication Procedures for Sending and Receiving Messages 
between Adjacent Processors. 

 

Fig. 5. IADEMF4-RB–Slave‟s Parallel Algorithm. 

if (left!=0) /* If there is a processor on the left*/ 

pvm_initsend( PvmDataDefault ); 

 pvm_pkdouble( & [start], 1,1); 

         pvm_send(left,50 ); 

end-if  

if (right!= 0) /* If there is a processor on the right*/ 

      pvm_recv(right,50); 

      pvm_upkdouble(& [end+1],1, 1 ); 

 pvm_initsend( PvmDataDefault ); 

 pvm_pkdouble(&  [end], 1,1); 

         pvm_send(right,60 ); 

 end-if 

if (left!=0) /* If there is a processor on the left*/ 

 pvm_recv(left,60); 

      pvm_upkdouble(& [start-1],1, 1 ); 

end-if 

IADEMF4 –RB: Slave’s Parallel Algorithm 

begin 

         slaves receive data from master: , , 

 

for  

    determine initial conditions  

                          initialize guessed values  

end-for 

while (time level < ) 

     for  and  

             determine boundary conditions at , 

                           , and  

           end-for 

                        for  

   compute   (refer to (7)) 

    end-for 

        for  

  compute   (refer to (7)) 

 end-for 

  set iteration  

           while (convergence conditions are not satisfied) 

  for  

   compute  

                                                                  (refer to (18)) 

          end-for  

              for  

          compute          (refer to (19)) 

          end-for 

          send and receive updated red boundary  

                         values between adjacent slave 

                         processors (Fig. 4) 

           for  

   compute   

                                                                  (refer to (18)) 

           end-for 

           for  

          compute  (refer to (19)) 

           end-for 

              send and receive updated black  

                                          boundary values between adjacent  

                                          slave processors (Fig. 4) 

            test for convergence:    

             compute  for  

                                          and  

            if max  

    then  

  add 1 to iteration (if necessary) 

 end-while 

end-while 

Determine numerical errors for  and   

 slave sends data analysis to master 

 pvm_exit;  

end 
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B. Parallel Algorithms for Benchmarking 

The IADEMF2, the GS4 and the SOR4 algorithms [9] can 
also be parallelized using the RB ordering technique. They 
will serve as the benchmarks for the parallel IADEMF4-RB. 
The following are the schemes under consideration, assuming 
m is even. 

1) the IADEMF2-RB algorithms: 

( 1/2) ( ) ( 1/2) ( )
1 1

( )
1

(1 ) (

                                            )

yp p p p
y i ii i ii

p
i ii

u u l u s u
d

w u f




 
 



    

 
        (20)

 

for 2,4,...,i m  (red grid-points) and 1,3,5,..., 1i m   

(black grid-points) 

( 1) ( 1/2) ( 1/2)
1

1

( 1/2) ( 1)
1 11 2

(1 ) (

ˆ                 )

p p pz
z m ii m im i

m i

p p
m i m im i m i

u u v u
d

su gf u u




  
  

 

 
      

  

  
        (21) 

for 2,4,...,i m  (red grid-points) and 1,3,5,..., 1i m   

(black grid-points) 

2) the SOR4-RB algorithm (reduces to the GS4-RB   

algorithm when 1  : 

( 1) ( ) ( 1) ( 1) ( ) ( )
2 1 1 2(1 ) ( )p p p p p p

i i i i i i iu u f au bu du eu
c


  

         
  (22) 

for 2,4,..., 2i m   (red grid-points) and 3,5,..., 1i m   

(black grid-points) 

IV. COMPUTATIONAL COMPLEXITY 

The computational complexity of the RB algorithms of 
interest is as given in Table I. It gives the number of parallel 
arithmetic operations that is required to evaluate the 
algorithms. 

TABLE. I. PARALLEL ARITHMETIC OPERATIONS   ( m  PROBLEM SIZE, 

n  NUMBER OF ITERATIONS, P  NUMBER OF PROCESSORS) 

Method 
Number of 

additions 

Number of 

multiplications 

Total operation 

count 

IADEMF4-RB 10( -2) /m n P  13( -2) /m n P  23( -2) /m n P  

IADEMF2-RB 6 /mn P
 

9 /mn P
 

15 /mn P
 

GS4-RB 4( 2) /m n P  5( 2) /m n P  9( 2) /m n P  

SOR4-RB 5( 2) /m n P  7( 2) /m n P  12( 2) /m n P  

V. NUMERICAL EXPERIMENT 

The IADEMF4-RB was implemented and tested on 
multiprocessor distributed memory architecture comprising of 
twelve interconnected processors with Linux operating system 
using the PVM communication library. In distributed memory, 
each processor has its own address space or local memory 
which is inaccessible to other processors. The processors 
operate independently in parallel, and they share their data by 
means of some form of inter-processor communication via an 
inter-connection network. The programmer is responsible for 

the details associated with message passing between 
processors. From the memory perspective, the size of memory 
increases in proportion to the increasing number of processors. 

The parallel performances of the proposed algorithm was 
examined by solving a very large problem size on the 
experiment in (23), where m  varied from 70,000 to 700,000. 

This problem was taken from Saul‟yev (1964), 

2

2
, 0 1

U U
x

t x

 
  

             (23) 

subject to the initial condition ( ,0) 4 (1 ),U x x x 

0 1x   and the boundary conditions 

(0, ) (1, ) 0, 0.U t U t t    

The exact solution to the given problem is given by 

2 2

3 3
1,(2)

32 1
( , ) sin( )k t

k

U x t e k x
k

 







 
         (24) 

The other parameters considered for the experiment were  

= 0.5, t = 1.0204 x 10
-12

, t = 5.1020 x 10
-11

, and a stringent 

tolerance value of 1510  . The initial and Dirichlet 

boundary conditions at 0i   and 1i m   were applied based 

on the values given in the problem. For the fourth-order 
methods, the boundary values at positions 1i   and i m  

were taken from the given exact solutions (24). The optimum 

values for r  and the relaxation factors ( x , y  and  ) were 

determined by experiments. 

VI. RESULTS AND DISCUSSION 

Table II compares the accuracy of the tested parallelized 
RB algorithms for a fixed problem size, 700,000m  . It is 

obvious that the IADEMF4-RB outperforms the IADEMF2-
RB in terms of rate of convergence. The average absolute 
error, root mean square error and the maximum error of both 
algorithms seem identical up to four decimal places, due to the 
stringent tolerance value set in the experiment. The high 
computational complexity of the IADEMF4-RB is 
compensated by the high accuracy it achieves at every 
iteration and time level, causing its convergence to accelerate. 
The SOR4-RB speeds up the convergence of the GS4-RB, but 
they are both relatively not reliable in terms of accuracy. 

Table III displays the number of iterations ( n ), execution 

time, speedup and efficiency of the IADEMF4-RB on using 
three different values of problem size, m. The execution time 
refers to the amount of time required to complete a parallel 
program on a number of P  processors from the moment the 
execution starts till the moment the last processor finishes its 
execution [19]. Speedup expresses how much faster the 
parallel program executes relative to the sequential one. 
Amdahl‟s law states that there exists a bound on the speedup 
for a given problem with a fixed size [20], since some parts of 
the computations for solving a given problem are not 
parallelizable. Efficiency is a measure of the speedup achieved 
per processor. It estimates how well the processors are utilized 
during the execution of a parallel algorithm. 
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TABLE. II. PARALLEL RB ALGORITHMS – ERRORS AND NUMBER OF 

ITERATIONS 

Method 

(m=700,000) 

Average 

absolute 

error 

Root 

mean 

square 

error 

Max.  

error 

Number 

of 

iterations 

IADEMF4-RB 

 0.8, 1, 1.1y zr      

1.5920e-

09 

7.3054e-

09 

1.9845e-

07 
288 

IADEMF2-RB 

 0.8, 1, 1.1y zr      

1.5920e-

09 

7.3054e-

09 

1.9845e-

07 
450 

SOR4-RB 

( 1.06 ) 

1.6150e-

09 

9.6395e-

09 

2.7422e-

06 
738 

GS4-RB 
1.6150e-
09 

9.6395e-
09 

2.7422e-
06 

794 

 = 0.5, x = 2.60 x 10-6, t = 1.02 x 10-12, t = 5.10 x 10-11,   = 1 x 10-15 

TABLE. III. IADEMF4-RB – PERFORMANCES USING SEVERAL VALUES OF m  

m  x P  
Execution 

time (s) 
Speedup Efficiency 

70,000 

359n   
1.43 x 10-5 

1 4.869491 1 1 

2 2.507665 1.941843 0.970921 

4 1.518787 3.206171 0.801542 

6 1.261464 3.860190 0.643365 

8 1.102297 4.417585 0.552198 

10 1.039360 4.685086 0.468508 

12 1.008263 4.829584 0.402465 

385,000 

312n   
2.60 x 10-6 

1 20.039541 1 1 

2 10.062964 1.991415 0.995707 

4 5.300258 3.780842 0.945210 

6 3.828272 5.234617 0.872436 

8 2.993626 6.694069 0.836758 

10 2.447466 8.187873 0.818787 

12 2.101530 9.535691 0.794640 

700,000 

288n   
1.43 x 10-6 

1 35.682042 1 1 

2 17.896741 1.993773 0.996886 

4 8.962541 3.981241 0.995310 

6 6.202509 5.752840 0.958806 

8 4.900683 7.281034 0.910129 

10 3.992991 8.936168 0.893616 

12 3.456841 10.32215 0.860179 

 = 0.5, t = 1.02 x 10-12, t = 5.10 x 10-11,   = 1 x 10-15 

The results in Table III show that the execution time for a 
problem using any of the considered sizes is reduced and the 
speedup improves as the number of processors increases. For

70,000m  , the increase in speedup from 1P   to 12P   is 

about 80% and for 700,000m  , the increase is about 90%. 

This shows that parallel computation improves performance in 

terms of execution time and speedup over serial computation. 
Due to overheads, the overall efficiency for any m  tends to 

decrease as the number of processors increases. Overheads 
have impacts on parallel performance. The two common types 
of overheads are the communication time and the idle time. 
The communication time is the time spent on communication 
and exchanging of data during the execution in all processors 
and the idle time is the time when processors stay idle, waiting 
for busy processors to send messages. Idling may be due to 
load imbalances amongst processors, or a bottleneck at the 
master processor when it has to interact with other worker 
processors [21]. 

For every number of processor ran in the experiment, the 
execution time for a problem size of 70,000 is comparatively 
smaller than a problem ten times its size. This is expected 
since fewer grid-points involve less mathematical operations 
and data sharing. The table, however, shows an improvement 
in convergence rate, speedup and efficiency as the size 
increases to 700,000 . The smaller size with higher number of 

iterations (n) seems to be less efficient due to the additional 
overhead imposed by having communications routed through 
the PVM daemon. 

Fig. 6 shows that the execution time taken by every tested 
algorithm (listed in Table II) decreases with increasing P . 
However, the IADEMF4-RB executes in the least amount of 
time for every P . Despite the IADEMF4‟s greater 
computational complexity, its parallelization using the RB 
technique and the use of relaxation parameters have enabled it 
to execute in a shorter time on one and more processors in 
comparison to its counterpart of second-order. 

Fig. 7 shows that every tested algorithm has a speedup of 
less than P , which implies that the parallel code is bounded by 
the sequential code (Amdahl‟s law).  The parallel code runs 
slower due to overheads that outweigh the benefits of parallel 
computation. Amongst the four algorithms, the IADEMF4-RB 
proves to continue giving the best speedup as P increases. At 

12P  , the speedup of the IADEMF4-RB is almost 14% 
closer to the linear speedup. As for the IADEMF2-RB, the 
SOR4-RB and the GS4-RB, there is an 18, 24 and 28 percent 
difference, respectively, between the method‟s speedup and 
the linear speedup. 

 

Fig. 6. Execution Time Versus Number of Processors. 

0

10

20

30

40

50

60

1 2 4 6 8 10 12

E
x
ec

u
ti

o
n

 t
im

e 
(s

) 

Number of processors 

IADEMF2-RB

IADEMF4-RB

GS4-RB

SOR4-RB



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

606 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 7. Speedup Versus Number of Processors. 

Fig. 8 illustrates the reduction in efficiency as the number 
of processors increases. The overhead increases as P  
increases, leading to a declining performance in efficiency. 
The IADEMF4-RB, for example, performs efficiently for 

4P   and becomes less efficient for 4P  . The superior 
speedup performance by the IADEMF4-RB (Fig. 7), however, 
makes it the most efficient algorithm amongst the tested 
algorithms. With the number of processors equals to 12, the 
IADEMF4-RB achieves a speedup of 10.32 that equates to a 
higher efficiency of about 0.86 (Table III). 

Temporal performance is a metric which is inversely 
proportional to the execution time. If there are several parallel 
algorithms solving the same problem with the same problem 
size implemented on the same number of processors, then the 
algorithm with the largest value for temporal performance will 
be considered as the best algorithm that can perform in the 
least amount of execution time. Fig. 9 shows that the 
IADEMF4-RB has proven itself as the algorithm with the best 
temporal performance amongst all the methods considered for 
comparison. 

Granularity is an important performance metric since it 
gives a good indication of the feasibility of parallelization. It 
gives a qualitative measure of the ratio of the amount of 
computational time to the amount of communication time 
within a parallel algorithm [19]. The results of the granularity 
for the different tested parallel-RB methods are summarized in 
Table IV. Clearly, the granularity of all the methods decreases 
with increasing number of processors. This is due to the 
dependency of granularity on computational time and 
communication time. For any 12P  , the IADEMF4-RB has 
the largest granularity, indicating that the application spends 
more time in computation relative to communication. The 
large granularity of the IADEMF4-RB gives a good indication 
of the feasibility of its parallelization. The GS4-RB has the 
least granularity due to the idle time incurred by message 
latency, improper load balancing and time spent waiting for all 
processors to complete the process. 

 

Fig. 8. Efficiency Versus Number of Processors. 

 

Fig. 9. Temporal Performance Versus Number of Processors. 

TABLE. IV. SUMMARY OF THE GRANULARITY RESULTS FOR THE TESTED 

RB METHODS 

P IADEMF4-RB IADEMF2-RB SOR4-RB GS4-RB 

2 16.8 15.2 10.6 8.6 

4 16.4 11.7 7.9 5.1 

6 9.9 6.6 4.7 3.8 

8 6.2 5.1 3.8 3.2 

10 5.5 4.5 3.3 2.7 

12 4.4 3.8 2.9 2.4 

VII. CONCLUSION 

This study strategizes to accelerate the convergence rate 
and the sequential execution time of the IADEMF4 by 
implementing it on a distributed computing based on PVM. 
The approach to parallelize the IADEMF4 is by implementing 
the RB parallel strategy. 
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The proposed IADEMF4-RB parallel algorithm 
significantly outperforms its counterparts of the second-order, 
as well as the benchmarked fourth-order classical methods. 
This is with regards to accuracy, convergence rate and parallel 
measures such as execution time, speedup, efficiency, 
temporal performance and granularity. Despite its higher 
computational complexity, its increasing number of correct 
digits at each iteration yields faster rate of convergence with 
higher level of accuracy for a large size matrix. The relatively 
coarse granularity delivered by the RB parallel 
implementation indicates the feasibility of parallelizing the 
proposed IADEMF4. 

The efficient performance in parallel gives benefits, 
especially in solving problems involving larger sparse linear 
systems of equations that usually consumes huge amount of 
serial time. Future work is to consider applying the 
IADEMF4-RB in time-dependent PDEs that require higher-
order accuracy with significant speedup and efficiency. 
Another possibility is to apply the proposed parallel method 
onto shared or hybrid memory architectures to reduce the 
problem of communication issues. 
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