
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

599 | P a g e

www.ijacsa.thesai.org

A Distributed Memory Parallel Fourth-Order

IADEMF Algorithm

Noreliza Abu Mansor
1
, Ahmad

Kamal Zulkifle
3

College of Engineering

Universiti Tenaga Nasional

Selangor, Malaysia

Norma Alias
2

Ibnu Sina Institute of Fundamental

Science Studies, Universiti

Teknologi Malaysia, Johor, Malaysia

Mohammad Khatim Hasan
4

Faculty of Information Science and

Technology, Universiti Kebangsaan

Malaysia, Selangor, Malaysia

Abstract—The fourth-order finite difference Iterative

Alternating Decomposition Explicit Method of Mitchell and

Fairweather (IADEMF4) sequential algorithm has demonstrated

its ability to perform with high accuracy and efficiency for the

solution of a one-dimensional heat equation with Dirichlet

boundary conditions. This paper develops the parallelization of

the IADEMF4, by applying the Red-Black (RB) ordering

technique. The proposed IADEMF4-RB is implemented on

multiprocessor distributed memory architecture based on

Parallel Virtual Machine (PVM) environment with Linux

operating system. Numerical results show that the IADEMF4-

RB accelerates the convergence rate and largely improves the

serial time of the IADEMF4. In terms of parallel performance

evaluations, the IADEMF4-RB significantly outperforms its

counterpart of the second-order (IADEMF2-RB), as well as the

benchmarked fourth-order classical iterative RB methods,

namely, the Gauss-Seidel (GS4-RB) and the Successive Over-

relaxation (SOR4-RB) methods.

Keywords—Fourth-order method; finite difference; red-black

ordering; distributed memory architecture; parallel performance

evaluations

I. INTRODUCTION

The heat equation is a mathematical model that describes
heat conduction processes of a physical system. Sahimi et al.
[1] had proposed a finite difference scheme known as the
Iterative Alternating Decomposition Explicit (IADE) method
to approximate the solution of a one-dimensional heat
equation with Dirichlet boundary conditions. The IADE
scheme employs the fractional splitting of the Mitchell and
Fairweather (MF) variant whose accuracy is of the order,

 2 4() () .O t x  

The scheme, commonly abbreviated as the

IADEMF, is developed by applying the second-order spatial
accuracy to the heat equation. Due to the latter, in this paper,
the IADEMF will also be referred to as the IADEMF2. It is a
two-stage iterative procedure and has been proven to have
merit in terms of convergence, stability and accuracy. It is
generally found to be more accurate than the classical
Alternating Group Explicit class of methods [2].

Several studies have later been developed based on the
IADE method. Sahimi et al. [3, 4] developed new second-
order IADE methods using different variants such as the
D‟Yakonov (IADEDY) and the Mitchell-Griffith variant

(IADEMG). Each variant is of the order,  2 4() ()O t x   .

The studies showed that the accuracies of the IADEDY and
the IADEMG are comparable to the IADEMF. Alias [5]
studied the parallel implementation of the IADEMF on
distributed parallel computing using the parallel virtual
machine. A fragmented numerical algorithm of the IADEMF
method was designed by Alias [6] in terms of the data-flow
graph where its parallel implementation using LuNA
programming system was then executed. Sulaiman et al. [7, 8]
proposed the half-sweep and the quarter-sweep IADEMF
methods respectively, for the purpose of achieving better
convergence rate and faster execution time than the
corresponding full-sweep method. Alias [9] implemented the
Interpolation Conjugate gradient method to improve the
parallel performance of the IADEMF. Shariffudin et al. [10]
presented the parallel implementation of the IADEDY for
solving a two-dimensional heat equation on a distributed
system of Geranium Cadcam cluster (GCC) using the Message
Passing Interface.

A recent study made by Mansor [11] involved the
development of a convergent and unconditionally stable
fourth-order IADEMF sequential algorithm (IADEMF4). The
proposed scheme is found to be capable of enhancing the
accuracy of the original corresponding method of the second-
order, that is, the IADEMF2. The IADEMF4 seems to be
more accurate, more efficient and has better rate of
convergence than the benchmarked fourth-order classical
iterative methods, namely, the Gauss-Seidel (GS4) and the
successive over-relaxation (SOR4) methods. However, the
IADEMF4 may be too slow to be implemented especially
when the problem involves larger linear systems of equations.
It is thus justified to consider parallel computing to speed up
the execution time without compromising its accuracy. The
algorithm has explicit features which add to its advantage,
thus it can be fully utilized for parallelization.

This paper attempts to parallelize the IADEMF4, by
applying the Red-Black (RB) ordering technique, for solving
large sparse linear systems that arise from the discretization of
the one-dimensional heat equation with Dirichlet boundary
conditions. It aims to effectively implement the IADEMF4-
RB on parallel computers, with improved performance over its
serial counterpart. The high computational complexity of the
IADEMF4-RB will be implemented on multiprocessor
distributed memory architecture based on Parallel Virtual
Machine (PVM) environment with Linux operating system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

600 | P a g e

www.ijacsa.thesai.org

This paper is outlined as follows. Section II recalls the
formulation of the IADEMF4 scheme. Section III presents the
development of the IADEMF4-RB parallel strategy. The
computational complexity of the RB methods considered in
this paper is given in Section IV. Section V shows the
numerical experiment conducted in this study. The results and
discussion on parallel performance of the methods under
consideration are discussed in Section VI. At the end of this
paper is the conclusion.

II. FORMULATION OF THE IADEMF4 (AN OVERVIEW)

In this section, the development of the IADEMF4
algorithm [11] is briefly reviewed. Consider the one-
dimensional heat equation (1) which models the flow of heat
in a homogeneous unchanging medium of finite extent, in the
absence of heat source.

2

2

U U

t x

 


  (1)

subject to given initial and Dirichlet boundary conditions

(,0) (), 0 1

(0,) (), 0

(1,) (), 0

U x f x x

U t g t t T

U t h t t T

  

  

  
 (2)

Based on the finite difference approach, the time-space
domain is discretized by using a set of lines parallel to the t 

axis given by ix i x  , 0,1, ... , , 1i m m  and a set of lines

parallel to the x axis given by kt k t  , 0,1, ... , , 1k n n 

. The grid spacings have uniform size, that is, 1/(1)x m  

and /(1)t T n   . At a grid-point (,)i kP x t in the solution

domain, the dependent variable (,)U x t

which represents the

non-dimensional temperature at time t and at position x, is

approximated by k

iu .

The IADEMF4 is developed by firstly executing the
unconditionally stable fourth-order Crank-Nicolson
approximation (3) on the heat equation [12].

1 2 4 1

2

1 1 1
() ()()

122()

k k k k

i i x x i iu u u u
t x

     
 

 (3)

The discretization of (3) leads to the expression given in
(4), with the constants defined as in (5).

1 1 1 1 1

2 1 1 2 2 1

1 2
ˆ , 2,3, ..., 1

k k k k k k k

i i i i i i i

k k k

i i i

au bu cu du eu au bu

cu du eu i m

    

     

 

      

     (4)

2 4 5 2 4 5
ˆ, , , , ,

24 3 4 3 24 4
a b c d e c

      
       

 (5)

In matrix form, the approximation in (4) can be
represented by A u f

(6), where A is a sparse penta-

diagonal coefficient matrix, and the column vectors

2 3 2 1(, ,..., ,)T

m mu u u u u contain the unknown values of u at

the time level 1k  and 2 3 2 1(, ,..., ,)T
m mf f f f f consists

of boundary values and known u values at the previous time

level k .

A u f

2 2

3 3

2 2

1 11(2) (2)

. .

. .

. ..

m m

m mkm x m

c d e u f

u fb c d e

a b c d e

a b c d e

u fa b c d

u fa b c

 

  

     
     
     
     
     

     
     
     
     
     
      





 (6)

The entries in f are defined as

1
2 1 1 2 3 4

1
3 1 1 2 3 4 5

2 1 1 2

1
2 4 3 2 1

1 3 2 1

ˆ()

ˆ()

ˆ , 4,5,..., 3

ˆ ()

ˆ (

k k k k k

k k k k k k

k k k k k
i i i i i i

k k k k k k
m m m m m m m

k k k k
m m m m m

f b u u cu du eu

f a u u bu cu du eu

f au bu cu du eu i m

f au bu cu du e u u

f au bu cu d u





   


    

   

     

      

       

      

     1)k
mu 

 (7)

The IADEMF4 scheme secondly employs the fractional
splitting of the higher-order accuracy formula of the MF
variant [13],

(1/2) ()
1 2() ()p prI G rI gG   u u f

 (8)

(1) (1/2)
2 1() ()p prI G rI gG g    u u f

 (9)

where 1G

and 2G are two constituent matrices and ,r I

and p represent an acceleration parameter, an identity matrix

and the iteration index respectively. The value of g is defined

as
6

6

r
g


 , 0r  . The vectors

(1)p
u and

(1/ 2)p
u

represent the approximate solution at the iteration level

(1)p  and at some intermediate level (1/ 2)p  ,

respectively.

After some algebraic manipulations for the equations in (8)

and (9), the form, 1 2 1 2
1

6
G G G G
 

   
 

u f is obtained,

suggesting that matrix A in (6) can be decomposed into.

1 2 1 2
1

6
A G G G G  

 (10)

To retain the penta-diagonal structure of A , the matrices

1G and 2G

have to be in the form of lower and upper tri-

diagonal matrices respectively, Thus,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

601 | P a g e

www.ijacsa.thesai.org

1

1 2
1

2

4

4 3 (2) (2)

1

1

ˆ

ˆ

1

ˆ 1

m

m m m x m

l

m l
G

m

l

m l



   

 
 
 
 
 
 
 
 
 
 





and

1 1 1

2 2 2

2

4 4 4

3 3

2 (2) (2)

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ

m m m

m m

m m x m

e u v

e u v

G
e u v

e u

e

  

 

  

 
 
 
 
 
 
 
 
 
 





 (11)

If each 1G

and 2G

in (11) is substituted into the matrix A

in (10), then the new entries of the latter can be compared with
those in (6) to yield the following constants.

1 1
1 1 1 2

1

ˆ6(1)6(1) 6 6
ˆ ˆ ˆ, , , ,

ˆ5 5 6 5

6
ˆ where 1,2, ..., 4

5
i

c l uc d b
e u l e

e

e
v i m

 
   



  

for
2,3, ..., 3i m 

1 1 1 1
1

1

1 1
1

ˆ ˆ ˆ6 66
ˆ ˆ, , ,

ˆ ˆ5 6 6

ˆ ˆ ˆ6(1)
ˆ

5

i i i i
i i i

i i

i i i i
i

d l v b m ua
u m l

e e

c l u m v
e

   




 


 
  

 

  


 (12)

Since 1G

and 2G

are three banded matrices, then it is easy

to obtain the inverses of 1()rI G and 2()rI G . By

rearranging the equations in (8) and (9), the following
expressions are obtained.

(1/2) 1 () 1
1 2 1() () ()p prI G rI gG rI G      u u f

 (13)

(1) 1 (1/2) 1
2 1 2() () ()p prI G rI gG g rI G       u u f

 (14)

Based on the above two equations, the computational
formulae at each of the half iteration levels can be derived as
given in (15) and (16).

1) At the (p+1/2) iteration level:

() () (1/2)(1/2) ()
1 1 1 31 2 2

(1/2)
2 1

1
ˆ(

), 2,3,..., 2, 1

p p pp p
i i i i i ii i i

p
i ii

u E u W u V u m u
R

l u f i m m


     


 

   

    
 (15)

2) At the (p+1) iteration level:

(1/2) (1/2) (1)(1) (1/2)
3 2 12 1 1

1

(1)
1 2

1
ˆ(

ˆ), 1, 2,...,3,2

p p pp p
i i i i ii i i

i

p
i ii

u S u Q u Pu u u
Z

v u gf i m m

   
    




 

   

    
 (16)

with

1 0 0 2 3 2 2 2

3 0 1 0

ˆ ˆ ˆ ˆ

ˆ 0

m m m m m

m

m m l V V W u v

v Q S S

     

 

      

    

1 , ,

ˆ ˆ, , 1, 2, ..., 2

ˆ , , 1, 2, ..., 3

ˆ ˆ, , 1, 2, ..., 4

i i i i

i i i i

i i i i

R r P r g

E r ge Z r e i m

W gu Q gl i m

V gv S gm i m

   

     

     

     
 (17)

The two-stage IADEMF4 algorithm is implemented by
using the required equations at the two iteration levels in
alternate sweeps along all the grid-points in the interval (0,1)
until convergence is reached. The method is explicit, since at
each level of iteration, the computational molecules involve
two known grid-points at the new level and another three
known ones at the old level (Fig. 1 and 2). The unknown

(1/ 2)p
iu

 in (15)

is calculated by proceeding from the left

boundary towards the right, whereas the unknown
(1)p
iu



in

(16) is calculated from the right boundary and moves to the
left.

Fig. 1. Computational Molecule of the IADEMF4 at the (1/ 2)p

Iteration

Level.

Fig. 2. Computational Molecule of the IADEMF4 at the (1)p 

Iteration

Level.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

602 | P a g e

www.ijacsa.thesai.org

III. PARALLELIZATION OF THE IADEMF4

It is observed that for 2,3, ..., 1i m  , the computation

of the unknown grid-point,
(1/2)p
iu 

, requires the values of the

grid-points at
(1/2)

2,
p

iu 


and
(1/2)

1
p

iu 
 (Fig. 1) and the

computation of the unknown
(1)

1
p

m iu 
 

requires the values of

(1)
2

p
m iu 
 

and
(1)

3
p

m iu 
  (Fig. 2). The unknown grid-points can only

be determined after the values of their two previous neighbors
at their respective current iteration levels have been

calculated. In other words, all values at the (1/ 2)thp  level

cannot be calculated independently and simultaneously, so as
values at the (1)thp level. These situations show that the

IADEMF4 is not inherently parallel. Thus, to handle this
problem, this study resorts to undertake a domain
decomposition approach that firstly divides the physical
domain into a number of subdomains, each being assigned to a
processor; and secondly exchanges appropriate data across the
boundaries of the subdomains. The Red-Black (RB) ordering
is the domain decomposition strategy that is considered in this
study. The approach focuses on minimizing the problem of
data dependencies and it is highly parallel.

A. The IADEMF4-RB

The RB ordering has shown its competitiveness in terms of
speedup and efficiency, as has been proven in studies made
by Evans [14] in solving the parallel SOR iterative methods;
Brill et al. [15] in using the block GS-RB on the Hermite
collocation discretization of partial differential equations in
two spatial dimensions; and Alias [5] in parallelizing the
IADEMF2. Darwis et al. [16] proved that the GS-RB
algorithm is more accurate and converges faster than the GS
algorithm. Yavneh [17] showed that the SOR-RB is more
efficient and smoother than the sequential SOR method for
solving two-dimensional Poisson equations.

This section parallelizes the IADEMF4 by using the RB
ordering technique. The algorithm used will be referred to as
the IADEMF4-RB.

The strategy to develop the IADEMF4-RB algorithm
begins by decomposing the domain  into two different

independent subdomains, R and B . Each grid-point in

the subdomains R and B is denoted red and black
respectively. If i is even, the grid-point is marked red, and if

i is odd, the grid-point is marked black. Assuming m is even,

then, the computational formulae for the IADEMF4-RB are:

() ()(1/2) () ()
1 1 11 2

(1/2) (1/2)
3 22 1

(1) (

ˆ)

y p pp p p
i y i i i i ii i

p p
i i ii i

u u E u W u V u
R

m u l u f




   

 
  

    

  
 (18)

for 2,4,.., 2i m  (red grid-points) and 3,5,.., 1i m 

(blackgrid-points)

(1/2) (1/2)(1) (1/2)
3 22 1

1

(1) (1)(1/2)
1 11 2

(1) (

ˆ ˆ)

p pp p z
i z i i ii i

i

p pp
i i i ii i

u u S u Q u
Z

Pu u u v u gf


   

  


 
  

   

   

(19)

for 2,4,.., 2i m  (red grid-points) and 3,5,.., 1i m 

(blackgrid-points)

The purpose of including the relaxation factors y and

z in (18) and (19) is to accelerate the convergence rate of the

scheme.

The IADEMF4-RB ordering, on say, three processors, P1,
P2 and P3, is illustrated in Fig. 3. P1 and P3 holds boundary
values at 0i  and 1i m  , respectively. The fourth-order

methods require additional boundary values which are at
positions 1i  (a grid-point in P1) and i m (a grid-point in

P3). As a strategy to obtain good load balancing, similar
numbers of alternate red (R) and black (B) grid-points are
assigned to each processor [18]. Depending on the color of the
grid-point, the first two starting grid-points in a processor may
be labelled as „stR‟ and followed by „stB‟, and the last two end
grid-points may be labelled as „enB‟ followed by „enR‟.

The following describes the implementation of the
IADEMF4-RB based on Fig. 3. The algorithm is subjected to
the given initial and boundary conditions. Before the

beginning of the execution, the unknowns, (1/2)p
iu  , for

2,3,.., 1i m  , are given „guessed‟ values at the initial time.

Then, the execution of the IADEMF4-RB algorithm is
performed in two phases:

The first phase involves the computations of only the red

grid-points at the iteration levels (1 / 2)p 

and (1)p  . This

phase requires every processor to compute in parallel the red
unknowns by making use of the initialized „guessed‟ values.

Example, the computation of
R

(1/2)

st

p
u

 in P2 requires „guessed‟

R

(1/2)

en

p
u

 value from P1 and
B

(1/2)

st

p
u

 value from P2 itself, while

the computation of
R

(1)

en

p
u

 in P2 requires „guessed‟
R

(1)

st

p
u



value from P3 and
B

(1)

en

p
u

 value from P2 itself.

Fig. 3. One-Dimensional IADEMF4-RB Ordering

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

603 | P a g e

www.ijacsa.thesai.org

After the computations of the red grid-points for the two
iteration levels have been completed, adjacent processors
exchange their updated red values at the boundary grid-points
to prepare for the calculation of the black grid-points in the
second phase. Example,

Send updated
R

(1/2)

en

p
u

 : from P1 to P2, and from P2 to P3.

Send updated
R

(1)

st

p
u

 : from P2 to P1, and from P3 to P2.

The second phase continues by computing simultaneously
the black unknowns at levels (1/ 2)p 

and (1)p  , using the

most recent red values computed in the first phase. For
example, the computation of

B

(1/2)

st

p
u

 in P2 uses the updated red

values
R

(1/2)

en

p
u

 and the „guessed‟ black value
B

(1/2)

en

p
u

 from P1,

while the computation of
B

(1)

en

p
u

 in P2 requires the updated red

values
R

(1)

st

p
u

 from P3 and the „guessed‟
B

(1)

st

p
u

 value from P3.

The updated black grid-points at the boundaries are then
shared between adjacent processors. Example,

Send updated
B

(1/2)

en

p
u

 : from P1 to P2, and from P2 to P3

Send updated
B

(1)

st

p
u

 : from P2 to P1, and from P3 to P2.

The two phases are repeated until convergence is reached.
Due to the dependencies on the updated values between
adjacent processors, the IADEMF4-RB algorithm involves
statements that take care of the communication between the
processors. An example of a procedure for sending and
receiving messages between processors in a PVM
environment is as illustrated in Fig. 4. The IADEMF4-RB
algorithm implemented by a slave processor can be described
as in Fig. 5.

Fig. 4. Communication Procedures for Sending and Receiving Messages
between Adjacent Processors.

Fig. 5. IADEMF4-RB–Slave‟s Parallel Algorithm.

if (left!=0) /* If there is a processor on the left*/

pvm_initsend(PvmDataDefault);

 pvm_pkdouble(& [start], 1,1);

 pvm_send(left,50);

end-if

if (right!= 0) /* If there is a processor on the right*/

 pvm_recv(right,50);

 pvm_upkdouble(& [end+1],1, 1);

 pvm_initsend(PvmDataDefault);

 pvm_pkdouble(& [end], 1,1);

 pvm_send(right,60);

 end-if

if (left!=0) /* If there is a processor on the left*/

 pvm_recv(left,60);

 pvm_upkdouble(& [start-1],1, 1);

end-if

IADEMF4 –RB: Slave’s Parallel Algorithm

begin

 slaves receive data from master: , ,

for

 determine initial conditions

 initialize guessed values

end-for

while (time level <)

 for and

 determine boundary conditions at ,

 , and

 end-for

 for

 compute (refer to (7))

 end-for

 for

 compute (refer to (7))

 end-for

 set iteration

 while (convergence conditions are not satisfied)

 for

 compute

 (refer to (18))

 end-for

 for

 compute (refer to (19))

 end-for

 send and receive updated red boundary

 values between adjacent slave

 processors (Fig. 4)

 for

 compute

 (refer to (18))

 end-for

 for

 compute (refer to (19))

 end-for

 send and receive updated black

 boundary values between adjacent

 slave processors (Fig. 4)

 test for convergence:

 compute for

 and

 if max

 then

 add 1 to iteration (if necessary)

 end-while

end-while

Determine numerical errors for and

 slave sends data analysis to master

 pvm_exit;

end

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

604 | P a g e

www.ijacsa.thesai.org

B. Parallel Algorithms for Benchmarking

The IADEMF2, the GS4 and the SOR4 algorithms [9] can
also be parallelized using the RB ordering technique. They
will serve as the benchmarks for the parallel IADEMF4-RB.
The following are the schemes under consideration, assuming
m is even.

1) the IADEMF2-RB algorithms:

(1/2) () (1/2) ()
1 1

()
1

(1) (

)

yp p p p
y i ii i ii

p
i ii

u u l u s u
d

w u f




 
 



    

 
 (20)

for 2,4,...,i m (red grid-points) and 1,3,5,..., 1i m 

(black grid-points)

(1) (1/2) (1/2)
1

1

(1/2) (1)
1 11 2

(1) (

ˆ)

p p pz
z m ii m im i

m i

p p
m i m im i m i

u u v u
d

su gf u u




  
  

 

 
      

  

  
 (21)

for 2,4,...,i m (red grid-points) and 1,3,5,..., 1i m 

(black grid-points)

2) the SOR4-RB algorithm (reduces to the GS4-RB

algorithm when 1  :

(1) () (1) (1) () ()
2 1 1 2(1) ()p p p p p p

i i i i i i iu u f au bu du eu
c


  

         
 (22)

for 2,4,..., 2i m  (red grid-points) and 3,5,..., 1i m 

(black grid-points)

IV. COMPUTATIONAL COMPLEXITY

The computational complexity of the RB algorithms of
interest is as given in Table I. It gives the number of parallel
arithmetic operations that is required to evaluate the
algorithms.

TABLE. I. PARALLEL ARITHMETIC OPERATIONS (m  PROBLEM SIZE,

n  NUMBER OF ITERATIONS, P  NUMBER OF PROCESSORS)

Method
Number of

additions

Number of

multiplications

Total operation

count

IADEMF4-RB 10(-2) /m n P 13(-2) /m n P 23(-2) /m n P

IADEMF2-RB 6 /mn P

9 /mn P

15 /mn P

GS4-RB 4(2) /m n P 5(2) /m n P 9(2) /m n P

SOR4-RB 5(2) /m n P 7(2) /m n P 12(2) /m n P

V. NUMERICAL EXPERIMENT

The IADEMF4-RB was implemented and tested on
multiprocessor distributed memory architecture comprising of
twelve interconnected processors with Linux operating system
using the PVM communication library. In distributed memory,
each processor has its own address space or local memory
which is inaccessible to other processors. The processors
operate independently in parallel, and they share their data by
means of some form of inter-processor communication via an
inter-connection network. The programmer is responsible for

the details associated with message passing between
processors. From the memory perspective, the size of memory
increases in proportion to the increasing number of processors.

The parallel performances of the proposed algorithm was
examined by solving a very large problem size on the
experiment in (23), where m varied from 70,000 to 700,000.

This problem was taken from Saul‟yev (1964),

2

2
, 0 1

U U
x

t x

 
  

  (23)

subject to the initial condition (,0) 4 (1),U x x x 

0 1x  and the boundary conditions

(0,) (1,) 0, 0.U t U t t  

The exact solution to the given problem is given by

2 2

3 3
1,(2)

32 1
(,) sin()k t

k

U x t e k x
k

 







 
 (24)

The other parameters considered for the experiment were 

= 0.5, t = 1.0204 x 10
-12

, t = 5.1020 x 10
-11

, and a stringent

tolerance value of 1510  . The initial and Dirichlet

boundary conditions at 0i  and 1i m  were applied based

on the values given in the problem. For the fourth-order
methods, the boundary values at positions 1i  and i m

were taken from the given exact solutions (24). The optimum

values for r and the relaxation factors (x , y and ) were

determined by experiments.

VI. RESULTS AND DISCUSSION

Table II compares the accuracy of the tested parallelized
RB algorithms for a fixed problem size, 700,000m  . It is

obvious that the IADEMF4-RB outperforms the IADEMF2-
RB in terms of rate of convergence. The average absolute
error, root mean square error and the maximum error of both
algorithms seem identical up to four decimal places, due to the
stringent tolerance value set in the experiment. The high
computational complexity of the IADEMF4-RB is
compensated by the high accuracy it achieves at every
iteration and time level, causing its convergence to accelerate.
The SOR4-RB speeds up the convergence of the GS4-RB, but
they are both relatively not reliable in terms of accuracy.

Table III displays the number of iterations (n), execution

time, speedup and efficiency of the IADEMF4-RB on using
three different values of problem size, m. The execution time
refers to the amount of time required to complete a parallel
program on a number of P processors from the moment the
execution starts till the moment the last processor finishes its
execution [19]. Speedup expresses how much faster the
parallel program executes relative to the sequential one.
Amdahl‟s law states that there exists a bound on the speedup
for a given problem with a fixed size [20], since some parts of
the computations for solving a given problem are not
parallelizable. Efficiency is a measure of the speedup achieved
per processor. It estimates how well the processors are utilized
during the execution of a parallel algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

605 | P a g e

www.ijacsa.thesai.org

TABLE. II. PARALLEL RB ALGORITHMS – ERRORS AND NUMBER OF

ITERATIONS

Method

(m=700,000)

Average

absolute

error

Root

mean

square

error

Max.

error

Number

of

iterations

IADEMF4-RB

 0.8, 1, 1.1y zr    

1.5920e-

09

7.3054e-

09

1.9845e-

07
288

IADEMF2-RB

 0.8, 1, 1.1y zr    

1.5920e-

09

7.3054e-

09

1.9845e-

07
450

SOR4-RB

(1.06)

1.6150e-

09

9.6395e-

09

2.7422e-

06
738

GS4-RB
1.6150e-
09

9.6395e-
09

2.7422e-
06

794

 = 0.5, x = 2.60 x 10-6, t = 1.02 x 10-12, t = 5.10 x 10-11,  = 1 x 10-15

TABLE. III. IADEMF4-RB – PERFORMANCES USING SEVERAL VALUES OF m

m x P
Execution

time (s)
Speedup Efficiency

70,000

359n 
1.43 x 10-5

1 4.869491 1 1

2 2.507665 1.941843 0.970921

4 1.518787 3.206171 0.801542

6 1.261464 3.860190 0.643365

8 1.102297 4.417585 0.552198

10 1.039360 4.685086 0.468508

12 1.008263 4.829584 0.402465

385,000

312n 
2.60 x 10-6

1 20.039541 1 1

2 10.062964 1.991415 0.995707

4 5.300258 3.780842 0.945210

6 3.828272 5.234617 0.872436

8 2.993626 6.694069 0.836758

10 2.447466 8.187873 0.818787

12 2.101530 9.535691 0.794640

700,000

288n 
1.43 x 10-6

1 35.682042 1 1

2 17.896741 1.993773 0.996886

4 8.962541 3.981241 0.995310

6 6.202509 5.752840 0.958806

8 4.900683 7.281034 0.910129

10 3.992991 8.936168 0.893616

12 3.456841 10.32215 0.860179

 = 0.5, t = 1.02 x 10-12, t = 5.10 x 10-11,  = 1 x 10-15

The results in Table III show that the execution time for a
problem using any of the considered sizes is reduced and the
speedup improves as the number of processors increases. For

70,000m  , the increase in speedup from 1P  to 12P  is

about 80% and for 700,000m  , the increase is about 90%.

This shows that parallel computation improves performance in

terms of execution time and speedup over serial computation.
Due to overheads, the overall efficiency for any m tends to

decrease as the number of processors increases. Overheads
have impacts on parallel performance. The two common types
of overheads are the communication time and the idle time.
The communication time is the time spent on communication
and exchanging of data during the execution in all processors
and the idle time is the time when processors stay idle, waiting
for busy processors to send messages. Idling may be due to
load imbalances amongst processors, or a bottleneck at the
master processor when it has to interact with other worker
processors [21].

For every number of processor ran in the experiment, the
execution time for a problem size of 70,000 is comparatively
smaller than a problem ten times its size. This is expected
since fewer grid-points involve less mathematical operations
and data sharing. The table, however, shows an improvement
in convergence rate, speedup and efficiency as the size
increases to 700,000 . The smaller size with higher number of

iterations (n) seems to be less efficient due to the additional
overhead imposed by having communications routed through
the PVM daemon.

Fig. 6 shows that the execution time taken by every tested
algorithm (listed in Table II) decreases with increasing P .
However, the IADEMF4-RB executes in the least amount of
time for every P . Despite the IADEMF4‟s greater
computational complexity, its parallelization using the RB
technique and the use of relaxation parameters have enabled it
to execute in a shorter time on one and more processors in
comparison to its counterpart of second-order.

Fig. 7 shows that every tested algorithm has a speedup of
less than P , which implies that the parallel code is bounded by
the sequential code (Amdahl‟s law). The parallel code runs
slower due to overheads that outweigh the benefits of parallel
computation. Amongst the four algorithms, the IADEMF4-RB
proves to continue giving the best speedup as P increases. At

12P  , the speedup of the IADEMF4-RB is almost 14%
closer to the linear speedup. As for the IADEMF2-RB, the
SOR4-RB and the GS4-RB, there is an 18, 24 and 28 percent
difference, respectively, between the method‟s speedup and
the linear speedup.

Fig. 6. Execution Time Versus Number of Processors.

0

10

20

30

40

50

60

1 2 4 6 8 10 12

E
x
ec

u
ti

o
n

 t
im

e
(s

)

Number of processors

IADEMF2-RB

IADEMF4-RB

GS4-RB

SOR4-RB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

606 | P a g e

www.ijacsa.thesai.org

Fig. 7. Speedup Versus Number of Processors.

Fig. 8 illustrates the reduction in efficiency as the number
of processors increases. The overhead increases as P
increases, leading to a declining performance in efficiency.
The IADEMF4-RB, for example, performs efficiently for

4P  and becomes less efficient for 4P  . The superior
speedup performance by the IADEMF4-RB (Fig. 7), however,
makes it the most efficient algorithm amongst the tested
algorithms. With the number of processors equals to 12, the
IADEMF4-RB achieves a speedup of 10.32 that equates to a
higher efficiency of about 0.86 (Table III).

Temporal performance is a metric which is inversely
proportional to the execution time. If there are several parallel
algorithms solving the same problem with the same problem
size implemented on the same number of processors, then the
algorithm with the largest value for temporal performance will
be considered as the best algorithm that can perform in the
least amount of execution time. Fig. 9 shows that the
IADEMF4-RB has proven itself as the algorithm with the best
temporal performance amongst all the methods considered for
comparison.

Granularity is an important performance metric since it
gives a good indication of the feasibility of parallelization. It
gives a qualitative measure of the ratio of the amount of
computational time to the amount of communication time
within a parallel algorithm [19]. The results of the granularity
for the different tested parallel-RB methods are summarized in
Table IV. Clearly, the granularity of all the methods decreases
with increasing number of processors. This is due to the
dependency of granularity on computational time and
communication time. For any 12P  , the IADEMF4-RB has
the largest granularity, indicating that the application spends
more time in computation relative to communication. The
large granularity of the IADEMF4-RB gives a good indication
of the feasibility of its parallelization. The GS4-RB has the
least granularity due to the idle time incurred by message
latency, improper load balancing and time spent waiting for all
processors to complete the process.

Fig. 8. Efficiency Versus Number of Processors.

Fig. 9. Temporal Performance Versus Number of Processors.

TABLE. IV. SUMMARY OF THE GRANULARITY RESULTS FOR THE TESTED

RB METHODS

P IADEMF4-RB IADEMF2-RB SOR4-RB GS4-RB

2 16.8 15.2 10.6 8.6

4 16.4 11.7 7.9 5.1

6 9.9 6.6 4.7 3.8

8 6.2 5.1 3.8 3.2

10 5.5 4.5 3.3 2.7

12 4.4 3.8 2.9 2.4

VII. CONCLUSION

This study strategizes to accelerate the convergence rate
and the sequential execution time of the IADEMF4 by
implementing it on a distributed computing based on PVM.
The approach to parallelize the IADEMF4 is by implementing
the RB parallel strategy.

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12

S
p

e
e
d

u
p

Number of processors

IADEMF2-RB

IADEMF4-RB

GS4-RB

SOR4-RB

Linear Speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 6 8 10 12

E
ff

ic
ie

n
c
y

Number of processors

IADEMF2-RB

IADEMF4-RB

GS4-RB

SOR4-RB

Optimum Efficiency

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

1 2 4 6 8 10 12

T
em

p
o
ra

l
p

er
fo

rm
an

ce

Number of processors

IADEMF2-RB

IADEMF4-RB

GS4-RB

SOR4-RB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

607 | P a g e

www.ijacsa.thesai.org

The proposed IADEMF4-RB parallel algorithm
significantly outperforms its counterparts of the second-order,
as well as the benchmarked fourth-order classical methods.
This is with regards to accuracy, convergence rate and parallel
measures such as execution time, speedup, efficiency,
temporal performance and granularity. Despite its higher
computational complexity, its increasing number of correct
digits at each iteration yields faster rate of convergence with
higher level of accuracy for a large size matrix. The relatively
coarse granularity delivered by the RB parallel
implementation indicates the feasibility of parallelizing the
proposed IADEMF4.

The efficient performance in parallel gives benefits,
especially in solving problems involving larger sparse linear
systems of equations that usually consumes huge amount of
serial time. Future work is to consider applying the
IADEMF4-RB in time-dependent PDEs that require higher-
order accuracy with significant speedup and efficiency.
Another possibility is to apply the proposed parallel method
onto shared or hybrid memory architectures to reduce the
problem of communication issues.

REFERENCES

[1] M. S. Sahimi, A. Ahmad, and A. A. Bakar, “The Iterative Alternating
Decomposition Explicit (IADE) method to solve the heat conduction
equation,” International Journal of Computer Mathematics, vol. 47, pp.
219-229, 1993.

[2] D. J. Evans and M. S. Sahimi, “The Alternating Group Explicit Iterative
Method to solve parabolic and hyperbolic partial differential equations,”
Ann. Rev. of Num. Fluid Mechanics and Heat Transfer, vol. 2, pp. 283-
389, 1989.

[3] M. S. Sahimi, E. Sundararajan, M. Subramaniam, and N. A. A. Hamid,
“The D‟Yakonov fully explicit variant of the iterative decomposition
method,” Comp. Math. , vol. 42, pp. 1485-1496, 2001.

[4] M. S. Sahimi, N. A. Mansor, N. M. Nor, N. M. Nusi, and N. Alias, “A
high accuracy variant of the Iterative Alternating Decomposition
Explicit method for solving the heat equation,” Int. J. Simulation and
Process Modelling, vol. 2, Nos. 1/2, pp. 77-86, 2006.

[5] N. Alias, “Development and implementation of parallel algorithms in
the IADE and AGE class of methods to solve parabolic equations on a
distributed parallel computer systems,” PhD Thesis, Universiti
Kebangsaan Malaysia (2003).

[6] N. Alias and S. Kireev, “Fragmentation of IADE method using
LuNA system,” Malyshkin V. (eds) Parallel Computing
Technologies, Lecture Notes in Computer Science, vol. 10421.
Springer, Cham, 2017.

[7] J. Sulaiman, M. K. Hasan, and M. Othman, “The half-sweep Iterative
Alternating Decomposition Explicit Method (HSIADE) for diffusion
equations,” Lecture Notes on Computer Science, vol. 3314, Berlin-
Heidelberg, pp. 57-63, 2004.

[8] J. Sulaiman, M. K. Hasan, and M. Othman, “Quarter-sweep Iterative
Alternating Decomposition Explicit algorithm applied to diffusion
equations,” International Journal of Computer Mathematics, vol.
81(12), pp. 1559-1565, 2004.

[9] N. Alias, M. S. Sahimi, and A. R. Abdullah, “Parallel strategies for the
Iterative Alternating Decomposition Explicit Interpolation-conjugate
Gradient method in solving heat conductor equation on a distributed
parallel computer systems,” Proceedings Third International Conference
Numerical Analysis Eng., pp. 31-38, 2003.

[10] R. H. Shariffudin and S. U. Ewedafe, “Parallel domain decomposition
for 1-D active thermal control problem with PVM,” International
Journal of Advanced Computer Science and Applications, vol. 6, No.
10, 2015.

[11] N. A. Mansor, A. K. Zulkifle, N. Alias, M. K. Hasan, and M. J. N.
Boyce, “The higher accuracy fourth-order IADE algorithm,” Journal of
Applied Mathematics, vol. 2013 Article ID 236548,
http://dx.doi.org/10.1155/2013/236548, 2013.

[12] G. D. Smith, “Numerical solution of partial differential equations: Finite
difference methods,” second ed., Oxford University Press, 1978.

[13] A. R. Mitchell and G. Fairweather, “Improved forms of the alternating
direction methods of Douglas,Peaceman,and Rachford for solving
parabolic and elliptic equations,” Numerische Mathematik, vol. 6 (1),
pp. 285–292, 1964.

[14] D. J. Evans, “Parallel S.O.R iterative methods,” Parallel Computing, vol.
1, pp. 3-18, 1984.

[15] S. H. Brill and G. F. Pinder, “Parallel implementation of the Bi-
CGSTAB method with Block Red-Black Gauss-Seidel preconditioner
applied to the Hermite Collocation discretization of partial differential
equations,” Parallel Computing, vol. 28:3, pp. 399-414, 2002.

[16] R. Darwis, N. Alias, N. Yaacob, M. Othman, N. Abdullah, and T. Y.
Ying, “Temperature behavior visualization on rubber material involving
phase change simulation,” Journal of Fundamental Sciences, vol. 5, pp.
55-62, 2009.

[17] I. R. Yavneh, “On Red-Black SOR smoothing in multigrid,” SIAM J.
Sci. Comput. , vol. 17(1), pp. 180-192, 1995.

[18] B. Körfgen and I. Gutheil, “Parallel linear algebra methods,
computational nanoscience: do it yourself!,” John von Neumann
Institute for Computing. Jülich, NIC Series, vol. 31, pp. 507-522, 2006.

[19] J. Kwiatkowski, “Evaluation of parallel programs by measurement of its
granularity,” Proceeding PPAM ‟01 International Conference on Parallel
Processing and Applied Mathematics–Revised Papers, Springer-Verlag,
London, 2002.

[20] G. M. Amdahl, “Validity of the single-processor approach to achieving
large scale computing capabilities,” AFIPS Conference Proceedings,
vol. 30. AFIPS Press, Reston, Va., pp. 483-485, 1967.

[21] J. Lemeire, “Leaning causal models of multivariate systems and the
value of it for the performance modeling of computer programs,” PhD
Thesis, Vrije Univesiteit, Brussel, Brussels University Press, 2007.

http://dx.doi.org/10.1155/2013/236548

