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Abstract—Event detection of rare and complex events in large 

video datasets or in unconstrained user-uploaded videos on 

internet is a challenging task. The presence of irregular camera 

movement, viewpoint changes, illumination variations and 

significant changes in the background make extremely difficult to 

capture underlying motion in videos. In addition, extraction of 

features using different modalities (single streams) may offer 

computational complexities and cause abstraction of confusing 

and irrelevant spatial and semantic features. To address this 

problem, we present a single stream (RGB only) based on feature 

of spatial and semantic features extracted by modified 3D 

Residual Convulsion Network. We combine the spatial and 

semantic features based on this assumption that difference 

between both types of features can discover the accurate and 

relevant features. Moreover, introduction of temporal encoding 

builds the relationship in consecutive video frames to explore 

discriminative long-term motion patterns. We conduct extensive 

experiments on prominent publically available datasets. The 

obtained results demonstrate the great power of our proposed 

model and improved accuracy compared with existing state-of-
the-art methods. 

Keywords—Event detection; single-stream; feature fusion; 

temporal encoding 

I. INTRODUCTION 

Detection of events in complex and untrimmed videos has 
been the topic of great concern for many years. Furthermore, it 
is imperative for many real-world applications such as video 
indexing, video retrieval, and video surveillance. However, 
event detection in videos became very challenging due to the 
different environmental and video recording factors. Video 
captured from different devices show lots of variations such as 
variations in environment and variations in recording setting. 
Variations in environment are due to the occlusion, confusing 
background, rapid changes in background in video scene, 
camera motion, noise and viewpoint changes. Variations in 
video recording also cause different kinds of noise in different 
lighting conditions. In addition, video low resolution and its 
high dimensionality may also degrade accurate detection of 
complex events. Moreover, existing available event detection 
datasets are too complex and large amounts of uploaded 
videos on internet are captured in unconstrained conditions. 
To combat these challenges, there is an immense need for 
effective and robust activity recognition system to achieve 
best performance. 

In contrast to the simple human action recognition, event 
detection is a semantic composition of many atomic concepts 
and there may be involvement of various objects and actors 
with their different locations and appearances. In addition, 
videos related to event detection may be of longer duration 
with multiple scenes and mostly focus on real-world 
scenarios. For example, the event of “wedding ceremony” in 
which there are so many related sub-activities with different 
actors and objects, which can infer the event with a high 
probability. 

Over the past decade, several low level and high-level 
representations have been proposed to address the issues in 
context of video event detection. Early attempts are an 
extension of static image-based representations and pattern 
recognition. Initially, trajectory-based representations [1-3] 
have been introduced and obtained satisfactory results. These 
models utilized Gaussian mixture and Hidden Markov models 
for the extraction of trajectories and work well for detection of 
deviant trajectories in less crowded scenes. However, these 
trajectory-based methods are occlusion-sensitive and not ideal 
for crowded scenes. These issues are well addressed by hand-
crafted methods for example, Histogram of arranged angle 
(HOG) [4], Histogram of Optical Flow (HOF) [5] and Motion 
Boundary Histogram (MBH) [6]. These models construct the 
template behavior and model the background, shape, 
appearance, and motion and yielded remarkable results. 
However, these models are only specific to the simple events 
and do not link between local patterns. Many methods 
followed Bag of Visual Words (BoVW) by applying dense 
sampling or detecting spatiotemporal interest points. However, 
these methods ignore the intrinsic difference between video 
volumes. 

Recently, deep learning achieved a remarkable 
breakthrough in the image domain and many researchers start 
applying those learning Spatio-temporal clues by extending 
deep 2D Convolution Network with 3D Convolution Network 
[7-13]. These deep learning methods providing high 
discriminative power and have produced promising results for 
action recognition. However, CNN based strategy just 
concentrates visual appearance highlights and comes up short 
on the capacity to long-run worldly displaying. Most of the 
researchers implement temporal modeling by introducing two 
stream-based CNN learning models by applying an extra input 
stream known as stacked multi-frame dense optical flow along 
with raw RGB stream. 
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However, these two stream approaches are not able to 
capture the motion and semantic changes accurately and only 
limited to short-term temporal modeling. In light of the above 
discussion, this research paper proposes lightweight event 
detection framework by considering only RGB data and 
address the disadvantages of optical flow in complex and 
unconstrained videos. Based on assumption that motion can be 
represented in series of video frames and temporal dynamics 
of an actor/object can be observed by computing the 
difference between appearance and semantics. First, we 
extract two kinds of video features mainly spatial and 
semantic features by using convolutional and fully connected 
layers respectively by utilizing by modified 3D Residual Conv 
Network. Next, we join both low-level (spatial) and high-level 
information (semantic). To weaken the effect of semantic gap, 
we add extra learnable filters on the output of different layers. 
Then, frame-level representation is achieved by employing 
global average pooling. We also design attention model to 
take deep insight within the neural network to find important 
parts in video and ignoring the redundant features and 
background noise effect for finding the temporal 
discriminative patterns, temporal encoder is introduced to 
achieve clip-level representation. Finally, the specific 
classifier is used to identify the event. The main contributions 
of this research are listed as under: 

1) We only consider RGB stream to extract both spatial 

and semantic information and extract the motion of the object 

via the changing of both features and take aside the use of 

optical flow. 

2) We introduce global averaging pooling to represent 

frame-level representation along with attention mechanisms to 

learn temporal focus of action. 

3) The temporal encoder is applied to detect motion in 

series of frames. 

4) The proposed model experimentally demonstrates the 

super performance when evaluated on publically benchmark 

datasets and obtained state-of-the-art results. 

The rest of article is organized as follows: Section 2 
provides the high level of related works. In Section 3, we 
present our approach in detail. In Section 4, we demonstrate 
the experimental evaluation. Finally, conclusion is drawn in 
Section 5. 

II. RELATED WORK 

For video analysis, many previous methods adopted a 
similar approach to image analysis. The video domain is 
different and complex from the image domain due to the ever-
changing motion patterns with target actors/objects and their 
appearances in different scenes. For the accurate and robust 
video event detection motion resides in temporal dimension 
plays crucial role. Many spatiotemporal representation 
methods such as HOG, HOF, HOG3D [14] and SIFT3D [15] 
have been proposed to present the motion in a video sequence. 
In these models extracted features are encoded or pooled in 

hierarchal structure before feeding to the Support Vector 
Machine (SVM) classifier. To take the full advantage of 
motion features dense-point trajectory model [16] has been 
proposed. These all hand-crafted features models have shown 
remarkable performance, however, there are several 
weaknesses are present. These models are computationally 
expensive and do not consider the changes in semantic clues 
along the temporal dimension. In addition, features extracted 
by these schemes are not very discriminative and limited to 
only simple event detection. Recently, deep convolutional 
neural networks (DCNN) have achieved great success in many 
research areas such as object/action detection, classification, 
recognition. These networks have great potential to learn 
features automatically from a large datasets. Most of these 
networks are the natural extension from 2D CNN which are 
now using in time dimension to represent motion using 3D 
sensitive filters. More recently, Kinetic 3D networks such as 
ResNet-3D [16] and I3D [17] obtained great success in the 
area of action analysis and event detection. However, 
simultaneously learning appearance and motion brings 
complexity in the process. Most of the models adopted optical 
stream as an additional information methodology to catch 
movement portrayal, for example, [9]. In this model author 
utilized stacked of dense optical flow as extra stream along 
with RGB stream to extract static and motion features 
respectively. The phenomena of optical flow introduced 
computational complexity and also optical flow may not very 
robust and accurate capturing semantic and motion changes. 
In addition, this practice is not ideal for real-world untrimmed 
and unconstraint videos due to the irregular camera 
movement. Extra computation by optical flow may degrade 
the efficiency of event detection framework. Based on this 
analysis, it is required to re-think the capturing process of 
motion for complex event detection. This research study 
represents a single stream model for spatial and temporal 
feature extraction by considering only RGB frames. RGB 
frame represented by high dimensional features such as 
background, objects, and actors. RGB single frame usually 
encodes static information; however, this study observes the 
object motion by analyzing the difference in both extracted 
features i.e. appearance and semantic features. We follow the 
modified version of ResNet and utilized convolution and 
fully-connected layers to extract spatial and semantic features 
respectively. We combine these two features to obtain frame-
level representation by using global average pooling. We also 
introduce a special type of encoding scheme i.e. temporal 
encoding to achieve clip-level representation. 

III. PROPOSED FRAMEWORK 

Before this section provides a detailed description of our 
framework, which inputs untrimmed RGB frames of video 
and detects the event accordingly. The overall flowchart of our 
method is demonstrated in Fig. 1. Our framework mainly 
comprises of feature extractor, feature encoder, and classifier. 
We explain the detailed description of each step in the 
following sub-section. 
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Fig. 1. Feature Extraction and Encoding. 

A. Frame-level Representation 

For the extraction of appearance and semantic feature 
representation the pre-processed RGB data is used as input. 
Deep Residual networks [18, 19] with deep layers are 
followed as our base network. We combine the low level and 
higher-level features by using fusion scheme and global 
average pooling (GAP) is adopted to achieve frame-level 
representation of video. 

1) Residual network: Residual networks are developed 

similar to VGG networks [20] in which layers are arranged to 

learn residual function with respect to the given input. Residual 

networks play an important role to avoid the information 

bottleneck by introducing residual units. This practice allows 

skipping connection which permits direct signal propagation 

between the first and final layers of the network. This network 

is pre-trained on ImageNet as basic architecture. Residual 

networks comprise of small 3 x 3 spatial filters with 1 x 1 

filters for learned dimensionality expansion and reduction. The 

network takes input of size 224 x 224 which is the reduced size 

by stride 2. To prevent the direct fitting of underlying mapping 

P(l), a residual mapping G(l) = P(l) – l is introduced by training 

deep network. We can represent the residual unit as follows: 

ln 1      (ln    G(l n ; Wn ))             (1) 

Where ln and ln 1 are the input and output of the nth layer of 
the network, G(ln ;Wn) is a nonlinear  mapping  based  on  
residual  given  by Weights of convolutional  filters. 

Wn {Wn, s |1 s S} with S {2,3} , and represents the ReLU function. 
This practice can achieve direct propagation across all layers 
of network. In addition, the problem of gradient explosion and 
disappearance can be avoided. Another advantage is that short 
connection does not introduce extra computational complexity 
and parameters. Moreover, ResNet follows the batch 
normalization (BN) before the activation layer which not only 
addresses the issues of covariant shift but also speeds up the 
performance of network. 

2) Extraction of appearance and semantic information: 

We utilize the RGB data as input to the ResNet and to perform 

the sampling on the data, we adopt two different sampling 

strategies i.e. dense sampling and sparse sampling. For thick 

testing, every video is partitioned into T cuts with length of 1-2 

seconds and afterward we haphazardly select a picture/outline 

from each clasp and organize them in an arrangement {N1, 

N2… NT}. For meager examining, we select three edges of 

equivalent span from video arrangement and receive setting 

rules given in [21]. As referenced before, movement of any 

article/entertainer can be investigated by means of the 

distinction of both appearance and semantic highlights. The 

yield of the profundity layers for the most part gives the 

elevated level (semantic) highlights. In our base organization, 

the yield highlights of both convolution and the completely 

associated layers are extraordinary. The output of convolution 

layer is appearance features (outline, shapes, etc.), while fully-

connected layer provides semantic features (rotation 

invariance, and location invariance). Our baseline CNN 

generates two feature maps for the nth frame. The last pooling 

layer of the network generates feature maps fcln and fully-

connected layers outputs feature maps f fcln. Both feature 

maps having the dimension (W x H x D, C.), representing 

width, height, temporal depth and number of feature channels 

respectively. The matrix representation of both feature maps 

for the video length of duration T can be given as: 

fcln    [ fcl1 ,..., fclt ,..., fclT ]  ¡ WHTC           (2) 

f fcln   [ f fcl1 , f fcl2 ,..., f fclt ,..., f fclT ] ¡DC          (3) 

3) Fusion and attention mechanism: In the previous sub-

section, we obtain two feature maps produced by the pooling 

layer and FC layer. Next, we perform weighted linear fusion 

scheme to integrate both appearance and semantic features by 

employing pixel-wise operation. After fusion, we again obtain 

a frame blended with both spatial and semantic properties. 

Then, we apply attention mechanism by computing the weights 

of both appearance and semantic features. The purpose of 

attention model is to decide important frames in a video for 

event recognition. The attention mechanism is very close to 

human visual model as humans always concentrate and focus 

on moving objects instead of whole frame or static 

background. In addition, it plays important role to eliminate the 

effect of background noise and adds a dimension of 

interpretation ability. If we assume that W is the weight 

mapping of both appearance and semantic information of tth 

element of frame and N is the number of frames then the 

probability of informative frame can be represented as follow: 

=
exp⁡(𝑊𝑇)

(𝑊 )⁡N𝑡
𝑇               (4) 

Where t is the probability with which the corresponding 
frame is considered an informative frame. Finally, we get the 
vector representation of each selected (attention mechanism) 
frame by using global average pooling. The function of the 
global average pooling (GAP) layer is to average the feature 
values of the respective pixels in each chosen frame, and the 
average value is taken as the probability value of each feature. 
After applying this pooling scheme, a video can be 
represented as a sequence of vector V = {v1, … vM }of M 
clip of input video. Each vm¡ d is the expression of M video 
sequence i.e. Sm. 
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B. Video Level Representation 

As we mentioned earlier that temporal information is 
presented in sequence of video frames. To model the 
relationship between video frames we introduce a temporal 
encoder E. We can combine the different features from the 
entire video sequence into powerful and compact clip level 
representation. If V = {v1, … vM }is the input to the encoder 
then clip-level representation can be obtained by applying 
simple function or neural network. This research work, apply 
and compare the three different encoders mainly Average 
Encoder, Max Encoder, and LSTM Encoder. All these 
encoders take the sequence of vectors of M video clips and 
generate video representation as a single vector Z such as Z ¡ 
d. Where Z is the vector representation of video integrating 
the high-level semantic and low-level appearance features 
along with temporal relationship. We can define working of 
each the encoder as follows: Average encoder: This encoder 
performs the element-wise addition on the feature vectors and 
compute the single feature vector using the length of M video 
clips as: 

Z 1 (v   v v ...v 

M 

) 
 

 M 12 3 
                               (5) 

1) Max encoder: This encoder represents a video by a 

single vector using maximum feature value (highly weighted) 

from the list of finite values and can be given as under: 
 

Z max( v1 , v2 ,v3...vM )             (6) 

2) LSTM encoder: This encoder outputs the feature vector 

Z using the hidden state of the LSTM hj at time step j and 

feature vector vj. 

hj    LSTM (vj , hj 1),0  j  M            (7) 

C. Event Classification 

We require a prediction function F(Z) to detect the event 
category for the given video. We adopt a multi-layer 
perceptron as classifier which comprises of FC-Dropout-FC 
pipeline. The dropout option is used to prevent the framework 
from overfitting. If yˆ is the prediction of classier and y is the 
ground-truth label of the video then final loss can be 
formulated as: 

 
C C  

L( yˆ, y)yi (yˆ  log   expy j )                  (8) 
i 1 j 1  

In addition, if our temporal encoder E is differentiable, so 
our network can also be differentiable. We can utilize the 
multiple frames to jointly optimize the model parameter W 
with the standard back-propagation scheme. We can compute 
the loss P by using the chain rule using gradient W as follows: 

P( yˆ, 

y)  P  yˆ M   Z  v  
 

 

   

 

 1 

(9)  ˆ      

W  y  Z i 1 vi  W  

IV. EXPERIMENTS AND ANALYSIS 

Evaluate the performance of our proposed framework, we 
carried out several experiments on challenging publically 
available datasets. We analyze our introduced method using 
different aspects. The portrayal of datasets with their approval 
plans, trial arrangement, results, and similar examination are 
introduced in ensuing segments. 

A. Datasets 

For our experiments, we use well-known event detection 
datasets, namely YLI-MED [22], MEDTest-14 [23] and 
Columbia Consumer Video (CCV) [24]. 

YLI-MED: This dataset comprises of 1823 videos and 
each of them classified is classified into 10 event categories. 
These videos are divided into training (1000 videos) and 
testing (823 videos). The Videos length duration is variable, 
which makes event detection more challenging. We measure 
the accuracy of the test set for all experiments. Columbia 
Consumer Video (CCV): The Columbia Consumer Video 
dataset contains 9,317 videos in total from 20 semantic 
categories, including events like “parade” and “baseball”. 

B. Implementation Setup and Details 

We extract the RGB frames from the original video by 
using the guidelines given in FFMPEG [25]. For the training 
of our model, we augment the extracted images to reduce the 
effect of overfitting. We horizontally flip input images with 
55% probability and then crop them by resizing of 320 x 240. 
We scale the height and width of cropping rectangle by a 
randomly selected factor of in the range of 0.8 ~1. We utilize 
ResNet50 which network weights are initialized by pre-
training on ImageNet. We replace the final classifier with a 
two-layer perceptron. The unit number of FC layer is set to 
512. The dropout ratio is set to 0.8. For LSTM encoders, we 
set up one hidden layer with 512 units. The momentum of 
stochastic gradient is selected as 0.9 for optimizing the model. 
All experiments are conducted on a single GPU with weight 
decay of 1x10-4 and mini-batch of size 16. The initial learning 
rate is set as 0.003 and decreased to 12% at 150 epochs. The 
whole training procedure is stopped at 300 epochs. 

C. Experiments and Discussion 

We direct broad tests to assess the exhibition of our 
proposed technique. In this part, we introduced significant trial 
results and execution investigation. We direct broad tests to 
assess the exhibition of our proposed technique. In this part, 
we introduced significant trial results and execution 
investigation. 

1) Exploration results: First, we tested our model by 

employing different exploration aspects. We conducted our 

experiments on YLI-MED and (CCV) datasets and use all 

videos associated with 10 event categories of YLI-MED 

dataset and 20 event categories of CCV. We explore the 

performance of our proposed method by using convolution 

features, semantic features and fusion of both features with and 

without using attention mechanism and obtained results are 

demonstrated in Table I and Table II. 
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TABLE I. MAP(%) ON YLI-MED DATASET ON DIFFERENT FEATURE 

INFORMATION 

Feature Information With attention Without attention 

Convolutional 76.2 74.5 

Fully-Connected 78.9 77.1 

Fusion (Both) 82.2 81.1 

TABLE II. MAP(%) ON CCV DATASET ON DIFFERENT FEATURE 

INFORMATION 

Feature Information With attention  Without attention 

Convolutional  71.2   69.5 

Fully-Connected  74.9   72.1 

Fusion (Both)  78.2   75.1 

It can be viewed from the obtained results, the introduced 
method (Fusion of appearance and semantic features) 
performs better than using convolution (appearance) and fully-
connected (semantic) features separately. This illustrates that 
it is necessary to combine both appearance and semantic 
features in the temporal domain. This practice can discover 
more useful information for robust and accurate event 
detection. It can be also observed that introduction of attention 
mechanism yields improved performance especially in YLI-
MED dataset and performs better than without attention model 
in both datasets. This attention mechanism provides insight for 
finding important parts of the video and prevents the 
background noise, thus, play important role to achieve better 
event recognition accuracy. 

2) Effect of sampling strategies and encoders: We also 

carried out some experiments to analyze the effect of sampling 

strategies and encoders on our proposed model. Our model 

takes a series of frame sequence and we use two different 

sampling strategies: dense sampling and sparse sampling. For 

dense sampling, each video is divided into T clips with 

duration of 1-2 seconds and then we randomly select an 

image/frame from each clip and arrange them in a sequence. 

For sparse sampling, we select 3 frames of equal duration from 

video sequence and adopt setting guidelines given in [21]. We 

use YLI-MED and Columbia Consumer Video (CCV) dataset 

for these experiments and consider all events categories in both 

datasets. We explore the capacity of both sampling strategies 

using three encoders i.e. Max encoder, Average encoder, and 

LSTM encoder. The obtained results can be shown in Fig. 2 

and Fig. 3. It can be seen from results that dense sampling 

achieves better performance than sparse sampling in the 

presence of max encoder. The possible reason is that sparse 

sampling may miss more crucial and important frames of the 

video sequence as compared to dense sampling and there may 

be loss of some important semantic features. We also analyze 

the performance of three different encoders in this experiment 

in the presence of both sampling strategies. According to the 

result, max encoder obtains the best performance against 

average and LSTM encoder. The underlying reason is that max 

encoder strengthens the features which are useful for specific 

event over a long-range. Both average and LSTM encoders 

perform similarly on both datasets. We can observe that 

performance of both encoders is relatively moderate. One 

reason is that both encoders are complex encoders as they have 

more parameters may lead to over fitting problem. We will 

adopt dense sampling with max encoder for our framework for 

all remaining experiments. 

3) Class-Wise accuracy for event classification: We 

further investigate the event classification accuracy of our 

method by constructing the confusion matrix of two datasets 

i.e. YLI-MED and CCV datasets. The confusion matrixes of 

our introduced approach on both datasets can be depicted in 

Table III and Fig. 4. The confusion matrix indicating the 

accuracy of each action and correspondence between the target 

classes along x-axis (true label) and output classes (predicted 

label) along y-axis. We consider 10 event categories from YLI-

MED dataset and 16 event categories from CCV dataset to 

conduct our experiment. Table III demonstrates the accuracy of 

each action category in the form of confusion matrix. The 

intensity of the true score is high (diagonal) for each category, 

and our method achieves 83% for all 10 event categories. It is 

interesting to note that some of categories with similar actions 

are more easily confused with each other, such as Birthday 

Party (Event-1), Wedding Ceremony (Event-9) and grooming 

an animal (Event-6), hand-feeding an animal (Event-7); these 

classifications meddle with one another and yield low scores. 

A potential purpose behind this is the comparability of the 

highlights and portrayals among activities. Be that as it may, 

our proposed approach actually performs well with the 

majority of function classes. 

 

Fig. 2. Comparison of different Sampling Strategies and Encoders on YLI-

MED Dataset. 

 

Fig. 3. Comparison of different Sampling Strategies and Encoders on CCV 

Dataset. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

91 | P a g e  
www.ijacsa.thesai.org 

TABLE III. CONFUSION MATRIX ON THE YLI-MED DATASET USING OUR MODEL 

Categories Event-1 Event-2 Event-3 Event-4 Event-5 Event-6 Event-7 Event-8 Event-9 

Event-1 0.90 0 0.01 0 0 0.01 0.02 0 0.04 

Event-2 0 0.77 0 0.17 0 0 0.02 0 0.04 

Event-3 0 0.17 0.83 0.02 0.05 0 0.02 0.04 0 

Event-4 0 0.16 0.01 0.83 0 0 0 0 0 

Event-5 0.01 0.01 0.02 0.01 0.90 0 0 0.02 0 

Event-6 0.02 0 0 0 0 0.85 0.09 0 0 

Event-7 0.03 0.02 0.01 0 0.01 0.16 0.71 0.04 0 

Event-8 0 0 0.03 0 0.05 0 0.03 0.86 0 

Event-9 0.11 0.02 0 0 0 0 0.03 0 0.81 

Event-10 0 0.01 0.02 0 0.02 0.02 0 0.03 0.05 

Average          

Accuracy          

In addition, we also investigate the class-wise recognition 
accuracy of our method by constructing confusion matrices of 
CCV datasets. We consider 16 event classes from this dataset. 
The confusion matrices are given in Fig. 4. In this figure, the 
x-axis represents the classified labels of action classes whereas 
y-axis denotes the ground truth label. The accuracies in the 
diagonal cells are indicated by different colors and yellow 
cells show the 100% accuracy achieved for the particular 
action class. From the results, it can be seen that both of the 
confusion matrices are well diagonal zed. However, some of 
the action classes are giving low prediction scores by giving 
different colors of cells other than yellow it means few 
categories are mixed up when classifying. The possible 
reasons for interfering and misclassification are the motion 
similarity in actions or the same background, objects and 

appearance and motion-based features. However, most 
of the scores are well diagonal zed. 

 

Fig. 4. Confusion Matrix on the CCV Dataset using our Model. 

4) Visualization of feature embedding: Furthermore, we 

investigate the discriminative power of our learned fused 

features for human activity recognition. We consider the 10 

different event categories (Birthday Party, Flash Mob, Vehicle 

unstuck, Parade, Board trick, grooming animal, Feeding 

animal, Landing a fish, Wedding Ceremony, Woodworking 

Project) from YLI-MED datasets. For each of the event 

category, we utilize 30 video clips of each event class for our 

experiment. Each video clip can be viewed by a single color 

point and we used the same color for al videos related same 

action class. For successful recognition of these action classes, 

an action recognition framework must possess high 

discriminative power. We adopt the method of t-SNE 

visualization [34] and show the visualization of feature 

representation embedding extracted by our introduced 

approach in Fig. 5. It can be observed from results that our 

method provides the better-separated clusters and clip-level 

features are semantically well separated as compared to the 

other existing prominent methods (two-stream model, and 

C3D). Thus, we can conclude that our proposed method can 

integrate both appearance and semantic features and possesses 

high discriminative information. 

 

Fig. 5. Visualization of Clip-Level Features Embedding Learned by Two-

Stream Model, C3D and Proposed Model. 
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5) Comparison with the state-of-the-art models: In this 

part, we further check the viability and plausibility of our 

model, we contrast our proposed approach with various 

existing cutting edge human activity acknowledgment draws 

near on both YLI-MED and Columbia Consumer Video (CCV) 

datasets for all videos of each event category. The comparison 

results are reported in Table IV in which average detection 

accuracies (%) are reported for both datasets. We consider two-

stream models such as two-stream ConvNets [9], Two Stream 

3D-Nets [26] and two-stream Fusion [27]. We also consider 

existing state-of-the-art hybrid model-based techniques such as 

TDD-IDT [28] and MTC3D-IDT [29] and P3D+IDT [30]. All 

of these models follow improved dense trajectories (iDT) for 

trajectories extraction and adopt higher-order encoding scheme 

i.e. Fisher Vector (FV) to encode the hand-crafted features. 

TABLE IV. COMPARISON OF PROPOSED METHOD WITH THE STATE-OF-
THE-ARTS APPROACHES ON YLI-MED AND CCV 

Modality Method Input 
YLI-MED 

(%) 

ccv 

(CCV) 

(%) 

Two-

Streams 

Two-stream ConNet 

[9] 
RGB 69.9 58.9 

Two-stream ConNet 

[9] 
O.F 53.4 49.2 

Two-Stream 3D-

Nets 
RGB 71.9 66.4 

[26] O.F 64.3 61.7 

Two-Stream 3D-

Nets 
RGB 75.2 66.9 

[26] O.F 67.3 61.5 

Two-stream Fusion 

[27] 
   

Two-stream Fusion 

[27] 
   

Hybrid 

TDD-IDT [28] RGB 77.2 74.3 

MTC3D-IDT [29] RGB 76.2 73.9 

P3D+IDT [30] RGB 79.3 72.7 

Very deep 

ConvNet 

C3D [31] RGB 65.6 63.2 

3D-ResNet [32] RGB 72.6 69.0 

TSN [33] RGB 74.5 70.0 

Ours 
SM-AB RGB 82.2 78.2 

SM-AB O.F 69.1 66.8 

For the two-stream models, we analyze their performance 
on both stream i.e. RGB and optical flow and we can notice 
that performance of the optical flow is worst against the RGB 
images. This phenomenon verifies the assumption that the 
optical flow (O.F) in less flexible and inaccurate to capture 
motion of object due to the movement of camera and large-
scale perspective transformation in complex videos. We also 
analyze the performance of some hybrid-features model in 
which features from both domains i.e. deep learning and hand-
crafted features (improved dense trajectories) are incorporated 
and obtained competitive results, however, our approach 
outperforms them by fair margin on both datasets. We also 

compare our model with existing prominent and successful 3D 
convolution based methods such as C3D [31] and 3D-ResNet 
[32] and Temporal Segment Network model TSN [33]. Our 
approach possesses higher discriminative power and our 
system to be on par with the state-of-the-art. We compare the 
performance of our proposed model on both modalities i.e. 
RGB and Optical flow data and we achieve far better results 
when using only RGB frames so obtained results suggest that 
temporal long term dynamics can be capture from RGB 
frames. Thus, from results we can say that our model in the 
presence of only RGB data explores more relationships 
between video clips and semantic features and introduction of 
max encoder works well by capturing the long-term 
dependencies and successful for the detection of complex 
events. 

V. CONCLUSION 

This paper proposes a new lightweight framework for 
video event detection, which comprises CNN, features fusion, 
attention mechanism, and global average pooling. This 
framework obtains high representational power and finds the 
discriminative patterns in complex videos for event detection. 
We just use the RGB data to extract appearance and semantic 
features for each frame of video using convolution and fully-
connected layers. This practice avoids the additional 
computational power required by optical flow. We explore the 
motion by computing the difference between both semantic 
and appearance features. We also employ the attention 
mechanism to concentrate and focus on key frames keeping 
motion information and avoiding the redundant effect of static 
background. Furthermore, we utilize temporal encoder to 
establish temporal relationships between frames and explore 
discriminative long-term motion patterns. The introduced 
model achieved promising performance when tested on two 
widely used challenging datasets. In future work, we will try 
to improve the sampling strategy or may modify the pooling 
or fusion layers in the network. 

ACKNOWLEDGMENT 

The authors would like to thank the editor and reviewers 
for their work on this manuscript. 

REFERENCES 

[1] F. Jiang, J. Yuan, S.A, Tsaftaris and A.K Katsaggelos. “Anomalous 

video event detection using spatiotemporal context”. Comput. Vis. 
Image Underst. pp. 323–333, vol. 115, 201. 

[2] B.T Morris and M.M Trivedi.”Trajectory learning for activity 

understanding: Unsupervised, multilevel, and long-term adaptive 
approach”. IEEE Trans. Pattern Anal. Mach. Intell. pp. 2287–2301, vol. 

33, 2011. 

[3] S. Calderara, U. Heinemann, A. Prati, R. Cucchiara and N. 
Tishby.”Detecting anomalies in people’strajectories using spectral graph 

analysis”. Comput. Vis. Image Underst. pp. 1099–1111. Vol. 115, 2011. 

[4] N. Dalal and B. Triggs,  “Histograms of oriented gradients for human 

detection,” in proceeding of IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 886–893, June 

20-25, 2005. 

[5] H. Wang, A. Klaser A and C. Schimid, “Dense trajectories and motion 
boundary descriptor for action recognition,” in proceeding international 

journal of computer vision, vol. 103, pp. 60-79, March, 2013. 

[6] Wang H, Ullah MM, Kl¨aser A, Laptev I, Schmid C (2009) Evaluation 
of local spatio-temporal features for action recognition. In: British 

Machine Vision Conference. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

93 | P a g e  
www.ijacsa.thesai.org 

[7] G.W Taylor, R. Fergus and Y. LeCun, “Convolutional learning of 

spatio-temporal features,” in proceeding of 11th European conference on 
Computer vision, pp. 140-153, September 5-11, 2010. Article (CrossRef 

Link). 

[8] Ji Si, Xu W, Yang M, et al., “3d convolutional neural networks for 
human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol.35, no.1, pp.221–231, January, 2013. 

[9] D. Tran, L. Bourdev and Fergus, “Learning spatiotemporal features with 
3d convolutional networks,” In proceeding of IEEE International 

Conference on Computer Vision (ICCV), Santiago, Chile, pp. 4489–
4497, December 7-13, 2015. Article (CrossRef Link). 

[10] Limin Wang, Yuanjun, Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaou 

Tang. Temporal segment network: Towards good practices for deep 
action recognition,” in ECCV, 2016. 

[11] Julia bernd, Damian Borth, Benjamin Elizade, et al. YL1-Med corpus: 

characteristics, procedures, and plans, in arXiV: 1503.04250, 2015. 

[12] A. Diba, A. M. Pazandeh, and L. V. Gool, “Efficient two-stream motion 

and ap-pearance 3D CNN for video classification,” in Proceedings of 
European Conferenceon Computer Vision, 2016, pp. 1- 4. 

[13] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream 

network fusion for video action recognition”, in Poc. IEEE Conf. Comp. 
Vis. Pattern Recognit., Jun. 2016, pp-1933-1941. 

[14] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-

pooled deep-convolutional descriptors,” in Proceeding of IEEE 
international conference on Computer Vision and Pattern Recognition, 

2015, pp. 4305-4314. 

[15] Y.-G. Jiang, S. Bhattacharya, S.-F. Chang and M. Shah. High-Level 
Event Recognition in Unconstrained Videos. In IJMIR, 2012. 

[16] X. Lu, H. Yao, and S. Zhao, “Action recognition with multi-scale 

trajectory-pooled 3D convolutional descriptors,” Multimedia Tools and 
Applications, 2017 pp.1-17. 

[17] Z. Qiu, t. Yao, and T. Mei, “Learning spatio-temporal representation 

with pseudo-3D residual networks, “in proc. IEEE Intl. Conf. Comut. 
Vis., Oct. 2017, pp. 5533-5541. 

[18] A. Karpathy, G. Toderici, S. Shetty and T. Leung, “Large-scale video 
classification with convolutional neural networks,” in proceeding IEEE 

conference on computer vision and pattern recognition, pp. 1725 – 1732, 
June 23-28, 2014. 

[19] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good practices for 

very deep two-stream convnets. arXiv preprint arXiv:1507.02159, 2015 

[20] M. D. Zeiler and R. Fergus. Visualizing and understanding 

convolutional networks. In Proc. ECCV, 2014. 

[21] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient 
object localization using convolutional networks. In Proc. CVPR, 2015. 

[22] S. Venugopalan, M. Rohrbach, R. Mooney, T. Darrell, and K. Saenko. 

Sequence to sequence video to text. In Proc. ICCV, 2015. 

[23] N. Srivastava, and R. Salakhutdinov. Multimodal Learning with Deep 
Boltzmann Machines. In NIPS’12, 25, pages 2231-2239. 

[24] L. Sun, K. Jia, and D. Yeung, “Human action recognition using 

factorized spatio-temporal convolutional networks,” in proceeding of 
IEEE International Conference on computer vision (ICCV), pp. 4597 – 

4605, December 7-13, 2015. 

[25] A. Klaser, M. Marszalek, and C. Schmid, “A Spatio-Temporal 

Descriptor Based on 3D-Gradients,” in proceeding of 19th British 
Machine Vision Conference, British Machine Vision Association: 

Leeds, United Kingdom, pp.1–10, September, 2008. Article (CrossRef 
Link). 

[26] P. Scovanner, S. Ali and M. Shah, “A 3-Dimensional SIFT Descriptor 

and its Application to Action recognition,” in Proceedings of the 15th 
International Conference on Multimedia, pp. 357–360,September 25 – 

29, 2007. 

[27] H. Wang and C. Schmid, “Action recognition with improved 
trajectories,” in proceeding of IEEE International conference on 

computer vision, pp. 3551-3558, December 1-8, 2013. 

[28] Joao Carreira and Andrew Zisserman, action recognition? A new model 
and the kinetics dataset, in CVPR, 2017. 

[29] Kaming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual 

for image recognition. arXiv preprint arXiv: 1512/03385, 2015. 

[30] Kaming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity 
mapping in deep. 

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional 
networksfor large-scale image recognition. In proc. ICLR, 2014. 

[32] Limin Wang, Yuanjun, Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaou 

Tang.Temporal segment network: Towards good practices for deep 
action recognition,” in ECCV, 2016. 

[33] N. Srivastava, and K. Salakhutdinov. Multimodal Learning with Deep 

Boltzmann Machines. In NIPS’12, 25, pages 2231-2239. 

 


