
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

HPSOGWO: A Hybrid Algorithm for Scientific
Workflow Scheduling in Cloud Computing

Neeraj Arora1
School of Science and Technology

Vardhman Mahaveer Open University
Kota, Rajasthan, India 324010

Rohitash Kumar Banyal2
Department of Computer Science and Engineering

Rajasthan Technical University
Kota, Rajasthan, India 324010

Abstract—Virtualization is one of the key features of cloud
computing, where the physical machines are virtually divided into
several virtual machines in the cloud. The user’s tasks are run on
these virtual resources as per the requirements. When the user
requests the services to the cloud, the user’s tasks are allotted
to the virtual resources depending on their needs. An efficient
scheduling mechanism is required for optimizing the involved
parameters. Scientific workflows deals with a large amount of
data with dependency constraints and is used to simplify the
applications in the diverse scientific domains. Scheduling the
workflow in cloud computing is a well-known NP-hard problem.
Deploying such data- and compute-intensive workflow on the
cloud needs an efficient scheduling algorithm. In this paper, we
have proposed a multi-objective model based hybrid algorithm
(HPSOGWO), which combines the desirable characteristics of
two well-known algorithms, particle swarm optimization (PSO),
and grey wolf optimization (GWO). The results are analyzed
under complex real-world scientific workflows such as Montage,
CyberShake, Inspiral, and Sipht. We have considered the two
essential parameters: total execution time and total execution
cost while working in the cloud environment. The simulation
results show that the proposed algorithm performs well compared
to other state-of-the-art algorithms such as round-robin (RR),
ant colony optimization (ACO), heterogeneous earliest time first
(HEFT), and particle swarm optimization (PSO).

Keywords—Cloud computing; hybrid algorithms; metaheuristic
algorithms; optimization; workflow scheduling

I. INTRODUCTION

Cloud Computing is a buzzing word from decades in
computer science as it offers advancements like hiding and
abstraction of complexity, visualized resources, and efficient
use of distributed resources. Few well-known cloud computing
platforms are Amazon EC2, GoGrid, Google App Engine,
Microsoft Azure, etc. [1] [2]. The services of cloud computing
can be classified into Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS) [3].

The tasks are dependent on each other in the workflow. The
workflow can be represented using Directed Acyclic Graph
(DAG) [4], where the nodes in the DAG represent the tasks (T),
and the edges (E) joining the nodes represent the dependency
between the tasks. A sample workflow is shown in Fig. 1,
containing eight tasks {T1, T2, T3, T4, T5, T6, T7, T8}. The
tasks T1 and {T4, T6, T7, T8} are the entry and exit tasks,
respectively. Each edge of the DAG shows the dependencies
between the tasks. For example, T2 is executed after T1 which
is shown by the paired set {T1, T2}. A scientific workflow is
a specialized form of the workflow which is used in various

scientific domains like astrology, bio-informatics, gravitational
waves, etc. [5].

Fig. 1. Dependency of Tasks for Workflow Schedule.

Pegasus project published some of the realistic scientific
workflows like Montage, CyberShake, Epigenomics, LIGO,
and SIPHT [6] [7]. The structures of these workflows are
shown in Fig. 2.

The workflow scheduling can be considered as a mapping
function where several dependent tasks are mapped to several
available virtual machines [9]. Suppose, m number of tasks
maps to the n number of virtual machines; then, nm combina-
tions which are possible if the brute force algorithm is used.
So, the workflow scheduling is a complex problem, and the
solution is not found in polynomial time [10]. It is good to find
a near-optimal solution to the workflow scheduling problem
with a meta-heuristic algorithm.

Many meta-heuristic optimization algorithms have been
used to solve workflow problems in cloud computing. Genetic
Algorithm (GA) is used in workflow scheduling to minimize
the makespan [11]. GA algorithm is robust and generates a
high-quality search in polynomial time but takes a bit more
time to find the solution. Pandey et al. [12] used Particle
Swarm Optimization (PSO) to schedule workflow applications
in a cloud computing environment. PSO is a fast optimization
algorithm but has a problem such as earlier convergence and
trapping in local optimal solution [13]. Grey Wolf Optimiza-
tion (GWO) is the recent proposed meta-heuristic algorithm
that mimics grey wolves’ leadership hierarchy [14]. Khalil
and Babamir [15] offered the extended version of Grey Wolf
Optimizer for solving the workflow problem. GWO reduces the

www.ijacsa.thesai.org 626 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Fig. 2. Structures of Real-World Scientific Workflows [8].

probability of being trapped in the local optimal solution. By
combining two or more algorithms considering their strengths,
one can overcome the aforementioned issues of algorithms.
In this paper, we proposed a hybrid algorithm combining
Particle Swarm Optimization (PSO) and Grey Wolf Optimize
(GWO), named HPSOGWO. The HPSOGWO is tested on
the scientific workflow like montage, cybershake, inspiral, and
sipht to optimize total execution cost and time. In the next
section, we review some of the scheduling algorithms used in
cloud computing.

II. RELATED WORK

Workflow is more popular among the scientists in which
a complex scientific process is modeled into small tasks
[16]. These tasks can be executed on parallel and distributed
computing like cloud computing. Workflow scheduling is a
well-known NP-hard problem in cloud computing. Several
list based heuristics have been proposed for task scheduling
to optimize the performance of cloud computing like first
come first serve (FCFS), round-robin (RR), shortest job first
(SJF), minimum completion time (MCT), etc. The basic idea
of list-based heuristics is to assign a priority to each task
and allot to the available resources as per given preferences.
The Heterogeneous Earliest Finish Time (HEFT) was designed
for heterogeneous multiprocessor systems. Dubey et al. [17]
proposed a modified version of HEFT, capable of reducing
the makespan time compared to existing HEFT and Critical
Path on a Processor (CPOP).

In the Min-Min algorithm, the minimum execution time
task is mapped to the machine with minimum completion
time [18]. A similar algorithm is Max-Min algorithm where

in the task with maximum execution time is assigned to the
machine, which takes minimum completion time. The Min-
Min and Max-Min are offline scheduling that work in batch
mode, which means the tasks are not allocated to the resources
as they enter [19]. Suffering from starvation is the drawback
with Min-Min and Max-Min algorithms [20]. Besides, they
consider only the time as a resource quality. The list-based
heuristics concentrate only on the user perspectives; they are
less focused on the resource quality parameters.

These aforementioned conventional heuristics algorithms
are simple, easy to implement, and fast, but for further
improvement in the quality of solution and to achieve the
optimum results for complex problems like workflow schedul-
ing, the meta-heuristic approaches can find the near-optimal
solution [21]. In addition, the heuristic algorithms are problem-
dependent techniques, whereas the meta-heuristic methods
are problem-independent techniques. The meta-heuristic algo-
rithms have been widely used due to its simplicity and strong
searching power in less time and cost. Many of the meta-
heuristics approaches were proposed for solving the workflow
problem. Some of the standard algorithms are the Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO).

Dasgupta et al. [1] proposed a genetic-based algorithm
used for task scheduling problem. The experiment results show
better performance in terms of makespan when compared with
First Come First Serve (FCFS), Round Robing (RR), and a
local search algorithm Stochastic Hill Climbing (SHC). The
GA algorithm was reported to be a time-consuming algorithm
for reaching the optimum solutions [22].

www.ijacsa.thesai.org 627 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Tawfeek et al. [23] used the Ant Colony Optimization
(ACO) approach for task scheduling to minimize the makespan
and found that ACO performed better than FCFS and RR.
However, ACO is a very complex algorithm and takes a long
time to get optimal results [24]. The dependency of tasks is
not been considered.

Particle swarm optimization (PSO) is one of the popular
meta-heuristic algorithms. It is simple to implement and has
fast convergences. Despite its advantages, it gets trapped in
local optimum for the complex problems[25].

Meta-heuristic algorithms are characterized by exploitation
and exploration abilities [26]. Exploitation means that the
algorithm is very successful in performing local searches.
Exploring means that the algorithm is useful to find out the
initial solution, which may be near to the global optimum.
A good meta-heuristic algorithm balances the exploration and
exploitation abilities. Particle Swarm Optimisation has high
exploration ability but is low in exploitation ability. The grey
wolf optimizer is proposed by Mirjalili et al. [14] and has a
right balance between exploration and exploitation abilities.

A single meta-heuristic might not get the optimal solution
and may stuck into the local optimal solution for complex
problems like scientific workflow scheduling. It is a better
approach to combine one or more meta-heuristic algorithms
based on their best characteristics. In the last few decades,
hybrid algorithms have become popular. Here, we discuss
only those existing algorithms which are either hybrid with
PSO or GWO. Manasrah and Ali [8] proposed a hybridization
of the Genetic Algorithm and Particle Swarm Optimization
(GA-PSO) algorithm. The hybrid GA-PSO algorithm reduces
the total execution time compared with GA, PSO, and other
algorithms. Another hybrid algorithm has been reported in
[27], which was the hybrid version of the PSO and gravitation
search algorithm (GSA). This hybrid algorithm performs well
compared with some non-heuristics, PSO, and GSA algorithms
in terms of cost. The hybridization of the Grey Wolf Opti-
mization (GWO) and Genetic Algorithm (GA) was proposed
by Bouzary and Frank [28] and they found that the proposed
algorithm was superior than GWO and genetic algorithm (GA)
cost wise. Khurana and Singh [29] have introduced a hybrid of
flower pollination algorithm and GWO to reduce the cost and
time and give efficient results compared to flower pollination
with genetic algorithm.

Despite the advantages of the aforementioned hybrid al-
gorithms, one might ask the motivation behind the proposed
algorithm. The answer lies in the free lunch theorem [30]. The
free lunch theorem specifies that the single algorithm is not fit
for solving all the optimization problems. It might perform
better for a particular optimization problem, but it may not
perform well for the other optimization problems. There is no
universal solution to optimization problems.

III. BACKGROUND

In this section, we discuss the standard PSO and GWO
algorithm used in the designing the proposed algorithm. The
fitness function used in the proposed algorithm is also ex-
plained in this section.

A. Fitness Function

The fitness function described the targeted objectives to
be optimized using the proposed scheduling algorithm [31].
There are two approaches to make a fitness function multi-
objective: priori and posteriori [32]. In the priori approach,
each involved objective is assigned a weight, as per their
importance, to make a single-valued function, also known as
fitness value. Whereas, the set of non-dominant solutions is
found in the posteriori approach. Here, we follow the priori
approach to design the fitness function. The fitness function
is the composition of total execution cost (TEC) and total
execution time (TET). Mathematically, the considered fitness
function can be represented using the equation 1.

f(TET, TEC) = α1 × TET + α2 × TEC (1)

where TET and TEC are the total execution time
(makespan) and total execution cost respectively. α1 and α2

are the weight assigned for each objectives. Here, we consider
similar weight to α1 and α2 that is 0.5. The complete descrip-
tion of total execution time (makespan) and total execution
cost is explained in the following sub-sections:-

1) Total execution time (makespan): The total execution
time (makespan) is the maximum completion time taken by
tasks in the workflow. In other words, makespan is the time
required for finishing all the tasks allotted to different virtual
machines [25]. Mathematically, the makespan of the workflow
can be derived using equation 2.

TETW = max{CTi | i = 1, 2, ...m} (2)

where CTi is the completion time of the task Ti in the
workflow. The completion time is the total execution time of
the tasks. In case tasks are dependent, then the waiting time
of predecessor tasks is also considered. The completion time
CTi is depicted in equation 3.

CTi =

{
ETi iff pred(Ti) = ∅
WKi + ETi iff pred(Ti) 6= ∅

(3)

The waiting time of task Ti is the maximum completion
time of all the predecessor tasks of workflow as shown in
equation 4.

WKi =

{
0 iff pred(Ti) = ∅
max(CTi) iff pred(Ti) 6= ∅

(4)

ETi,j =
SZTask

Num(PEj)× PEUnit
(5)

The execution time of the task Ti on virtual machine VMj is
calculated using equation 5, where SZTask is the size of task
Ti in million instruction (MI), Num(PEj) is the number of
core assigned to the virtual machine VMj , PEUnit is the size
of each core in MIPS.

www.ijacsa.thesai.org 628 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

2) Total execution cost: The cost is a prominent objective
to be optimized as cloud computing follows a pay-as-you-
go billing scheme [33]. Major of the cloud service providers
charges for some specific time interval based on the cloud
services used. Cost in cloud computing involves execution cost,
communication cost, and storage cost. The total execution cost
of VM is the cost charged of VM per unit interval and the
execution time of tasks on that VM. Mathematically, the total
execution cost (TEC) of workflow W is shown in equation 6
[34].

TECW =

k∑
i∈W,i=1

ETi,j
τ
× COj : j ∈ VMj (6)

where COj is the cost of type-i VM instance for a unit time
in the cloud data center. τ is the time period for which the
resources are used by the user. ETi,j is the execution time of
task Ti by type-j VM instance .

B. Particle Swarm Algorithm

Kennelly and Eberhat proposed the Particle Swarm Opti-
mization (PSO) technique in 1995 [35]. It is a meta-heuristic
technique based on the social behavior of the swarm of birds
or particles. Each particle represents a solution for the problem
and searches the optimal solution in the problem space. The
particle is characterized by its position and velocity. In every
iteration, the position and velocity are updated and moves
towards the optimal results. PSO consists of the following
stages:-

1) Evolve gbest and pbest of the Particles: In Particle
Swarm Optimisation, each particle represents a solution and
in each generation of particle it produces the global best
particle denoted by gbest and the personal best particle is
denoted by pbest. The selection of pbest and gbest particles
are determined by their fitness values.

2) Update Position and Velocity: Position and velocity of
the particle are influenced by the personal best (pbest) and the
global best particle (gbest).

Vi(t+ 1) = w.Vi(t)+C1.r1 ∗ (pbest− xi(t))
+ C2.r2 ∗ (gbest− xi(t))

(7)

Equation 7 represents the velocity of the ith particle at
the t iteration. The C1 and C2 are coefficient and w is the
inertia weight. The initial values of the coefficient are given
in Table II. r1 and r2 are the random numbers between 0 and
1.

xi(t+ 1) = xi(t) + Vi(t) (8)

The position x of the ith particle for tth iteration is updated
as the equation 8.

C. Grey Wolf Algorithm

Mirjalili et al. [14] proposed Grey Wolf Optimization
(GWO) technique which mimics the hunting behaviour and
leadership hierarchy of grey wolf. According to the mathe-
matical model of the GWO, there are four types of wolves
that are alpha (α), beta (β), delta (δ) and omega (Ω). Each

wolf represents a solution. The alpha wolf represents the best
solution. The second best solution and the third best solutions
are represented by beta and delta wolves respectively and all
the other rest solutions are known as omega wolf. GWO algo-
rithm is composed of steps shown in Sections III-C1, III-C2,
and III-C3.

1) Encircling prey: The grey wolf encircle prey during the
process and this can be mathematically modelled using the
equations 9 and 10.

D = |C.Xp(t)−X(t)| (9)

X(t+ 1) = Xp(t)−A.D (10)

The position of the wolf is updated using equations 9 and
10 for the current iteration t, where Xp is the position of prey
and X is the position of wolf. A and C are the coefficient
vectors and calculated using equations 11 and 12 respectively.

A = 2a.r1 − a (11)

C = 2.r2 (12)

The values in the random numbers r1 and r2 in equations 11
and 12 are in the range from 0 to 1 and the value of variable
a is linearly decrease from 2 to 0 and is calculated using
equation 16

2) Haunting: The alpha wolf (best solution) guides the
hunting process in GWO. Equations 13, 14 and 15 are used
to update the position of the best search agents.

Dα = |C1.Xα −X(t)|
Dβ = |C2.Xβ −X(t)|
Dδ = |C3.Xδ −X(t)|

(13)

X1 = Xα −A1.Dα

X2 = Xβ −A2.Dβ

X3 = Xδ −A3.Dδ

(14)

X(t+ 1) =
(X1 +X2 +X3)

3
(15)

In equation 14, X(t) is the position vector of grey wolf. X1,
X2, and X3 are position vectors of alpha, beta and delta wolves
respectively.

3) Attacking Prey: The grey wolf attacks the prey until
it stops moving. Mathematically, we decrease the value of a
in each iteration. The controlling parameter a is defined in
equation 16, where t is current iteration and N is the maximum
number of iteration.

a = 2× (1− t

N
) (16)

www.ijacsa.thesai.org 629 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Fig. 3. Encoded Solution in Scheduling Problem.

IV. PROPOSED ALGORITHM

The complete description of the proposed algorithm is
given in this section. The proposed algorithm, named HP-
SOGWO, is the combination of Particle Swarm Optimization
and Grey Wolf Optimization. The basic idea of the HPSOGWO
algorithm is to run the PSO algorithm for the first half of the
total iterations and the best solution generated by the PSO
(gbest) is initialized to the alpha wolf (α-wolf) and for the
latter half of the total iterations run GWO algorithm. The best
solution generated by the GWO is stored in alpha wolf and
considered to be the best mapping of tasks and VMs. The
complete algorithm is shown in Algorithm 1 and the major
steps are shown in Fig. 5. The initial or range of the various
parameters along with the explanation used in the proposed
algorithm is shown in Table II.

A. Encoding the Scheduling Problem

The first step in applying the algorithm is to model
the workflow scheduling problem. As discussed earlier, the
scheduling problem is considered as a mapping between the
user’s tasks and virtual machines. The solution (particle and
wolf) in the proposed algorithm can be represented using an
array (or list). The array’s index represents the tasks, and the
value in the array represents the assigned VM. The similar
encoding is used in [36] and it helps in the reduction of the
complexity of the algorithm.

An example of the encoding of the solution is shown in
Fig. 3. The array index represents the eight tasks (T1 to T8),
and the value at each index represents a virtual machine or
instance id. For Solution 1, the tasks T1 is allocated to VM1,
T6 is assigned to VM2, T5 and T7 are assigned to VM3, T3
and T8 are allocated to VM4, and T2 and T4 are allocated to
VM5. Similar is the case with Solution 2. This encoding does
not deal with the precedence constraint of the workflow. For
example, the tasks T1, T3, and T8 are assigned to VM2 which
does not mean that T1 is executed first. In other words, it does
not depicts the precedence among the tasks.

B. Initialize the Population

The HPSOGWO algorithm has a specific number of itera-
tions; in our case, 500. The set of the solutions (particles) is
known as the population. In the first iteration, the population
is initialized with a random solution. The solution is improved
with each iteration of the algorithm. A random initialization
of population is illustrated in Fig. 4.

VM1 VM2 VM2 VMm

VM3 VM1 VM5 VMm

VM2 VM3 VM1 VMm

Task 1 VM1

Solution-1

VM1
VM1
VM1

VM1VM1
VM1
VM1

VM1
VM1VM1VM1
VM1

VM1

VM1VM1

VM1
VM1VM1

VM1VM1VM1VM1VM1

VM1
VM1

VM1

VM1

Solution-2

Solution-k

Task 2 Task 3 Task n

Fig. 4. Initializing the Population.

C. Evaluation of the Fitness Function

The algorithm begins with the calculation of execution time
and assign these values into the execution time matrix as shown
in equation 17. Each element value represent the execution
time, for example ET1,1 is the execution time of task T1 on
VM1. The value of execution time in the matrix is calculated
using equation 5.

ET −Mtx =

VM1 VM2 · · · VMm

T1 ET1,1 ET1,2 . . . ET1,m
T2 ET2,1 ET2,2 . . . ET2,m
...

...
...

. . .
...

Tn ETn,1 ETn,2 . . . ETn,m

 (17)

The dependency of the tasks in a workflow can be rep-
resented using task dependency matrix (TD-Mtx) as shown
in equation 18. Each element in the matrix is either 1 or 0.
Suppose the value of d1,2 is 1, then task T2 is executed after
task T1.

TD −Mtx =

T1 T2 · · · Tn

T1 d1,1 d1,2 . . . d1,n
T2 d2,1 d2,2 . . . d2,n
...

...
...

. . .
...

Tn dn,1 dn,2 . . . dn,n

 (18)

The cost matrix stores the cost of execution for a unit time
of each VM as depicted in equation 19. C1, C2, ...Cm are the
unit execution costs of virtual machines VM1, V M2..., V Mm

respectively.

Cost−Mtx = (C1 C2 · · · Cm) (19)

According to these matrices, we evaluate total execution time
and total execution cost and the fitness function of each
solution as mentioned in Section III-A.

D. Applying PSO Algorithm

The PSO algorithm starts with random population, and run
for n/2 iterations, where n is the maximum iterations. PSO
keeps track of the personal best (pbest) position and global best
(gbest) position of the particle in each iteration. The updated
position of the particles is influenced by gbest and pbest
particle in each iteration to reach to the global best solution
(gbest). The complete process is mentioned in Section III-B.

www.ijacsa.thesai.org 630 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Input: Workflow W(N,E)
and Set of resources (VMs)

Randomly initalize the
particle Position and Velocity

Apply PSO algorithm until
iteration reached half of the

max. iteration

Initialize the alpha wolf
with gbest

Apply GWO algorithm until
iteration reached the

max. iteration

Output: Best mapping in
alpha wolf

Fig. 5. Major Steps of the Proposed Algorithm.

E. Applying GWO Algorithm

The best solution (α-wolf) of GWO algorithm is initial-
ized with the best solution (gbest) obtained from the PSO
algorithm. Then, we apply GWO algorithm for latter half of
the iterations (n/2 + 1 to n) as mentioned in Section III-C.
The α-wolf leads all other wolves to the better solution in
every iteration of GWO algorithm. After meeting the stopping
criteria, the optimal solution is present in α-wolf. And the
tasks are assigned to the respective VM as suggested by the
α-wolf.

Algorithm 1 The Proposed Algorithm.

1: Input: Workflows W (N,E) and set of resources (VM1,
VM2, ... VMj)

2: Output: Best solution in alpha wolf. (mapping of tasks in
W with set of resources.)

3: Set the number of particles equal to the total number of
tasks.

4: Randomly initialize the position and velocity of each
particle.

5: Calculate the fitness value of each particle according to
equation 1.

6: If the fitness value of the current particle is better than
pbest particle, set the current particle as new pbest.

7: After Steps 5 and 6 for all the particles, select the global
best solution as gbest, among the pbest particle.

8: For all particles, calculate velocity and update position as
per equations 7 and 8.

9: Repeat from the Step 5 until the iteration is reached to the
half of maximum iterations.

10: Set the number of wolves equal to the size of tasks.
11: Initialize alpha wolf position as gbest and randomly ini-

tialize the other wolves position.
12: Initialize A, C, and a as per equations 11, 12, and 16,

respectively.
13: Calculate the fitness value of each wolf according to

equation 1.
14: Calculate alpha wolf, beta wolf and delta wolf according

to fitness value.
15: For all wolves, update position as per equations 15, 14,

and 9.
16: Update a, A and C.
17: Calculate the fitness value of all wolves.
18: Repeat from the Step 14, until maximum iterations are

reached.

TABLE I. SIMULATION PARAMETERS

Parameters Values

Number of tasks 25 to 1000

Number of VMs 5

MIPS 1000

RAM 512 MB

Bandwidth 1000

Number of Processor 1

VM Policy Time Shared

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

0

5000

10000

15000

20000

CyberShake
30

CyberShake
50

CyberShake
100

CyberShake
1000

RR ACO HEFT PSO HPSOGWO

Fig. 6. Total Execution Time of Algorithms under CyberShake Workflow.

V. PERFORMANCE EVALUATION

A. Experimental Setup

The proposed algorithm (HPSOGWO) is executed under
four scenarios to evaluate the total execution time and cost of
the fitness function. The HPSOGWO algorithm is compared
with the round-robin (RR) [37], ant colony optimization (ACO)
[38], heterogeneous earliest time first (HEFT) [39], and particle
swarm optimization (PSO) [12] algorithms. The four scenarios
includes CyberShake, Montage, Inspiral, and Spith scientific
workflows. These workflows are available with different tasks;
for example, CyberShake is available with 30, 50, 100, and
1000 tasks. All experiment are carried out on a computer
with Intel(R) Core i5-5200U CPU at 2.2.GHz, 4.00 GB of
RAM, Windows 8 Pro 64-bit operating system. To simulate
and evaluate the proposed algorithm’s performance, we used
the WorkflowSim-1.1 toolkit [40], which is an extension of
CloudSim. Table I shows the simulation parameters used
during the evaluation of the algorithm and Table II shows the
initial values or the range of the values of different parameters
used in the proposed algorithm.

B. Simulation Results

In this section, we do the performance comparison of the
proposed algorithm, HPSOGWO, with the RR, ACO, HEFT,
and PSO algorithms. The performance is measured in terms
of total execution time (TET) and total execution cost (TEC)
with the increasing number of tasks in the ranges from 25 to
1000 under four well known workflows: CyberShake, Inspiral,
Montage, and Sipht. The maximum number of iterations were
set to 500. Each scenario is executed 10 times and the average
value of the result is considered. The simulation results are
tabulated in Tables III, IV, and V.

1) Performance evaluation under CyberShake workflow:
Fig. 6 shows the simulation results of the RR, ACO, HEFT,

www.ijacsa.thesai.org 631 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

TABLE II. PROPOSED ALGORITHM PARAMETERS.

Parameters Values/Range Explanation
Number of iterations 500 The total number of runs of the algorithm.
For PSO algorithm

Particle Size 25 The number of particles, each particle represent a solution.
C1,C2 2 They are the acceleration coefficients.
w 0.1 It is inertia weight.

For GWO algorithm
Wolf Size 25 The number of wolves, each wolf represent a solution.

a [2,0] It is descended from 2 to 0 during the algorithm iteration.
A [-a,a] Initially set to 0. It is used to model the convergence.

If A > 1 wolves diverge from prey if A < 1 wolves converge to prey.
C [0,2] Initially set to 0. It is used to avoid falling into local optima.
D Any value It is mathematical model of surrounding the prey.

r1,r2 [0,1] They are coefficients. The values are random in the range from 0 to 1.

TABLE III. TOTAL EXECUTION TIME OF DIFFERENT SCENARIOS.

Scenario RR ACO HEFT PSO HPSOGWO
CyberShake 30 441.72 545.845 519.05 344.457 336.62
CyberShake 50 855.95 1150.6397 981.85 604.514 640.29
CyberShake 100 1941.49 2570.846 2205.28 1547.124 1480.97

CyberShake 1000 9842.98 15325.3909 10547.13 10765.049 10544.57
Inspiral 30 2177.64 2110.17 3981.31 2119.124 1930.611
Inspiral 50 3319.31 3718.62 3704.54 3123.322 2898.33

Inspiral 100 4779.51 7327.449 6196.76 4957.428 4725.432
Inspiral 1000 49640.257 60878.5568 54398.38 47443.998 47451.18

Sipht 30 4413.64 5206.29 5534.87 4431.95 4454.72
Sipht 60 8072.78 8942.873 10344.51 5943.129 5234.02

Sipht 100 10184.85 10518.799 15417.59 7653.846 6502.37
Sipht 1000 111822.22 119781.024 130992.15 89440.127 92791.18
Montage 25 57.13 66.266 56.88 67.854 61.861
Montage 50 132.23 139.977 130.35 135.604 137.631
Montage 100 259.83 276.801 257.72 273.306 267.8

Montage 1000 2559.28 2637.382 2559.35 2611.48 2635.56

TABLE IV. TOTAL EXECUTION COST OF DIFFERENT SCENARIOS.

Scenario RR ACO HEFT PSO HPSOGWO
CyberShake 30 1803.04 1497.941 1817.27 917.385 897.406
CyberShake 50 3909.69 5053.1127 4180.39 2350.999 2218.277

CyberShake 100 9172.47 11691.154 10498.68 6527.428 6461.2
CyberShake 1000 48110.56 74273.85 51642.27 52036.77 50878.41

Inspiral 30 9007.73 8984.759 15072.03 7029.795 7035.689
Inspiral 50 14638.34 15092.29 15302.33 12525.773 12541.193
Inspiral 100 22711.35 28375.691 24897.88 21497.265 21969.247

Inspiral 1000 240473.418 243231.5666 266391.93 234635.922 233197.111
Sipht 30 17704.2 19575.234 11077.42 8165.034 6727.67
Sipht 60 36174.69 34359.755 30899.12 18551.321 18483.523
Sipht 100 46959.56 41439.9 60947.59 30556.972 26477.83
Sipht 1000 554868.95 585886.796 545244.42 438761.6 455008.262
Montage 25 264.65 284.834 248.92 260.19 255.212
Montage 50 628.34 636.823 570.58 584.654 572.457

Montage 100 1248.27 1304.69 1143.3 1226.514 1192.534
Montage 1000 12454.6 12605.791 11971.62 12304.51 12252.285

TABLE V. FITNESS VALUE OF DIFFERENT SCENARIOS.

Scenario RR ACO HEFT PSO HPSOGWO
CyberShake 30 1122.38 1497.941 1168.16 630.926 617.01
CyberShake 50 2382.82 3101.88 2581.12 1477.76 1429.282

CyberShake 100 5556.98 7131 6351.98 4037.272 3971.086
CyberShake 1000 28976.77 44799.6217 31094.7 31400.91 30711.49

Inspiral 30 5592.685 5547.46 9526.67 4574.458 4483.157
Inspiral 50 8978.825 9405.455 9503.44 7824.548 7719.768
Inspiral 100 13745.43 17851.57 15547.32 13227.347 13347.343

Inspiral 1000 145056.84 152055.06 160395.15 141039.96 140324.15
Sipht 30 11058.92 12390.765 8306.14 6298.491 5591.192
Sipht 60 22123.73 21651.315 20621.81 12247.225 11858.77
Sipht 100 28572.2 25979.348 38182.59 19105.409 16490.1

Sipht 1000 333345.59 352833.91 338118.29 264100.864 273899.72
Montage 25 160.89 175.55 152.9 164.03 158.54
Montage 50 380.285 388.4 350.47 360.132 355.044

Montage 100 754.05 790.75 700.51 749.91 730.169
Montage 1000 7506.94 7621.5865 7265.48 7457.99 7443.923

www.ijacsa.thesai.org 632 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

To
ta

l e
xe

cu
tio

n
co

st

0

20000

40000

60000

80000

CyberShake
30

CyberShake
50

CyberShake
100

CyberShake
1000

RR ACO HEFT PSO HPSOGWO

Fig. 7. Total Execution Cost of Algorithms under CyberShake Workflow.

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

0

20000

40000

60000

80000

Inspiral 30 Inspiral 50 Inspiral 100 Inspiral 1000

RR ACO HEFT PSO HPSOGWO

Fig. 8. Total Execution Time of Algorithms under Inspiral Workflow.

PSO, and proposed algorithm (HPSOGWO) in term of total
execution time (TET). The y-axis represents the total execution
time, and the x-axis shows the number of tasks. For 30 tasks,
the proposed algorithm decreases the TET by 2.33%, 54.19%,
62.16%, and 31.22% compared to PSO, HEFT, ACO, and RR,
respectively. For 50 tasks, the proposed algorithm decreases
the TET by 53.35%, 79.71%, and 33.68% compared to HEFT,
ACO, and RR, respectively, but an increase of 5.59% in
TET is noted compared to PSO. When the number of tasks
are 100, the HPSOGWO reported 4.47%, 48.91%, 73.59%,
31.09% decrease in TET compared to PSO, HEFT, ACO,
and RR, respectively. Similarly, for 1000 tasks, decrements
of 2.09%, 0.02%, and 45.34% compared to PSO, HEFT, and
ACO, respectively, but increase of 6.65% compared to RR was
observed in TET.

Fig. 7 shows the total execution cost (TEC) of different
algorithms under the CyberShake workflow with the increasing
number of tasks. For 30 tasks, the HPSOGWO noted the
decrease of 2.23%, 102.50%, 66.92%, and 100.92% in TEC
compared to PSO, HEFT, ACO, and RR, respectively. While
the TEC of HPSOGWO is decreased by 5.98%, 88.45%,
127.79%, and 76.25% compared to PSO, HEFT, ACO, and
RR, respectively for 50 tasks. For 100 tasks, the TEC is
decreased by 1.03%, 62.49%, 80.94%, and 41.96% compared
to PSO, HEFT, ACO, and RR, respectively. The HPSOGWO
algorithm lowers the TEC by 2.28%, 1.50%, 45.98%, and
5.44% compared to PSO, HEFT, ACO, and RR, respectively
for 1000 tasks.

2) Performance evaluation under Inspiral workflow: Fig. 8
shows the performance of different algorithms in terms of total
execution time with different number of tasks. The proposed
algorithm performs well in almost all cases. The TET of the
proposed algorithm is improved by 9.76%, 106.22%, 9.30%,

To
ta

l e
xe

cu
tio

n
co

st

0

100000

200000

300000

Inspiral 30 Inspiral 50 Inspiral 100 Inspiral 1000

RR ACO HEFT PSO HPSOGWO

Fig. 9. Total Execution Cost of Algorithms under Inspiral Workflow.

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

0

50000

100000

150000

Sipht 30 Sipht 60 Sipht 100 Sipht 1000

RR ACO HEFT PSO HPSOGWO

Fig. 10. Total Execution Time of Algorithms under Sipht Workflow.

and 12.7% compared to PSO, HEFT, ACO, and RR, respec-
tively, for 30 tasks. Similarly, it is improved by 7.76%, 27.82%,
28.30%, and 14.52% compared to PSO, HEFT, ACO, and
RR, respectively, for 50 tasks. When the number of tasks are
100, the TEC improvement of HPSOGWO is 4.91%, 31.14%,
55.06%, and 1.14% compared to PSO, HEFT, ACO, and RR,
respectively. The proposed algorithm’s TEC is decreased by
14.64%, 28.29%, and 4.61% compared to HEFT, ACO, and
RR, respectively for 1000 tasks. However, a slight increase in
TET of 0.01% is observed compared to PSO for 1000 tasks.

As depicted in Fig. 9, there is an improvement in the
TEC by 114.22%, 27.70%, and 28.03% in the HPSOGWO
compared to HEFT, ACO, and RR respectively, while the
deterioration of 0.08% in performance is reported compared
to PSO, for 30 tasks. When there are 50 tasks, the proposed
algorithm’s performance is improved by 22.02%, 20.34%, and
16.72% compared to HEFT, ACO, and RR, respectively, while
deterioration of 0.12% in performance is observed compared
to PSO. For 100 tasks, the TEC of HPSOGWO is declined
by 13.33%, 29.16%, and 3.38% compared to HEFT, ACO,
and RR, respectively. Also, the performance of HPSOGWO
is decreased by 2.15% compared to PSO. For 1000 tasks,
the HPSOGWO outperformed compared to other compared
algorithms. There is 0.62%, 14.23%, 4.30%, and 3.12% of
improvement in TEC compared to PSO, HEFT, ACO, and RR,
respectively.

3) Performance evaluation under Sipht workflow: Fig. 10
shows the total execution time of different algorithms under
sipht workflow with a different number of tasks. The perfor-
mance of the proposed algorithm for 30 tasks is better than that
of HEFT and ACO, but compared to PSO and RR, it decreases
a little. For 60 and 100 tasks, HPSOGWO performed well
compared to other algorithms. For 1000 tasks, the performance

www.ijacsa.thesai.org 633 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

To
ta

l e
xe

cu
tio

n
co

st

0

200000

400000

600000

Sipht 30 Sipht 60 Sipht 100 Sipht 1000

RR ACO HEFT PSO HPSOGWO

Fig. 11. Total Execution Cost of Algorithms under Sipht Workflow.

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

0

1000

2000

3000

Montage 25 Montage 50 Montage 100 Montage 1000

RR ACO HEFT PSO HPSOGWO

Fig. 12. Total Execution Time of Algorithms under Montage Workflow.

To
ta

l e
xe

cu
tio

n
co

st

0

5000

10000

15000

Montage 25 Montage 50 Montage 100 Montage 1000

RR ACO HEFT PSO HPSOGWO

Fig. 13. Total Execution Cost of Algorithms under Montage Workflow.

is better than HEFT, ACO, and RR, but a slight increment of
3.61% in TET is observed compared to PSO.

The comparison among the total execution cost of different
algorithms under sipht workflow is shown in Fig. 11. The
proposed algorithm outperforms the other algorithms for all
the cases with up to 190.97% of decrements in TEC. Except
for 1000 tasks, an increment of 3.57% in TEC is observed in
the proposed algorithm compared to the PSO algorithm.

4) Performance evaluation under Montage workflow: The
performance in terms of total execution time and total exe-
cution cost with 25, 50, 100, and 1000 tasks under montage
workflow are shown in Fig. 12 and Fig. 13 respectively. The
proposed algorithm outperforms in all the cases compared to
the ACO algorithm, with up to 7.12% reduction in TET. For
25 and 100 tasks, the declines of 9.69% and 2.06% are noticed
in total execution time compared to PSO. While for other
cases, the proposed algorithm did not perform well. The TEC
is reduced for HPSOGWO compared to PSO, ACO, and RR.
The HPSOGWO does not perform well compared to HEFT,
with up to 4.13% of increment in TEC.

VI. CONCLUSION

A novel hybrid meta-heuristic algorithm based on a multi-
objective model called HPSOGWO is proposed in the present
paper. The proposed algorithm is the hybrid version of Parti-
cle Swarm Optimisation (PSO) and Grey Wolf Optimisation
(GWO) algorithms. The objectives of the proposed algorithm
are to optimize the total execution cost and total execution
time. The HPSOGWO algorithm is tested on the four scientific
workflows: Montage, CyberShake, Inspiral, and Sipht with dif-
ferent number of tasks. The experimental results shows that the
proposed algorithm reduces the total execution time and cost
compared to PSO, HEFT, ACO, and RR algorithms. In future
work, some other parameters like total energy consumption,
load balancing, response time, etc. will be considered for the
evaluation purpose. The other algorithms can be considered
for making the new hybrid algorithm and evaluate under the
same parameters.

REFERENCES

[1] K. Dasgupta, B. Mandal, P. Dutta, and S. Dam, “A Genetic Algorithm
(GA) based Load Balancing Strategy for Cloud Computing,” Procedia
Technology, vol. 10, pp. 340–347, jan 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212017313005318

[2] A. Mazrekaj, I. Shabani, and B. Sejdiu, “Pricing Schemes in Cloud
Computing: An Overview,” International Journal of Advanced Com-
puter Science and Applications, vol. 7, no. 2, pp. 80–86, 2016.

[3] G. Natesan and A. Chokkalingam, “Multi-Objective Task Scheduling
Using Hybrid Whale Genetic Optimization Algorithm in Heterogeneous
Computing Environment,” Wireless Personal Communications, 2019.

[4] R. Ferreira da Silva, H. Casanova, A. C. Orgerie, R. Tanaka, E. Deel-
man, and F. Suter, “Characterizing, Modeling, and Accurately Sim-
ulating Power and Energy Consumption of I/O-intensive Scientific
Workflows,” Journal of Computational Science, vol. 44, 2020.

[5] G. Juve and E. Deelman, “Scientific Workflows in the Cloud,” Grids,
Clouds and Virtualization, pp. 71–91, 2011.

[6] E. Deelman, G. Singh, M. H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, 2005.

[7] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, 2013.

[8] A. M. Manasrah and H. B. Ali, “Workflow Scheduling Using Hybrid
GA-PSO Algorithm in Cloud Computing,” Wireless Communications
and Mobile Computing, vol. 2018, 2018.

[9] S. Saeedi, R. Khorsand, S. Ghandi Bidgoli, and M. Ramezanpour,
“Improved many-objective particle swarm optimization algorithm for
scientific workflow scheduling in cloud computing,” Computers and
Industrial Engineering, vol. 147, no. June, p. 106649, 2020. [Online].
Available: https://doi.org/10.1016/j.cie.2020.106649

[10] A. Kamalinia and A. Ghaffari, “Hybrid Task Scheduling Method for
Cloud Computing by Genetic and DE Algorithms,” Wireless Personal
Communications, 2017.

[11] J. Yu and R. Buyya, “A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms,” 2006 Workshop
on Workflows in Support of Large-Scale Science, WORKS ’06, 2006.

[12] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proceedings - International Con-
ference on Advanced Information Networking and Applications, AINA,
2010.

[13] M. Hosseini Shirvani, “A hybrid meta-heuristic algorithm for
scientific workflow scheduling in heterogeneous distributed computing
systems,” Engineering Applications of Artificial Intelligence, vol. 90,
no. September 2019, p. 103501, 2020. [Online]. Available:
https://doi.org/10.1016/j.engappai.2020.103501

www.ijacsa.thesai.org 634 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

[14] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”
Advances in Engineering Software, 2014.

[15] A. Khalili and S. M. Babamir, “Optimal scheduling workflows in cloud
computing environment using Pareto-based Grey Wolf Optimizer,”
Concurrency Computation, vol. 29, no. 11, pp. 1–11, 2017.

[16] L. Zhang, L. Zhou, and A. Salah, “Efficient scientific workflow
scheduling for deadline-constrained parallel tasks in cloud computing
environments,” Information Sciences, vol. 531, pp. 31–46, 2020.
[Online]. Available: https://doi.org/10.1016/j.ins.2020.04.039

[17] K. Dubey, M. Kumar, and S. C. Sharma, “Modified HEFT Algorithm for
Task Scheduling in Cloud Environment,” Procedia Computer Science,
vol. 125, pp. 725–732, 2018.

[18] G. Patel, R. Mehta, and U. Bhoi, “Enhanced Load Balanced Min-min
Algorithm for Static Meta Task Scheduling in Cloud Computing,” in
Procedia Computer Science, 2015.

[19] R. Vijayalakshmi and V. Vasudevan, “Static batch mode heuristic
algorithm for mapping independent tasks in computational grid,” 2015.

[20] M. M. Golchi, S. Saraeian, and M. Heydari, “A hybrid of
firefly and improved particle swarm optimization algorithms for
load balancing in cloud environments: Performance evaluation,”
Computer Networks, vol. 162, p. 106860, 2019. [Online]. Available:
https://doi.org/10.1016/j.comnet.2019.106860

[21] K. L. Eng, A. Muhammed, M. A. Mohamed, and S. Hasan, “A
hybrid heuristic of Variable Neighbourhood Descent and Great Deluge
algorithm for efficient task scheduling in Grid computing,” European
Journal of Operational Research, 2019.

[22] Y. Ge and G. Wei, “GA-based task scheduler for the cloud computing
systems,” Proceedings - 2010 International Conference on Web Infor-
mation Systems and Mining, WISM 2010, vol. 2, pp. 181–186, 2010.

[23] M. Tawfeek, A. El-Sisi, A. Keshk, and F. Torkey, “Cloud task schedul-
ing based on ant colony optimization,” International Arab Journal of
Information Technology, vol. 12, no. 2, pp. 129–137, 2015.

[24] T. Deepa and D. Cheelu, “A Comparative Study of Static and Dynamic
Computing,” 2017 International Conference on Energy, Communica-
tion, Data Analytics and Soft Computing (ICECDS), pp. 3375–3378,
2017.

[25] F. Ebadifard and S. M. Babamir, “A PSO-based task scheduling
algorithm improved using a load-balancing technique for the cloud
computing environment,” Concurrency Computation, vol. 30, no. 12,
pp. 1–16, 2018.

[26] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,” Journal of Parallel
and Distributed Computing, vol. 61, no. 4, pp. 810–837, 2001.

[27] S. Mirzayi and V. Rafe, “A hybrid heuristic workflow scheduling

algorithm for cloud computing environments,” Journal of Experimental
and Theoretical Artificial Intelligence, 2015.

[28] H. Bouzary and F. Frank Chen, “A hybrid grey wolf optimizer algorithm
with evolutionary operators for optimal QoS-aware service composition
and optimal selection in cloud manufacturing,” International Journal of
Advanced Manufacturing Technology, 2019.

[29] S. Khurana and R. Singh, “Workflow scheduling and reliability improve-
ment by hybrid intelligence optimization approach with task ranking,”
ICST Transactions on Scalable Information Systems, 2018.

[30] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[31] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”
Journal of Supercomputing, 2015.

[32] S. Mirjalili, S. Saremi, and S. Mohammad, “Multi-objective grey wolf
optimizer : A novel algorithm for multi-criterion optimization,” Expert
Systems With Applications, vol. 47, pp. 106–119, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.eswa.2015.10.039

[33] A. Pasdar, Y. C. Lee, and K. Almi’ani, “Hybrid scheduling
for scientific workflows on hybrid clouds,” Computer Networks,
vol. 181, no. August, p. 107438, 2020. [Online]. Available:
https://doi.org/10.1016/j.comnet.2020.107438

[34] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on scheduling
strategies for workflows in cloud environment and emerging trends,”
ACM Computing Surveys, vol. 52, no. 4, 2019.

[35] J. Kennedy and R. Eberhart, “Particle Swarm Optimization, Proceed-
ings of IEEE International Conference on Neural Networks Vol. IV:
1942–1948.” 1995.

[36] T. P. Pham and T. Fahringer, “Evolutionary Multi-objective Workflow
Scheduling for Volatile Resources in the Cloud,” IEEE Transactions on
Cloud Computing, vol. 7161, no. c, pp. 1–12, 2020.

[37] T. Ghafarian, B. Javadi, and R. Buyya, “Decentralised workflow
scheduling in volunteer computing systems,” International Journal of
Parallel, Emergent and Distributed Systems, vol. 30, no. 5, pp. 343–365,
2015.

[38] M. Tawfeek, A. El-Sisi, A. Keshk, and F. Torkey, “Cloud task schedul-
ing based on ant colony optimization,” International Arab Journal of
Information Technology, 2015.

[39] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[40] W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating
scientific workflows in distributed environments,” in 2012 IEEE 8th
International Conference on E-Science, e-Science 2012, 2012.

www.ijacsa.thesai.org 635 | P a g e

